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Abstract

This paper studies amplification of productivity shocks in labor markets through on-the-
job-search. There is incomplete information about the quality of the employee-firm match
which provides persistence in employment relationships and the rationale for on-the-job
search. Amplification arises because productivity changes not only affect firms’ probability
of contacting unemployed workers but also of contacting already employed workers. Since
higher productivity raises the value of all matches, even low quality matches become pro-
ductive enough to survive in expansions. Therefore the measure of workers in low quality
matches is greater when productivity is high, implying a higher probability of switching to
another match. In other words, firms are more likely to meet employed workers in expan-
sions and those they meet are more likely to accept firm’s job offer because they are more
likely to be employed in a low quality match. This introduces strongly procyclical labor mar-
ket reallocation through procyclical job-to-job transitions. Simulations with a productivity
process that is consistent with average labor productivity in the U.S. show that standard
deviations for unemployment, vacancies and market tightness (vacancy-unemployment ra-
tio) match the U.S. data. The model also reconciles the presence of endogenous separation
with the negative correlation of unemployment and vacancies over business cycle frequencies
(i.e. it is consistent with the Beveridge curve).
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1 Introduction

In the last two decades, labor market search models have been used extensively to under-

stand aggregate labor market phenomena, such as equilibrium unemployment and vacancies

(Mortensen and Pissarides (1994), Pissarides (2000)). This theoretical framework also proved

to be useful in analyzing the effects of various labor market policies including unemployment

insurance and labor turnover costs. However, search models have recently been criticized for

their business cycle implications. In particular, Shimer (2005a) and Hall (2005) argue that

standard models of labor market search require implausibly large shocks to generate substantial

variation in key variables; unemployment, vacancies and market tightness (vacancy to unem-

ployment ratio) 1. Standard deviations of unemployment and vacancies are 10 times, market

tightness is 19 times as large as the standard deviation of the average product per worker in the

U.S. A puzzle arises since a standard calibration of Mortensen-Pissarides model implies that

the variations in all these variables is basically the same as productivity.

This paper studies amplification of productivity shocks in labor markets through on-the-

job-search. Nagypal (2004a) and Shimer (2005b) argue that job-to-job transitions are crucial

for the cyclical worker reallocation. Exploiting dependent interviewing methods introduced

in the CPS in 1994, Fallick and Fleischman (2004) find that these flows are large: On average

2.6% of employed workers change employers each month. Moreover, job-to-job transitions turn

out to be significantly procyclical. This particular flow cannot be analyzed by standard search

models. Thus, on-the-job search seems to be a natural extension of the standard labor market

search model.

In the model, workers are allowed to search for another job while employed without incur-

ring any cost. There is also symmetric incomplete information about the quality of the match,

which provides persistent employment relationships and a rationale for on-the-job search. Thus,

workers in low quality matches have an incentive to search for and accept better quality matches.

In equilibrium, workers are distributed over different match qualities at any point in time. Am-

1 Fujita and Ramey (2005) present simulations of the ’standard’ Mortensen - Pissarides model that show
much more variability. However, their representation of the Mortensen - Pissarides model deviates from the
standard version in many respects, including a different timing assumption and different separation rates for new
and prevailing matches.

2



plification arises in the model because productivity changes not only affect firms’ probability of

contacting unemployed workers but also of contacting already employed workers. For instance,

in expansions, firms are more likely to meet employed workers and those they meet are more

likely to accept firm’s job offer because they are more likely to be employed in a low quality

match. This provides the incentive for the firms to post more vacancies than predicted in the

standard model. The logic behind this is simple; since higher productivity raises the value

of all matches, even low quality matches become productive enough to survive in expansions.

Therefore the measure of workers in low quality matches is greater when productivity is high,

implying a higher probability of switching to another match. This introduces strongly procycli-

cal labor market reallocation through procyclical job-to-job transitions. Therefore, the effects

of productivity shocks on employment distribution play a key role in generating the desired

amplification.

One other contribution of on-the-job search that helps to create amplification is the presence

of larger stock of job seekers. In the standard labor market search model, a positive productivity

shock leads to higher number of vacancies and lower unemployment by increasing the job finding

rate. As the productivity shock persists, since all new workers come from the unemployment

pool, firms will expect to find increasingly less number of unemployed workers to fill in the

available vacancies. This dampens the positive effect of productivity shock on the supply of

vacancies. With on-the-job search, however, this offsetting effect will not be present. To the

contrary, due to a substantial number of employed workers at low quality matches who are

ready to switch, firms have incentives to post additional vacancies.

The model provides a possible channel for amplification that does not require changing the

wage determination process or the information structure to a large extent. In particular, simu-

lations show that the standard deviations for all three labor market variables are matched. The

model also successfully predicts that market tightness, defined as the ratio of vacancies to unem-

ployment, is more volatile than both vacancies and unemployment. In addition, the presence of

endogenous separation is reconciled with the negative correlation between unemployment and

vacancies over business cycle frequencies.

This paper also has a computational contribution. On-the-job search with match het-
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erogeneity implies that the entire employment distribution becomes a state variable for the

recursive problem. It is well known in the literature that this complicates the numerical solu-

tion of the equilibrium. I utilize the algorithm used by Krusell and Smith (1998) to address

a similar problem. The computational exercise suggests that approximating the worker’s ac-

ceptance probability of a firm’s job offer suffices to characterize the equilibrium. This enables

me to numerically solve for the stochastic equilibrium of this economy. In contrast, other

studies that modeled on-the-job search either used some simplifying assumptions to get rid

of the endogenous effects of heterogeneity or simply restricted the analysis to non-stochastic

equilibrium.

The next section discusses the related literature. Section 3 describes the U.S. aggregate

labor market data. It shows that the variation in average labor productivity is much less than

the observed variation in vacancies, unemployment and market tightness. This section also

includes some results from a simulation of the standard labor market search model in order to

quantify the size of the "amplification puzzle". Section 4 describes the economic environment

and lays out the dynamic optimization problem of agents. Section 5 characterizes the equilib-

rium of the economy and describes the computational procedure to handle the presence of the

employment distribution in the state space. Section 6 and Section 7 discuss calibration and

the solution to the computational problem in detail respectively. Section 8 presents the results

from the simulation of the model and discusses the implications of the model.

2 Related Literature

Early studies of labor market search either failed to address the magnitude of the exogenous

forcing process (Mortensen and Pissarides (1994), Cole and Rogerson (1999)) or implied counter-

factually positive relationship between unemployment and vacancies (Andolfatto (1996), Merz

(1995), Ramey and Watson (1997)).

Shimer (2005a) and Hall (2005) claim that the reason for the lack of amplification in these

models is the underlying wage determination mechanism. In search models, an increase in

labor productivity raises the labor demand, hence the number of vacancies posted by firms.
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Since labor markets match vacancies and unemployment as an increasing function of both,

more vacancies increase the job-finding probability of workers. Higher job-finding probability

reduces unemployment, implying a negative relationship between vacancies and unemployment.

However, since workers are now hired at a higher pace, unemployment duration also falls in

addition to unemployment. This raises the workers’ threat point in bargaining and leads to

an offsetting change in terms of higher wages. Therefore, firms’ incentive to create vacancies

falls (Shimer (2005a), p. 25-26). Hall (2004, 2005), Shimer (2004) and Kennan (2004) build

on this presumption and introduce wage rigidity either exogenously or through an endogenous

mechanism. As I argue in this paper, a modification to the wage mechanism is not a necessary

condition for amplification. Indeed, a recent paper by Mortensen and Nagypal (2005) discusses

this point extensively, suggesting that wage rigidity per se is not the answer for amplification.

For instance, assuming no bargaining strength for workers leads to constant wages that are

equal to the reservation wage ( i.e. the value of leisure). Even in this case, the variability of

labor market variables relative to productivity are an order of magnitude smaller (Mortensen

and Nagypal (2005), p.9).

Several recent studies also aim to provide a mechanism to amplify the effects of business

cycle shocks on unemployment and vacancies (Hagedorn and Manovskii (2005), Krause and

Lubik (2004), Nagypal (2005) and Silva and Toledo (2005)). Hagedorn and Manovskii (2005)

use an unrealistically high value of leisure to generate amplification. Silva and Toledo (2005)’s

result depends on a combination of right parameter values for separation, hiring and training

costs. Krause and Lubik (2004) and Nagypal (2005) are closer to this paper in that both model

on-the job search. In general on-the-job search introduces the heterogeneity of job seekers

into the picture. Coupled with the aggregate uncertainty, this complicates the problem to a

great extent. This might be the reason why Krause and Lubik (2004) assumes a segregated

market for different kind of jobs to simplify the potential complexity of the model, whereas

Nagypal (2005) only restricts the analysis to non-stochastic equilibrium. In contrast, I handle

the heterogeneity that is induced through on-the-job search so that the stochastic equilibrium

of the model could be studied.
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3 U.S. Labor Market Facts

This section presents some of the salient features of the U.S. aggregate labor market data over

the business cycle to motivate the questions addressed in the paper. I focus on three key

labor market variables; unemployment, vacancies and market tightness as defined by the ratio

of vacancies to unemployment. These are standard variables describing the state of the labor

market. Since the mechanism emphasized in this paper also has implications for transitions

between different labor market states, I present two series that proxy transition probabilities

between unemployment and employment. These measures are recently constructed by Shimer

(2005a and 2005b).

Unemployment is the quarterly average of seasonally adjusted monthly data constructed

by the Bureau of Labor Statistics (BLS) using the Current Population Survey (CPS) data.

Vacancies are proxied by quarterly averages of the seasonally adjusted monthly Help-Wanted

Advertising Index constructed by the Conference Board. The index is normalized to 100 for

1987. Market tightness variable is constructed using these two and equals the ratio of unem-

ployment to vacancies. In order to determine productivity changes over the cycle, I use real

output per person in the non-farm business sector. This particular series is chosen to ensure

comparability with the recent body of literature. It is also a natural way to think about

productivity in the standard Mortensen-Pissarides model. This series is part of BLS’s Major

Sector Productivity and Costs program. It is normalized to 100 for 1992.

Job finding and separation probabilities describe the hazard of changing labor market state.

For instance, job finding probability is the hazard rate for an unemployed worker of finding a

job. Hence, it gives the probability of switching between state of unemployment (u) to state

of employment (e). The opposite of this measure is separation probability (e-u transition).

Shimer uses short term unemployment data and total unemployment data to pin down these

probabilities2. Let Ut be the number of unemployed in month t, Ust be the number of workers

unemployed less than a month in month t, and Et be the number of workers employed in month

t. Then, job finding and separation probabilities are constructed by the following two formulas

2 A detailed discussion of how these are constructed is in Shimer (2005a and 2005b). Data is available
through his website: http://home.uchicago.edu/~shimer/data/
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respectively.

ft = 1−
Ut+1 − Ust+1

Ut
(1)

st =
Ust+1

Et(1− ft/2)
(2)

The separation probability takes into account the possibility of having a short spell of

employment in a month to get rid of the time aggregation bias. All of the data reported here

are expressed as quarterly averages of monthly data, except the average labor productivity,

which is quarterly. The data covers the post-war period, starting from first quarter of 1951

and ending by the end of 2003. All variables are expressed in log deviations from an HP filter

with a smoothing parameter 10^5.

First, consider the cyclical variation in unemployment and vacancies relative to the labor

productivity. As Figures 1 and 2 show, both variables show much more variability than the

average labor productivity. Same is true for the cyclical variation of market tightness (see

Figure 3) . The latter two variables show strong procyclicality as opposed to countercyclical

unemployment. Figures (5) and (6) complement this picture. It appears from these two figures

that job finding probability is strongly procyclical and separation probability is countercyclical.

These findings are summarized in Table 1. The second row denotes the variables of interest:

u for unemployment, v for vacancies, v/u for market tightness, u-e for job finding probability,

e-u for separation probability and z for labor productivity. The third row in the table states

standard deviations of these variables and the fourth row gives one period auto correlations.

Amplification of productivity shocks is clear from the third row. Both unemployment and

vacancies are 10 times more volatile than labor productivity. Market tightness is even more

volatile, approximately 19 times more. The amplification puzzle, which motivates this paper,

states that the standard labor market search model cannot generate this much amplification

based on a productivity process that resembles z in the data. In order to compare data findings

in Table 1 with the implications of the model, I simulate a standard Mortensen-Pissarides model.

Since, this model is well known in the literature, details of it is presented in the Appendix (see
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Pissarides (2000) for an extensive treatment of the model and its implications).

Table 1: U.S. DATA (Quarterly, 1951Q1-2003Q4)

u v v/u u-e e-u z

Std 0.19 0.20 0.38 0.12 0.07 0.02

Auto 0.94 0.95 0.95 0.91 0.73 0.89

Cross Correlations

u −0.89 −0.97 −0.95 0.71 −0.42

v 0.97 0.90 −0.69 0.37

v/u 0.95 −0.72 0.40

u-e −0.58 0.41

e-u −0.52

Table 2 presents simulation results from the standard Mortensen-Pissarides model. Pro-

ductivity process is calibrated to match the actual z series in terms of standard deviation and

autocorrelation. In particular, I use a two point Markov process approximated to match the

underlying AR(1) process of z according to Tauchen’s method (Tauchen, 1986). As Table 2

clearly indicates, the standard model implies almost the same magnitude of variation in all key

variables. There is virtually no amplification. Third rows of Table 1 and Table 2 make this

point clear beyond doubt. This discrepancy between the model’s implications and the data is

referred to as amplification puzzle in this paper.
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Table 2: MP Model with Constant Separation

u v v/u u-e e-u z

Std 0.01 0.02 0.03 0.01 0 0.02

Auto 0.85 0.74 0.81 0.81 1 0.81

Cross Correlations

u −0.87 −0.94 −0.99 0 −0.94

v 0.99 0.92 0 0.99

v/u 1 0 1

u-e 0 1

e-u 0

One key feature of the data is that separations show a countercyclical variation. This

is clearly evident in Figure 6 and Table 1. The standard model, however, assumes constant

separations. Studies trying to model endogenous separations as a potential channel to introduce

variations in unemployment provides a natural extension to the standard model. However, as

argued in the introduction, endogenous separations usually lead to counterfactually positive

correlation between unemployment and vacancies.

The negative relationship between unemployment and vacancies has long been recognized

by researchers. Indeed, one of the key facts that the standard model was intended to explain

was this negative correlation, which has been traditionally named as the Beveridge Curve. The

U.S. Beveridge Curve is shown in Figure 4. This relationship is also apparent in Table 1 in the

form of a strong negative correlation of −0.89.

Shimer (2005a) provides a detailed discussion of why separation shocks alone, or separations

in general fail to generate the Beveridge curve. In order to emphasize this point, results from

the simulation of a standard search model with idiosyncratic match productivity would be

helpful. For this, I will present simulations from an extension of the standard model laid out

in the next section but does not feature on-the-job search.
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Table 3: MP Model with Endogenous Separation

u v v/u u-e e-u z

Std 0.09 0.03 0.07 0.06 0.11 0.02

Auto 0.78 0.69 0.81 0.82 0.83 0.81

Cross Correlations

u 0.94 −0.99 −0.99 0.72 −0.99

v −0.88 -0.88 0.73 −0.88

v/u 0.99 −0.69 0.99

u-e −0.62 0.99

e-u −0.69

Simulations in Table 3 indicate that endogenizing separations imply a positive correlation

between unemployment and vacancies. The correlation turns out to be 0.94 in contrast to the

empirical counterpart of −0.89. The model proposed in this paper not only reconciles endoge-

nous separations with a downward sloping Beveridge curve but also increases the amplification

lacked in the standard model.

Finally, the U.S. data indicates that most of the variations in unemployment and vacancies

are due to more variable job finding probabilities. The artificial probability series constructed

by using (1) and (2) indicate that, it is the hiring which varies more over the cycle. The

standard deviation of the job finding probability is almost two times greater than that of

separations. Their cyclical variations are presented in Figures 5 and 6. Although on-the-job

search introduced in this paper implies another possible transition, namely e-e transition, these

probabilities are still useful benchmarks to compare.

4 The Economic Environment

The model I present here is an extended version of Pries and Rogerson (2005). They study

implications of different labor market institutions on hiring policies and labor market flows.

Their model incorporates symmetric incomplete information into the standard search model.

Symmetric incomplete information motivates agents to learn about their match quality over
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time by observing idiosyncratic component of their output. This mechanism causes persistent

idiosyncratic match specific productivity. Alternatively, one could assume a slightly more

complicated persistent exogenous process that governs idiosyncratic component of matches.

However, as Nagypal (2004b) argues, learning about match quality is the key determinant of

match specific capital especially after first few months of tenure. Hence, learning about match

quality provides an empirically relevant story about productivity changes over the job. In

addition, I add two key features to this model to explain the amplification puzzle: On-the-job

search and aggregate uncertainty.

There is a continuum of risk neutral workers and employers who discount the future at the

rate β ∈ (0, 1). The measure of workers is normalized to 1. Workers and employers come

together in a labor market which is characterized by search frictions.

4.1 Learning and Production Technology

Employers are endowed with a production technology that produces yt ∈ Y = {yh, yl|yh >

yl} ⊂ R++ when matched with a worker. Hence, when a worker and a firm form a productive

match, they produce ztyt, which depends on the inherent match quality and aggregate state,

zt. Aggregate productivity is governed by a Markov process, Ψ(zt+1|zt) and is independent of

the idiosyncratic component. Even though both workers and firms observe the match specific

component of the output, yt, and the aggregate state, they do not observe their actual match

quality, q, which can be good or bad. Match specific output is determined by the following

relationship3:

Pr(yt = yh|q = g) = Πg > Pr(yt = yl|q = g) = 1−Πg (3)

Pr(yt = yl|q = b) = Πb > Pr(yt = yh|q = b) = 1−Πb

Though q is unobservable, agents receive an initial signal γ0 ∈ [0, 1] that corresponds to

the probability that the match will be good if formed. It is same for both the worker and the

3 This is slightly different from Pries and Rogerson (2005) and allows for long term learning. It could be
interpreted as a reduced form learning process that in effect is governed as in Jovanovic (1979).
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firm. This initial signal is received from a truncated normal distribution, i.e γ0 ∼ Γ(η, σ)4.

This distribution is time invariant. After the initial period, both parties start learning abouth

their match quality based on output realizations. Since there is no asymmetric information

and the output is observed by both, they will have the same posterior belief about the match

quality. Let Pr(q = g|yt−1) = γ denote this probability that the current match is a good

match conditional on the past output realization on the match, yt−1. Agents need to infer

Pr(q = g|yt) and Pr(q = b|yt) for yt ∈ {y
h, yl}. At this point, it may be useful to compute the

posteriors. It follows from simple Bayesian inference.

Pr(q = g|yt = y) =
Pr(q = g|yt−1) Pr(yt = y|q = g)

Pr(q = g|yt−1)Pr(yt = y|q = g) + Pr(q = b|yt−1) Pr(yt = Y − y|q = b)

After some algebra, I arrive at the following posteriors implied by prior belief, γ, and time

t output realization.

Pr(q = g|yt = yh) = γh =
γΠg

γΠg + (1− γ)(1−Πb)
(4)

Pr(q = g|yt = yl) = γl =
γ(1−Πg)

γ(1−Πg) + (1− γ)Πb

The posterior is updated to γh after observing a high output and to γl after low output.

Intuitively, γh is expected to be higher than the current state γ. More formally, the current

state is related to the future state in the following way under (3).

Remark 1 If (3) holds, γh(γ) ≥ γ ≥ γl(γ) and both γh(γ) and γl(γ) are increasing in γ. In

addition, γh(γ) is concave whereas γl(γ) is convex5.

This remark summarizes the information revelation process over time. An important feature

of this learning mechanism is that it rules out any strategic action by both parties to influence

the learning process. The evolution of the beliefs is entirely governed by the exogenous process

4 Because γ is restricted to be in the unit interval, Γ(η, σ) represents the cdf of a normal distribution with
parameters η̂ and σ̂ which is appropriately reweighted to be well defined. Hence, a pair of parameters of the
actual distribution (η̂, σ̂) implies a corresponding pair for Γ, (η, σ).

5 The fact that these two mappings are increasing in γ could be established by the positive sign of the first
derivatives. Also, comparing γh, γl and γ, one can easily establish that γh(γ) ≥ γ ≥ γl(γ) is true. Concavity of
γh(γ) and convexity of γl(γ) follow from these arguments and the fact that both γhand γl maps [0, 1] to itself.
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defined in (3) and (4)6. As the firm receives high output realizations, its anticipation that the

match is indeed of good quality increases. The opposite is true for a firm that keeps receiving

low output realizations. Furthermore, the higher the initial prior about the match quality, the

higher the next period’s state variable.

Finally for simplicity, I refer to the unconditional probability of observing a high output

(low output) at each period as α (1− α) in the rest of the paper. They are simply defined as

linear functions of γ: α(γ) = γΠg + (1− γ)(1−Πb) , (1− α(γ)) = γ(1−Πg) + (1− γ)Πb.

The presence of match specific productivity implies that all matches are indexed by their

quality (γ) at any point in time. This requires a way of describing the heterogeneity at any

point in time. A mapping that gives the measure of the employment at any subset of the

match quality state space is a natural way of describing this heterogeneity. Let nt(γ) ∈ [0, 1]

be the total number of matches that are believed to be good quality with probability γ. Since,

each match employs one worker, this also gives the total number of employed workers with

match quality index γ. I also assume that agents are rational in their expectations. In other

words, γ fraction of all matches among nt(γ) are actually good quality. How this distribution

evolves over time depends both on the endogenous decisions made by agents and the equation

of motion for aggregate productivity. I assume that this is summarized by a function G such

that:

nt+1 = G(nt, zt, zt+1) (5)

In the discussion of the equilibrium, employment distribution and (5) plays a critical role.

4.2 Matching Technology and Wage Determination

The meeting process is facilitated by an aggregate matching function, which maps the number

of searchers on both sides of the market into meetings. Since this paper focuses on the

6 This exogenous process dictated by learning for the evolution of match specific output can be thought of as
any exogenous persistent match specific productivity shock where the state space and the transition probabilities
are defined appropriately. For instance, a process for this match specific component may take values ranging
from α(0)yh + (1− α(0))yl to α(1)yh + (1 − α(1))yl and the transition probability from the current state γ to
the future state might be defined as Pr(γh|γ) = α(γ) and Pr(γl|γ) = 1− α(γ).
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importance of the match quality distribution on reallocation over business cycles, search effort

will be ignored. This is not an unusual assumption in labor market search models, where search

input into the matching function is generally approximated by the number of unemployed. Due

to on-the-job search in this paper, search input is approximated by the measure of all searchers,

which equals the entire labor force7. The fact that both employed and unemployed workers meet

a vacancy this does not imply that employed workers find jobs at the same rate as unemployed

workers do. Idiosyncratic match quality generates endogenously different matching rates for

all workers.

The matching technology is summarized by a constant returns to scale matching function,

M(vt, 1), that takes the amount of job seekers, 1, and vacancies, vt as its arguments8. This

implies that the rate at which workers meet a job opportunity is f(vt) =M(vt, 1)/1. Similarly,

a vacancy will meet a worker at the rate h(vt) = M(vt, 1)/vt. The meeting rate is not equal

to matching rate in this model, because not all meetings end as successful matches. There are

two possible types of meetings in this framework; meetings between an unemployed worker and

a vacancy, and meetings between an employed worker and a vacancy. Meetings between an

unemployed worker and a vacant firm turns into productive matches if their common beliefs

about the match quality are above a certain threshold, which is to be determined endogenously

in the equilibrium. When an already employed worker meets a vacancy, she has to decide

whether to stay in her current match. This decision depends not only on the possible quality

of the prospective match (if formed), but also on the quality of her existing match. Agents’

initial signal about the quality of the potential match is also drawn from Γ. As a result, if the

worker quits and changes her job, the firm becomes idle and can choose to post a vacancy next

period.

For simplicity, I assume that there is no recall of past job offers and no wage bidding by firms

to attract a worker. Incorporating a strategic interaction between a worker’s current employer

and a potential employer might change the results presented here at the expense of compli-

7 Alternatively, one can assume negligible costs for exerting search effort for all workers to ensure that both
unemployed and employed workers search for a job.

8 Since not all meetings result in a match, the term "matching" is used for meeting, in the context of this
paper.
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cating the wage determination mechanism. This simplifying assumption is not uncommon

in the literature (Nagypal, 2005). Furthermore, this paper aims to provide a mechanism for

amplification through the effects of labor market search on the entire employment distribution

but not on wage determination.

The firm pays a wage that is determined by a sharing rule over the match surplus which

is common in the literature9. The sharing rule is such that workers keep φ ∈ (0, 1) fraction

of the match surplus whereas firms get (1 − φ) of it. Wages are renegotiated each period by

splitting the surplus with the same rule. This does not preclude persistence in wages because

inherent match quality, γ, and aggregate productivity, z, are both persistent. Under these

assumptions about wage determination, it is clear that a worker already employed in a match

with γ probability of being a good match is willing to switch to a new employer if she faces a

higher initial signal. Thus, she experiences a job-to-job transition if new signal, γ0, is greater

than the current match quality, i.e. γ0 > γ 10. If the current employment distribution is nt,

then the probability that an employed worker, conditional on meeting, is willing to switch jobs

is a function of this distribution:

∫
nt(γ)(1− Γ(γ))dγ (6)

This is the essential feature of the model that introduces the employment distribution into

the state space.

Finally, the alternative to a match for a firm is posting a vacancy , which costs c > 0

units of consumption per period and generates a possibility of a new match in the next period.

Firms have incentive to post vacancy as long as the value of posting one is positive. This

is ensured by the free entry of firms and implies that equilibrium value of vacancy is driven

to zero. For workers, the outside option is to be unemployed and to consume b > 0, which

could be interpreted as unemployment benefits or value of leisure. This implies that ongoing

9 This is equivalent to Nash Bargaining when there is no on-the-job search. Shimer (2003) analyses strategic
bargaining in a model of on the job search.

10 I assume, throughout the rest of the analysis, that she retains the match when indifferent. It is intuitive to
suggest that not all workers will be willing to change jobs if it is costly enough. This will only require a certain
premium over the current match and reduce some job-to-job transitions. However, for empirically plausible
values for such costs it does not eliminate job-to-job transitions, hence the mechanism underlined in this paper.
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matches are destroyed endogenously when the match surplus becomes negative. Because of

the particular sharing rule I use, such a decision does not create any disagreements, i.e. both

parties agree to end the match jointly. In the equilibrium, this implies a reservation prior, γ̄.

below which the match ceases to be productive and dissolves. On the other hand, a worker

may unilaterally end a match, if she meets another vacancy and gets a better initial match

quality signal. As explained in the previous paragraph, firms should take the possibility of

such a decision into account when they are in a match. Hence, on-the-job search introduces

possible match destruction, even though the surplus of the match is strictly positive. Matches

are also subject to an exogenous shock in each period that renders the match unproductive.

This probability is denoted by λ11.

4.3 Timing of Events

It would be instructive to describe the timing of events within a period to understand agents’

information set at each point in time. Events with a time period follows the sequence below,

which is also depicted in a chart at the end of the paper:

• Matches that were productive in the last period start the period t with the information,

γt, zt and nt. Unemployed workers and vacant firms start the period with zt and nt.

• Workers and firms within a match decide whether to stay or exit the match. Because of

the surplus sharing rule, there is no disagreement between two parties.

— If the decision is to stay, production occurs, yt is realized. Workers consume wages,

firm consumes net output. Match quality is updated to γt+1.

— If the decision is to exit, worker becomes an unemployed searcher and consumes b.

Firm becomes idle.

• After production, match quality distribution changes to n+t , which is different from nt

due to learning and endogenous separations.

11 This exogenous probability ensures that in the nonstochastic steady state of this economy we have a non-
degenerate employment distribution over match quality space.
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• Firms decide to post vacancy at the cost of c until the value of a vacant position is driven

to zero. This pins down the total number of vacancies, vt.

• Meetings occur according to M(vt, 1), and initial signals are drawn from Γ.

— Employed worker who meets a vacancy quits and changes her job if the new signal

indicates a higher quality match. This decision is unilateral.

— Unemployed worker who meets a vacancy decides whether to form a match or stay

unemployed.

• New matches are formed, which will be productive in t+1. Existing matches are subject

to exogenous destruction with probability λ.

• Match quality distribution is updated to nt+1.

4.4 Bellman Equations

In order to define the equilibrium of this economy, I start with the Bellman equations that

determine values of being in different labor market states. State variables for agents form a list

{γ, z, n}, where n is the aggregate employment distribution and time subscripts are dropped

for convenience. Aggregate state variables z and n are not correlated with the law of motion

for the individual state variable γ, since the learning process is independent of the aggregate

state12. Equation of motion for γ is given by posteriors defined in (4), whereas that of z is

governed by the Markov process. The part of the law of motion that concerns n(γ) is denoted

by G such that n′ = G(n, z, z′), where the variables with "′" denote one period ahead variables.

Knowing the aggregate state allows agents to predict future meeting rates.

Let Vu(z, n) be the value of being unemployed for a worker when aggregate productivity is

z and the employment distribution is n.

Vu(z, n) = b+ βEz′|z

{
f(v)

∫
Ve(γ

′, z′, n′)dΓ(γ′) + (1− f(v))Vu(z
′, n′)

}
(7)

12 The matches that will survive in different aggregate states will be a function of the aggregate state in
equilibrium. What I mean here is that conditional on survival of the match in the next period posterior is only
determined by the exogenous learning process.
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An unemployed worker consumes b in this period and expects to come up with a possible

match with probability f(v), in which case, she gets the value of having a match, denoted by

Ve(γ
′, z′, n′). Alternatively, she will stay unemployed with probability 1− f(v). Expectation

operator takes Ψ(z′|z) into account and n′ is governed by G(n, z, z′).

The value of having a match which is of good quality with probability γ is slightly more

complicated.

Ve(γ, z, n) = max






w(γ, z, n)

+β(1− λ)(1− f(v))Ez′|z






α(γ)Ve(γ
h, z′, n′)

+(1− α(γ))Ve(γ
l, z′, n′)






+β(1− λ)f(v)α(γ)Ez′|z






Γ(γh)Ve(γ
h, z′, n′)

+
∫
γh
Ve(γ

′, z′, n′)dΓ(γ′)






+β(1− λ)f(v)(1− α(γ))Ez′|z






Γ(γl)Ve(γ
l, z′, n′)

+
∫
γl
Ve(γ′, z′, n′)dΓ(γ′)






+βλEz′|zVu(z
′, n′), Vu(z, n)






(8)

The worker compares the returns on retaining the match and not accepting or dissolving it.

First five terms within the maximum operator define the discounted expected value of forming

(or staying with) the match. Current return from the match equals wage payments, w(γ, z, n).

Expected value of staying in the match has three components. First, the worker might not meet

another vacancy with probability β(1−λ)(1−f(v)) and stay with her current employer. In this

case, depending on the current output realization, she will update her belief about the quality of

the match according to (4). Since a high output is realized with probability α(γ), the expected

future value of the match becomes Ve(γh, z′, n′). Alternatively, a low output realization leads

to a lower posterior and a corresponding expected future value of being in a match, Ve(γ
l, z′, n′).

The latter two terms state what happens when worker meets a new vacancy. She faces a new

vacancy with probability β(1 − λ)f(v)α(γ) after recently producing high output. Depending

on the result of the new draw from the distribution Γ, either the current match survives or
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the worker experiences a job-to-job transition. Current match survives, if the new draw falls

below γh and dissolves otherwise. Once again, note that this separation is initiated by the

worker. On the other hand, a new meeting might occur following a low output, which happens

with probability β(1− λ)f(v)(1−α(γ)). Worker’s choice between her current match and the

new vacancy is determined similarly. Finally, the match might exogenously dissolve due to an

exogenous shock with probability λ.

Firm’s problem could be defined in terms of Bellman equations in a similar fashion. Let

Ju(z, n) and Je(γ, z, n) be values of having a vacant job and being in a match respectively.

Ju(z, n) = −c+ βEz′|z

{
h(v)µ

∫
Je(γ

′, z′, n′)dΓ(γ′) + (1− h(v)µ)Ju(z
′, n′)

}
(9)

Posting a vacancy costs c per period and ensures that the firm will meet a worker in the

next period with probability h(v). Conditional on meeting with a worker, firm ends up forming

a match with probability µ, which is a function of the employment distribution and is defined

in detail in the following section.

On the other hand, the position might stay vacant either because the contacted worker does

not accept the match (with probability h(v)(1−µ)) or the position could not meet any worker

at all (with probability 1− h(v)).

Je(γ, z, n) = max






z(α(γ)yh + (1− α(γ))yl)−w(γ, z, n)

+β(1− λ)(1− f(v))Ez′|z






α(γ)Je(γ
h, z′, n′)

+(1− α(γ))Je(γ
l, z′, n′)






+β(1− λ)f(v)α(γ)Ez′|z






Γ(γh)Je(γ
h, z′, n′)

+
(
1− Γ(γh)

)
Ju(z

′, n′)






+β(1− λ)f(v)(1− α(γ))Ez′|z






Γ(γl)Je(γ
l, z′, n′)

+
(
1− Γ(γl)

)
Ju(z′, n′)






+βλEz′|zJu(z
′, n′), Ju(z, n)






(10)

A firm that starts the current period with a match that is of good quality with probability
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γ, has to decide whether to go on with this arrangement and pay w(γ, z, n) to the worker or

destroy the match (or not start the match at all). In the latter case, payoff to the firm is simply

the value of being a vacant job. Current return from the match to the firm is the expected

net output which is defined as z(α(γ)yh + (1 − α(γ))yl) − w(γ, z, n). Once the firm stays

with this match, worker’s possible meetings with new vacancies should be taken into account

to determine the discounted expected future value. For instance, the firm’s employee might

contact a new vacancy with probability β(1 − λ)f(v). When there is no new meeting in the

next period, which happens with probability β(1− λ)(1− f(v)), expected value of the current

match only depends on how beliefs and the aggregate state change. However, whenever the

firm’s employee contacts a new vacant position, the future of the match depends on worker’s

choice because of the absence of any wage bidding. For instance, a new vacancy is contacted

by the worker following a high output with probability β(1−λ)f(v)α(γ), and the match will be

destroyed (retained) with probability
(
1− Γ(γh)

)
(Γ(γh)). If the current period output turns

out to be low, these probabilities change accordingly. Finally, the match may end due to an

exogenous shock, leaving the firm with a vacancy.

5 Equilibrium

There are four endogenous decisions to be made by the agents in this economy: Workers’ and

firms’ decision as to when to destroy an existing match, workers’ choice to unilaterally end the

match to make a job-to-job transition, firms’ decision on how many vacancies to create and the

wage to be paid. Among them the second decision is trivial and has already been substituted

in the Bellman equations in the previous section. It simply implies that a worker will not

accept any new job match, if the prior about the match specific quality in this new offer falls

below her belief about her current match quality. Hence, in what follows, I focus on the other

three decisions.

Let χ(γ, z, n) denote the optimal decision rule on match formation (and destruction) and v(z, n)

denote the number of vacancies posted in equilibrium as a function of the aggregate state. Then

the equilibrium of this economy can be easily defined.
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Definition 2 The equilibrium of this economy is a list w(γ, z, n), v(z, n), χ(γ, z, n), Je(γ, z, n),

Ju(z, n), Ve(γ, z, n), Vu(z, n) and G(n, z, z′) such that;

1. Given w(γ, z, n), v(z, n), χ(γ, z, n) and G(n, z, z′), value functions satisfy (7)-(10)

2. Given w(γ, z, n), v(z, n), G(n, z, z′) and value functions, χ(γ, z, n) is optimal.

3. (Free entry of firms) Given w(γ, z, n), χ(γ, z, n), v(z, n)and G(n, z, z′), each firm posts a

vacancy as long as Ju(z, n) > 0. Hence, aggregate v(z, n) makes the value of posting a

vacancy zero, i.e. Ju(z, n) = 0,∀z, n.

4. (Surplus Sharing) Each period: Ve(γ, z, n)−Vu(z, n) = φ [Je(γ, z, n)− Ju(z, n) + Ve(γ, z, n)− Vu(z, n)]

and Je(γ, z, n)− Ju(z, n) = (1− φ) [Je(γ, z, n)− Ju(z, n) + Ve(γ, z, n)− Vu(z, n)].

5. Decision rules w(γ, z, n), v(z, n), and χ(γ, z, n) indeed generate G(n, z, z′) subject to

Bayesian updating and equation of motion for z.

The specific surplus sharing rule used in this paper implies that both workers and firms agree

to leave when the surplus of the match falls below zero. Surplus of the match is defined as the

quantity, Je(γ, z, n)−Ju(z, n)+Ve(γ, z, n)−Vu(z, n). When the match surplus is negative, the

share each party gets become negative simultaneously. Hence, in order to describe the decision

rule χ(γ, z, n), it is essential to write down the surplus function. Subtracting outside options

from Je(γ, z, n) and Ve(γ, z, n), and adding them up leads to an expression defining the value of

the surplus from a match with quality γ, in aggregate state z and n. Details of the derivation

is presented in the appendix. Let this value be denoted by S(γ, z, n). The appendix shows

that this surplus function has the following recursive form.

S(γ, z, n) = max






z(α(γ)yh + (1− α(γ))yl)− b

+β(1− λ)(1− f(v))Ez′|z
[
α(γ)S(γh, z′, n′) + (1− α(γ))S(γl, z′, n′)

]

+β(1− λ)f(v)α(γ)Ez′|z

[
Γ(γh)S(γh, z′, n′) + φ

∫
γh
S(γ′, z′, n′)dΓ(γ′)

]

+β(1− λ)f(v)(1− α(γ))Ez′|z

[
Γ(γl)S(γl, z′, n′) + φ

∫
γl
S(γ′, z′, n′)dΓ(γ′)

]

−βEz′|zf(v)φ
∫
S(γ′, z′, n′)dΓ(γ′), 0






(11)

21



subject to Ψ(z′|z) and G(n, z, z′).

This equation is one of the key equations characterizing the equilibrium. For any v > 0,

this equation describes when an existing match should be destroyed bilaterally. Since the right

part of the expression within the outermost bracket is constant and the left is increasing in γ,

it is easy to show that the decision rule χ(γ, z, n) takes the following form for a given v.

χ(γ, z, n) =






1 if γ ≥ γ̄(z, n)

0 if γ < γ̄(z, n)
(12)

The reservation threshold, γ̄(z, n), determines whether a match should survive. It also

summarizes the hiring decision. In other words, a meeting will turn into a match if the

reservation threshold is reached and an ongoing match is terminated if the match quality falls

below this threshold. In equilibrium, it turns out that γ̄(z, n) is a decreasing function of z.

Intuitively, agents become less willing in recessions to undertake matches that are less probable

to be good quality. Since all matches are less productive the threshold for a match to survive

is higher in recessions. This particular form of the decision rule causes discrete changes in

employment distribution across different aggregate productivity levels. For instance, when

productivity falls, all prevailing matches that have current priors below the new (and higher)

threshold will be destroyed endogenously. Hence, some existing matches that are productive

in expansions cease to be so in recessions, causing countercyclical job destruction.

The second important equation determining the equilibrium of this economy comes from the

free entry condition and pins down the equilibrium number of vacancies posted. As it is shown

in the appendix, the value of vacancy can be written as a function of the surplus function. It

takes a simple form:

Ju(z, n) = −c+ βEz′|zJu(z
′, n′) + βh(v)µ (1− φ)Ez′|z

∫
S(γ′, z′, n′)dΓ(γ′) (13)

However, free entry of firms imply that Ju(z, n) = 0 for all z, n in equilibrium. Substituting

this in (13) gives the second key condition describing the equilibrium.
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c

βh(v)µ (1− φ)
= Ez′|z

∫
S(γ′, z′, n′)dΓ(γ′) (14)

Equations (11) and (14) jointly determine the equilibrium values for v(z, n) and γ̄(z, n).

These two equilibrium conditions are standard in models of labor market search with endogenous

job destruction (Mortensen and Pissarides, 1994). Given the law of motions G(n, z, z′) and

Ψ(z′|z) for the aggregate state, they characterize part of the equilibrium definition.

The rest of the equilibrium requires describing the endogenous equation of motion for the

aggregate match quality distribution. Equilibrium definition requires that the decision rules

determined by (11) and (14) should be consistent with the equation of motion for the match

quality distribution, G(n, z, z′). The presence of this distribution significantly complicates the

numerical solution. Thus, I leave the discussion of this last component of the equilibrium to

the following section, which describes the practical challenges of the computational problem

and the solution method employed.

5.1 Employment Flows

In order to shed more light on the mechanism advocated in this paper, it is essential to un-

derstand how match quality distribution evolves over time. Let nt−1 be the match quality

distribution at the end of time period t− 1. I assume that agents, both workers and firms, are

rational in their expectations about match quality. In other words, among the matches that

are currently believed to be good with probability γ, fraction of the good matches are indeed

γ.

From any distribution nt−1, decision rules v(zt, nt), χ(γ, zt, nt) and law of motion G(nt−1, zt−1, zt),

generate the employment distribution for time period t:
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nt(γ) = χ(γ, zt, nt)






(1− λ)α(γ1) {1− f (v(zt, nt)) [1− Γ(γ1)]}nt−1(γ1)

+ (1− λ) (1− α(γ2)) {1− f (v(zt, nt)) [1− Γ(γ2)]}nt−1(γ2)

+ (1− λ) f (v(zt, nt))
∫ γ1
0

α(γ′)nt−1(γ
′)dΓ(γ′)

+ (1− λ) f (v(zt, nt))
∫ γ2
0
(1− α(γ′))nt−1(γ

′)dΓ(γ′)

+f (v(zt, nt)) (1−
∫ 1
0
nt−1(γ

′)dγ′)g(γ)






, ∀γ ∈ [0, 1]

(15)

where g(γ) denotes the pdf of the distribution function Γ(γ), and γ1 and γ2 are defined as;

γ =
γ1Πg

γ1Πg + (1− γ1)(1−Πb)
and γ =

γ2(1−Πg)

γ2(1−Πg) + (1− γ2)Πb
(16)

This recursive definition for employment distribution tracks down employment reallocation

across different quality matches over time. To better understand the notation, it is helpful

to think where workers should have been in the last period to end up in matches with a

particular match quality γ. First of all, some fraction of workers with this match quality

constitutes new hires from the unemployed. This corresponds to the last term in brackets in

(15). Previously unemployed workers meet a vacancy with probability f (v(zt, nt)). Hence,

f (v(zt, nt)) (1−
∫
1

0
nt−1(γ′)dγ′) gives the total measure of unemployed who meet a vacancy this

period. Among them, only g(γ) of them draws the prior γ, and are candidates for a new

match with γ quality in this period. However, the decision to form the match as a result of

this meeting depends on the rule, χ(γ, zt, nt). This condition implies that overall number of

new hires from the unemployment pool will be equal to:

f (v(zt, nt)) (1−

∫ 1

0

nt−1(γ
′)dγ′) [1− Γ(γ̄(zt, nt))] . (17)

Flows into nt(γ) might also come from already employed workers. This group of workers

have potentially different histories. For instance, some of them end up in nt(γ) after a job-

to-job transition. On the other hand, a fraction of these already employed workers constitute

participants of matches that endogenously update their posteriors to γ after output realizations
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in the last period. Let’s consider matches which might improve their posteriors to γ, because

they have recently experienced a good output realization. This happens to matches with

γ1 probability of being a good match in period t − 1. Hence, they were part of nt−1(γ1).

Only (1 − λ)α(γ1) of nt−1(γ1) experience high output and do not suffer an exogenous match

destruction. Some of the workers in these matches might not meet any other vacancy at all,

which happens with the probability (1 − f (v(zt, nt)). The rest of them, however, might not

be willing to change jobs even if they meet a new vacancy, which occurs with the probability

f (v(zt, nt)) Γ(γ1). This completes the description of the first term within brackets in (15).

The second term defines the measure of previously employed workers from matches that has

experienced a low output in the last period and yet survived exogenous shocks.

The following two terms in (15) give the measure of workers who ended up in a match

with γ match quality after quitting their previous matches. If these workers have recently

experienced a high output in the last period, they could potentially come from the interval

[0, γ1 ]. Otherwise, they were part of the employment distribution over [0, γ2 ]. Note that,

employment distribution by the end of period t, should always take χ(γ, zt, nt) into account.

This part creates the separation that is endogenous.

The results in this paper show that most of the reallocation is undertaken through job-to-job

transitions. A job-to-job transition necessarily implies a simultaneous separation and a new

hire. Thus, it involves reallocating workers across matches.

5.2 Computational Strategy

Match quality distribution is part of the state space in this model. Due to (6), firms need

to predict this match quality distribution. It appears explicitly in firms’ Bellman equations

through µ and implicitly in workers’ Bellman equations. The challenge posed by the presence

of aggregate distribution is not new in the literature. It is well known that numerical solutions

of economies with heterogenous agents where aggregate distribution is a state variable is fairly

complicated. Fortunately, Krusell and Smith (1998) provides us with a possible computational

strategy to solve this type of problems. The novelty in their approach is to approximate

the function G(n, z, z′) with a finite set of moments in such a way that it is consistent with
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individual’s problem and is the best approximation within a particular class of functional forms.

Hence, individuals use this approximate function to predict future prices and their predictions

are approximately equal to the actual time series from the simulated model.

The same methodology may be applied to our problem. Krusell and Smith (1998)’s example

economy is a standard neoclassical growth model with uninsured idiosyncratic individual risk

of being unemployed. Hence, individuals in their economy need to predict aggregate capital

stock distribution in the next period to pin down the prices that they will face tomorrow. It

turns out that a log linear equation in average capital stock is a sufficient representation of

how the entire distribution evolves. In our example however, agents need to predict the future

match quality distribution to pin down the probability of a worker’s acceptance of a new job

offer.

Recall that the beginning of period match quality distribution evolves from nt to n+t be-

cause of the new information revealed through production and endogenous separations at the

beginning of the period. Then the probability that a worker who meets a vacancy accepts

firm’s job offer is a function of the match quality distribution:

µ = (1−

∫
n+t (γ)dγ)(1− Γ(γ̄)) +

∫
n+t (γ)(1− Γ(γ))dγ (18)

The first term in (18) gives the probability of meeting an unemployed worker and forming a

match. Among those whom the firm meets (which happens at the rate h(v) ) (1−
∫
n+t (γ)dγ) are

unemployed workers and they receive an initial signal. If it is above the reservation threshold,

γ̄, it is worth to form the match. This comes from the equilibrium decision rule χ(γ, z, n), which

takes the value 1 for γ � γ̄ and 0 otherwise. The second term in (18) gives the probability of

meeting an employed worker and forming a match. Each worker who is in a match indexed by

belief γ, will accept the firm’s match offer with probability 1− Γ(γ).

This is why, for practical purposes, it is sufficient to have a simple probability in the state

space instead of the match quality distribution. The computational algorithm I use to solve

for the equilibrium of this economy involves an approximation of the law of motion for µ. So,

even though the match quality distribution is changing over time, agents need to know how
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a simple moment of this distribution changes over time. For any equation of motion defined

by G(n, z, z′), there is an implied equation of motion for µ13. Let the equation of motion

implied be H(µ, z, z′). Given this belief and the stochastic process for z, agents’ problem could

be solved using equilibrium conditions (11) and (14). Solution to these equilibrium conditions

lead to decision rules χ(γ, z, µ) and v(z, µ), which are now defined as a function of µ for practical

purposes. Then, these decision rules, an initial condition for employment distribution, equation

of motion for employment, (5), and the definition for µ determine next period’s probability µ′.

If this µ′ is consistent with H(µ, z, z′), we arrive at the fixed point of the mapping from (µ, z, z′)

to µ′. The next step involves determining whether H(µ, z, z′) is a ’good’ approximation for

the underlying equation of motion, G(n, z, z′). This ensures that agents lack of knowledge

about the evolution of the match quality distribution causes only negligible errors in optimal

decisions.

The precise algorithm for the computation of the equilibrium involves following steps:

1. Select N-point grid on µ, 2-point grid on z and M-point grid on γ.

2. Guess on a parameterized functional form for H(µ, z, z′) and on parameters of this func-

tion. Call this Ĥ.

3. Given Ĥ, guess a Nx2 vector, v(z, µ) and solve the decision rule χ(γ, z, µ) by Iterating

over the surplus function defined in recursive equation (11) until convergence. Obtain

the value of S(γ, z, µ).

4. Given the surplus function, S(γ, z, µ), check whether free entry condition in (13) is satis-

fied. If it is satisfied, v(z, µ) is equilibrium decision rule and continue to step 5. Otherwise,

if free entry condition implies that the value of vacancy is positive in state (z, µ), increase

v(z, µ), else decrease it and go to step 3 with the new guess on v(z, µ).

5. Use decision rules χ(γ, z, µ) and v(z, µ) and an initial employment distribution to simu-

late the evolution of employment distribution. From this simulated series, estimate the

implied sequence of µ. Use the estimated series of µ, to update the parameters of the

13 This mapping may not be unique in principle.
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functional form guess for H(µ, z, z′). If the initial guess on parameters are confirmed,

jump to step 6, otherwise go back to step 1 with a new set of parameter estimates.

6. Having had the parameters converged, check how much error the particular functional

form for Ĥ creates for the agents. If the functional form enables them to predict proba-

bilities with negligible error, stop. Otherwise choose a new functional form and/or new

moments and start over.

Computational results show that a linear functional form for µ′ is a good guess. The details

of this part of the computation is described in Section 7 below. Since computing H(µ, z, z′)

is an important contribution of this paper and is not standard in this literature, a separate

section within the main body of the paper is devoted to this computation.

6 Calibration

In order to understand the contribution of on-the-job search to amplification, I calibrate a

benchmark model, where there is no on-the-job search. This benchmark model is otherwise

identical (preferences, production and matching technology) to the model presented in the

preceding section. Hence, the benchmark model only has idiosyncratic match quality on top of

the standard model. This helps to identify the effect of on-the-job search. The time period is

one month and β is calibrated to match 4% annual interest rate. This implies that β = 0.9967.

First step is to calibrate a productivity process. This is achieved by estimating a two state

Markov-Chain approximation for the AR(1) process for the real output per worker in the non-

farm business sector. As Table 1 indicates, this productivity data has a standard deviation

of 0.02 and a first order autocorrelation of 0.89. Since the standard deviation of this process

will be affecting the volatility of other variables directly, matching the exact standard deviation

would be desired. Thus I find the following Markov process as the best approximation, which

implies a standard deviation of 0.02 and a first order autocorrelation of 0.81.

Ψ(zt+1|zt) =





0.9682 0.0318

0.0318 0.9682




 , zh = 1.0259 and zl = 0.9748
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Several parameters are taken from other studies. The share of the surplus taken by worker,

φ, is chosen to be 0.36 (Shimer, 2005a). The mean of the truncated normal density Γ is set to

0, i.e. η = 0. This is from Pries and Rogerson (2005). I also normalize the value of the match

specific output when it is low to 1, i.e. yl = 1.

The functional form for the constant returns to scale matching function is usually in Cobb-

Douglas form in standard search models. However, since I have on-the-job search with a unit

measure of search input, this particular form does not necessarily guarantee us a well defined

meeting probability. In other words, f(v) and/or h(v) may not be well defined for some v.

Thus, I choose a different functional form for the matching function that has been used by

Barlevy (2002) and den Haan et.al (2000). Matching function takes the following simple form:

M(vt, 1) =
vt

vt + 1
(19)

Equation (19) defines a constant returns to scale matching function, which obeys the usual

regularity conditions. In addition, meeting probabilities within a period, f(v) and h(v) are by

definition in [0, 1].

Calibrated Parameters

Parameter Value Parameter Value

β 0.9967 4% interest Πg 0.56 Match

φ 0.36 Shimer (2005) Πb 0.56 Restriction

yl 1 Normalization c 0.11 Match

zh 1.0259 U.S. Avg. b 3.32 Restriction

zl 0.9748 Output p/w yh 7 Match

η 0 PR (2005) λ 0.0041 DHS (1996)

σ 0.153 PR (2005) zss 1 Normalization

In order to calibrate the rest of the parameters, I target three moments from the model;

steady state unemployment rate of 5.68%, steady state job finding probability of 45% and steady

state probability of accepting a match conditional on meeting of 50%. The first two statistics

are from the data. The latter statistic equals 1−Γ(γ̄ss) and chosen to be in line with Pries and
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Rogerson (2005). These targets imply a steady state monthly separation probability of 2.71%.

This is slightly lower than the average separation probability in the U.S. data, which is 3.4%.

However, we cannot simultaneously match an average job finding probability of 45% and an

average separation probability of 3.4%. The exogenous job destruction probability, λ, is then

calibrated to match the fraction of shutdowns among all job destruction. Davis et al. (1996)

estimates that 11% of all job destruction is accounted for by shutdowns. Since all separations

in the benchmark model’s steady state are either exogenous (due to λ) or due to learning about

the quality of the match, a slightly higher value for this fraction is targeted. Specifically, it is

assumed that 15% of all separations are exogenous. This pins down λ, which is set to 0.0041.

Since job finding probability is f(vss) (1− Γ(γ̄ss) ) in the steady state equilibrium of this

benchmark economy, the target for 1 − Γ(γ̄ss) implies that vss = 9. Given these targets,

learning process can be calibrated to match them. For instance, the standard deviation of

the distribution for prior signals, σ, implies an equilibrium value for γ̄ss if (1− Γ(γ̄ss) ) = 0.5.

The value of γ̄ss does not have any intrinsic value for the purpose of this paper. Hence, I

target a value of 0.1 for this equilibrium value. This target and (1− Γ(γ̄ss) ) = 0.5, implies

that σ = 0.153. With the targets for γ̄ss and vss and values for λ,σ and η, the model can

be easily simulated to generate a stationary match quality distribution. Only determinants

of this equilibrium distribution are learning parameters Πg and Πb. Recall that these two

parameters determine the pace of learning. There is no apriori reason to have a faster learning

depending on the inherent quality. Hence, it is assumed in the simulations that both good

matches and bad matches reveal the information at the same pace, i.e. Πb = Πg. Then, the

average unemployment rate requires Πb = Πg = 0.598. It turns out that the benchmark model

with these set of parameters actually imply a tenure distribution that is consistent with the

U.S. data. This is not a dimension that I target, but the stationary match quality distribution

determines how long each match is likely to survive. Taking this into account, the benchmark

model generates a tenure distribution such that 25.71% of the employed are with 1 year of

tenure, 21.42% of the employed are with 3-4 years of tenure and 23.49% of the employed are

with 5-9 years of tenure. The corresponding values from BLS’s Employment Tenure Summary
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are 20.7%, 19% and 20.7% respectively14.

Calibrating a value for b is not straightforward. Recall that yl = 1. In this benchmark

model, finding an interior solution for γ̄, requires that the value of surplus is at least 0 for γ = 0

and strictly positive for γ = 1. In general, this implies that b should be somewhere between yh

and yl. Taking this restriction into account and the targets for γ̄ss and vss, I pick the values

for b, yh and c. Implied values for these parameters are 3.32, 7 and 0.11 respectively. This

completes the calibration for the benchmark model.

7 Computing H(µ, z, z′)

The challenging task of computing the equilibrium of this economy is already outlined in Section

4.1. The most critical step of the algorithm is to determine a good functional form for the

equation of motion of µ′. I posit a linear functional form guess, which depends on both the

current productivity and past productivity. Intuitively, since the model economy undergoes

significant discrete changes at the lower end of the distribution when aggregate productivity

changes, the equation of motion may very well depend on both states. To illustrate this,

consider two stationary distributions of match quality shown in Figure 7. The solid line

represents the stationary match quality distribution implied by the model outlined in Section

3, when aggregate productivity stays constant at zl forever. On the other hand, the dashed line

represents the stationary match quality distribution in expansions. Because the equilibrium

reservation threshold γ̄ is a decreasing function of z, we have a substantial mass of workers

with lower match qualities in expansions. Although these thresholds change in the stochastic

equilibrium, this feature of the model survives. Thus, when the aggregate state changes,

there will be considerable job destruction (or creation) at the lower end of the distribution.

This justifies adding z′ (in addition to z) to the list of independent variables determining µ′.

Ultimately I use the following functional form.

14 The data could be found in Table 3 of the Summary at http://www.bls.gov/news.release/tenure.t03.htm.
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µ′ = θ1 + θ2µ, if z = zl and z′ = zl (20)

µ′ = θ3 + θ4µ, if z = zl and z′ = zl

µ′ = θ5 + θ6µ, if z = zl and z′ = zl

µ′ = θ7 + θ8µ, if z = zl and z′ = zl

Once there is a functional form guess for H(µ, z, z′) and an initial set of parameter values

for θ′s, computation of the equilibrium starts by discretization of the state space (γ, z, µ).

Aggregate productivity only takes two values, zh and zl. Match quality index is defined on a

250-point grid over the unit interval. I use M = 250 grid points because the grid on γ should be

fine enough to capture the underlying individual heterogeneity. This heterogeneity determines

the exact value of the equilibrium condition γ̄(z, n)15. Finally, µ’s are assumed to take values

between 0.13 and 0.19 and are equally spaced on 15 grid points16. The upper and lower bounds

on µ are chosen such that at the simulation stage none of the realized (actual) values for µ fall

out of this range.

Next step is to solve the recursive equations defined in (14) and (11) using the functional

guess for H(µ, z, z′). This step is fairly standard and leads to decision rules χ(γ, z, µ) and

v(z, µ). Then, the model economy is simulated for 15000 periods starting from an initial

distribution. The simulation length should be long enough to create enough artificial samples

for states (z, z′), where z �= z′17. Simulation of the model generates two separate time series

for µ one of which is predicted by H(µ, z, z′) and the other one is the actual. After discarding

the initial several hundred periods, actual realizations of µ are used to estimate the regressions

in (20) via ordinary least squares. The OLS estimates of θ′s are used as new parameter guesses

until convergence. Once parameters converge, I need to evaluate the goodness of "fit" for the

particular functional form for H(µ, z, z′).

15 I have tried finer grids, but they do not seem to lead to changes on the equilibrium values for γ̄(z, n).
16 Adding more grid points essentailly did not change the results at all. However, lowering the number of

grids for µ will reduce the predictive power of the functional forms for states (z, z′), where z �= z′.
17 Due to the persistence in z, these periods are very rare as opposed to periods when aggregate state does

not change at all.
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It turns out that agents do infer µ′ with considerable precision when only µ,z and z′ are

explanatory variables. Regression results from the simulations of the model is a standard way

of measuring how good an approximation the equilibrium is (Krusell and Smith, 1998). The

following four equations show the extent of the fit.

µ′ = 0.05044 + 0.69617µ, if z = zl and z′ = zl (21)

R2 = 0.9987, F = 5279389, p = 0

µ′ = 0.04774 + 0.83172µ, if z = zl and z′ = zh

R2 = 0.9974, F = 53143.60, p = 0

µ′ = 0.06635 + 0.51251µ, if z = zh and z′ = zl

R2 = 0.9841, F = 842.97, p = 0

µ′ = 0.06338 + 0.62260µ, if z = zh and z′ = zh

R2 = 0.9974, F = 2915907, p = 0

Parameter values reported in (21) are the values that have converged after several iterations

of the same functional form, and they are all significant at 5% level of significance. All three

measures of fitness reported underneath each regression equation indicate that the simple linear

functional form is a good way of describing how µ evolves18.

Other studies that modeled on-the-job search either assumed simplifying assumptions to

get rid of the endogenous effects of heterogeneity through meeting rates or simply restricted

the analysis to non-stochastic equilibrium. Examples of the first approach are Mortensen and

Nagypal (2005) and Krause and Lubik (2004). They abstract from match specific productivity

changes, which shuts off the channel through which the employment distribution becomes a

state variable. As this paper argues, this channel is indeed very significant. Studies taking the

latter approach fails to show the full picture. They only focus on comparing different steady

states or analyzing only the transitional dynamics (Barlevy (2002), Nagypal (2005), Shimer

18 Another measure of "goodness of fit" can be the discrepancy between the µ′s implied by H(µ, z, z′) and
actual ones. It turns out that the maximum discrepancy in a period was 0.00087. Furthermore, this difference
was always less than 0.0007 in all but 9 periods (out of 15000).
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(2003) ). However, this paper provides a solution for the stochastic equilibrium allowing us to

conduct a thorough business cycle analysis. These results are discussed in the next section.

8 Results

To understand the role of on-the-job search in generating labor market amplification, both

the benchmark model and the model with on-the-job search are simulated. Table 4. presents

the results from simulations of the model with on-the-job search. As it is evident from the

reported standard deviations, the presence of on-the-job search creates significant variations

in our key labor market variables. Although the underlying aggregate productivity process

is assumed to be the same, a comparison of Table 4 and either Table 2 or 3 shows that the

model amplifies the effects of productivity shocks to a large extent. In standard search models,

unemployment, vacancies and market tightness are almost as variable as the exogenous forcing

process. However, same process generates quite encouraging results in the model with on-the-

job search. For instance, the standard deviation of unemployment and the Beveridge curve

relationship are easily matched (See Table 1). It also implies significantly large variations in

vacancies and market tightness, even though, they are a little far off from the data.

Table 4: On-the-Job Search

u v v/u u-e e-u e-e z

Std 0.19 0.13 0.31 0.14 0.29 0.14 0.02

Auto 0.88 0.73 0.84 0.80 0.67 0.81 0.81

Cross Correlations

u −0.89 −0.98 −0.94 0.86 −0.96 −0.97

v 0.96 0.99 −0.97 0.98 0.98

v/u 0.99 −0.92 0.99 0.99

u-e −0.96 0.99 0.99

e-u −0.95 −0.95

e-e 0.99
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One might argue that, a direct comparison between Table 2, Table 3 and Table 4 is not

reasonable. This is a legitimate concern, because the implied improvements in performance

might be due to one (or more) of the several extensions inherent in the model presented in

Section 4. In order to distinguish the effect of on-the-job search, I compare the results from

simulations of the benchmark model, which is exactly identical except the on-the-job search

aspect.

Table 5: Benchmark Model (No OJS)

u v v/u u-e e-u z

Std 0.13 0.05 0.08 0.07 0.16 0.02

Auto 0.76 0.67 0.81 0.81 0.36 0.89

Cross Correlations

u 0.96 −0.98 −0.98 0.76 −0.98

v -0.90 0.90 0.78 −0.90

v/u 1 −0.71 0.99

u-e −0.71 0.99

e-u −0.70

Simulation results for the benchmark model are presented in Table 519. There are at least

two important differences between the benchmark model and the model with on-the-job search.

First of all, the standard deviations of the cyclical variations show significant decline, especially

for vacancies and vacancy-unemployment ratio. This proves that the relevant mechanism for

the amplification is on-the-job search. Another fact that stands out in Table 5 is related

to the Beveridge curve. The correlation between unemployment and vacancies implied by

the benchmark model is 0.96. This counterfactually positive relationship is a result of the

countercyclical vacancies in the benchmark model.

Without on-the-job search, equilibrium of this economy will only be a function of the level of

aggregate productivity. This follows from the constant returns to scale matching function and

the fact that the search input is proxied only by unemployment. Since all unemployed workers

19 The difference between Table 5 and Table 3 is only because of the different functional forms used for matching
function. The model that generates the simulations in Table 3 assumes a standard Cobb-Douglas form.
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are ex-ante identical and there are no meetings between vacancies and employed workers, the

probability of forming a match for a firm only depends on the v/u ratio. For two different

unemployment levels, as long as the aggregate state stays the same, free entry of the firms

will ensure the same equilibrium level of v/u through variations in v20. Then v/u becomes

a sufficient statistic that determines vacant firms’ problem. Hence, fluctuations in aggregate

productivity is almost perfectly correlated with variations in v/u. In this case, market tightness,

v/u, is an increasing function of z.

In order to understand the counterfactually positive correlation, consider staying in the

same aggregate state for a few periods. Since z is constant over periods, there will be no

discrete changes in the profitability of an ongoing match. In other words, separations do not

fluctuate a lot due to changes in γ̄(z). Thus, with the same level of v/u, unemployment

will start shrinking over this episode. But, a constant v/u implies that v should also decline

over the same episode. Thus, there will be a positive correlation between unemployment and

vacancies over this particular episode. This seems to be a common feature of the standard

model too. So, why do I get positive correlation here instead of the negative correlation implied

by the standard model (with only exogenous separations ) ? The answer is intimately related

to the behavior of separations. The absence of endogenous separations forces the economy to

adjust to new aggregate shocks via changing the hiring behavior. If this is the only channel,

then changes in unemployment is induced only through the job finding probability, f(v/u).

However, with endogenous separations due to low productivity, unemployment is also affected

by countercyclical separations. This dampens the magnitude of variations required in v in

response to negative productivity shock. Since such a negative shock induces a sharp decline

in u, the lower equilibrium value for v/u could be attained even with small changes (and in

Table 4 with large declines) in v21.

On the other hand, the model with on-the-job search implies a much more realistic picture

in this regard. In contrast to the benchmark model, the relevant equilibrium object is not v/u

but only v. Hence, aggregate productivity fluctuations are accommodated through changes

20 This is a fairly standard observation made about the labor market search and matching models.
21 Shimer (2005a) considers separation shocks as a possible driving force for unemployment fluctuations and

discusses the point made here further.
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in the number of vacancies posted. But as argued in the rest of the discussion here, firms’

incentive to create vacancies respond to the behavior of expected job-to-job transitions. This

is the channel which reverse the counterfactual implications of the benchmark model.

How does job-to-job transition create amplification and help to reconcile endogenous sepa-

rations with the Beveridge curve? The answer to this question lies at the heart of the model.

First, it is important to understand how the match quality distribution evolves in response to

aggregate productivity shocks. In order to illustrate this, it might be useful to analyze what

match quality distributions would look like in steady states with different productivity levels.

These two different match quality distributions are shown in Figure (7). It is clear from the

figure that, in the high productivity steady state there are some employed workers in low qual-

ity matches, which would have been unprofitable otherwise. It also happens to be the case

that, since employment is higher in high productivity steady state, there are uniformly more

workers employed in each match quality level. Because, workers are better of by switching

to new jobs with higher quality, the odds of quitting and changing a job would be higher in

the high aggregate productivity state. This is crucial for the firms that are considering to

post vacancies. Remember that one critical object in the model was the value for µ, which

summarized this probability. Two distributions pictured in Figure (7) clearly show why one

should expect more workers to be willing to accept job offers from vacancies. Hence, vacant

firms might expect to meet with workers that are more willing to change jobs and accept their

offers in expansions.

In the standard search model, when firms intend to create vacancies due to high aggregate

productivity, unemployment pool starts to shrink. Since new matches are formed only between

vacancies and unemployed workers, as the high productivity prevails, firms loose incentive to

create any more vacancies due to smaller pool of potential matches. Here, however, high

productivity state serves as a good opportunity for workers to reallocate themselves for better

quality matches. This improved reallocation across matches also gives further incentive to

firms to create vacancies when aggregate productivity is high. Thus, the model implies a

significantly procyclical labor market reallocation through procyclical job-to-job transitions.
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This model’s implications for labor market flows are also instructive in this regard. First of

all, by having the possibility of job-to-job transitions, the model has richer implications than the

standard model. As Table 4 indicates, e-e flows are significantly procyclical and as variable as

u-e flows. On the other hand, the flows from employment to unemployment is countercyclical

as expected but has very large variation. The cyclicality of job-to-job transitions is in line

with quits (Nagypal 2004a). However, we need to be cautious when interpreting u-e flows.

In theory, these separations happen with mutual consent, so it is neither layoff nor quit. If

both e-u and e-e flows are considered to be "separations", the enormous volatility in e-u does

not carry over to all separations. This is due to the negative relationship between both flows

constituting "separation," i.e the procyclicality of e-e dampens the effect of e-u.

9 Conclusion

The Mortensen-Pissarides labor market search model has been recently criticized because of the

model’s quantitative implications for business cycles. In particular, researchers have pointed

out the discrepancy between the implied level of variation in unemployment, vacancies and

market tightness and the observed variation in these variables in the United States. This

paper extends the baseline labor market search model to include on-the-job search and match

specific heterogeneity to generate the missing amplification. The mechanism works through

the effects of aggregate productivity shocks on the entire employment distribution.

There is incomplete information about the quality of the employee-firm match which pro-

vides persistence in employment relationships and the rationale for on-the-job search. Am-

plification arises because productivity changes not only affect firms’ probability of contacting

unemployed workers but also of contacting already employed workers. Since the measure of

workers in low quality matches is greater, this probability is higher during expansions. This

introduces strongly procyclical labor market reallocation through procyclical job-to-job transi-

tions, which has been a generally ignored feature in the literature. Hence, the model provides

a possible channel which does not require changing the wage determination process or the in-

formation structure to a large extent to create more variation. In particular, simulations with
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a plausible forcing process show that the standard deviations for unemployment, vacancies and

vacancy-unemployment ratio (market tightness) match the U.S. data. The model also recon-

ciles the presence of endogenous separation with the negative correlation of unemployment and

vacancies over business cycle frequencies.

This paper also has a methodological contribution. On-the-job search with match hetero-

geneity requires to take the entire employment distribution into account as part of the state

space. It is well known in the literature that this complicates the numerical solution of the

equilibrium. I adapt the algorithm used by Krusell and Smith (1998) to the problem described

in this paper. The computational exercise suggests that approximating the worker’s acceptance

probability of a firm’s job offer suffices to characterize the equilibrium. Other studies that have

modeled on-the-job search either assumed simplifying assumptions to get rid of the endogenous

effects of heterogeneity or simply restricted the analysis to non-stochastic equilibrium.

Several possible variations of the model has been ignored in this paper. One key feature

that should be considered is the effect of strategic bargaining at the wage determination stage.

Incorporating such an additional feature might be a natural extension of the model to get wage

rigidity and therefore might provide a comparison to the mechanism advocated here. I have

also focused on the mechanism itself without much discussion on the implied magnitudes of

the flows. This is mostly the case, because the underlying calibration of the model does not

target job-to-job flow statistics from recent studies. These possible extensions are left for future

research.
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. Appendix

A Standard Mortensen-Pissarides Model

In order to facilitate comparison the notation for describing the standard Mortensen-Pissarides

model will be similar to the notation used in the model presented in section 4, whenever possible.

There is a continuum of risk neutral workers and employers who discount the future at the

rate β ∈ (0, 1). The measure of workers is normalized to 1 and they are either unemployed

looking for a job or employed and producing zt > 0 each period. All matches are identical.

Match output, zt, is stochastic and governed by a Markov process, Ψ(zt+1|zt). There is no on-

the-job search. Hence, only unemployed workers are searching for a job. Active firms could be

either producing by employing a worker, or waiting for a possible match after posting a vacancy.

There is free entry of firms which guarantees that as long as the value of posting a vacancy is

positive, there will be active firms posting vacancies. Posting a vacacny costs c > 0 per period

and enables vacant firms to meet an unemployed worker through a matching function, M(vt, ut),

where vt is the aggregate number of vacancies and ut is the aggregate number of unemployed

workers. M(v, u) is constant returns to scale, which implies the following probabilities of

finding a job (for unemployed workers) and filling a vacancy (for vacant positions).

f(θt) =M(vt, ut)/ut and h(θt) =M(vt, ut)/vt where M(vt, ut) =Mu1−ηt vηt

Here θt = vt/ut is usually referred to as market tightness. When unemployed, workers

consume b > 0. Continuing matches are subject to exogenous destruction with probability

λ each period. Wage, w(zt), is determined each period via Nash bargaining between worker

and firm taking the threat points as value of unemployment and value of being a vacant job

respectively. Let the value of being unemployed be Vu(zt) and the value of a vacancy be Ju(zt).

Similarly, the value of being employed for a worker and the value of being in a match for a firm

are denoted by Ve(z) and Je(z) respectively. These value functions are summarized in four
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Bellman equations:

Vu(z) = b+ βEz′|z
{
f(θ(z))Ve(z

′) + (1− f(θ(z)))Vu(z
′)
}

(22)

Ve(z) = w(z) + βEz′|z
{
(1− λ)Ve(z

′) + λVu(z
′)
}

(23)

Ju(z) = −c+ βEz′|z
{
h(θ(z))Je(z

′) + (1− h(θ(z)))Ju(z
′)
}

(24)

Je(z) = z −w(z) + βEz′|z
{
(1− λ)Je(z

′) + λJu(z
′)
}

(25)

where time subscripts are dropped for convenience.

Consequently, the equilibrium of this economy satisfies the following conditions:

1. (Optimization) Given, θ(z) and w(z), value functions Vu(z), Ve(z), Ju(z) and Je(z) satisfy

(22) - (25).

2. (Free entry) Given θ(z) and w(z) a firm is willing to post a vacany as long as Ju(z) > 0.

Therefore in equilibrium, due to free entry Ju(z) = 0.

3. (Nash Bargaining) Ve(z) − Vu(z) = φ [Ve(z)− Vu(z) + Je(z)− Ju(z)], where φ ∈ [0, 1] is

the worker’s bargaining strength.

4. (Equation of motion for unemployment) Given an initial unemployment u0 decisions

should be consistent with the evolution of unemployment.

u′ = (1− u)λ+ u(1− f(θ)) (26)

The simulations in Table 2 use the following calibration.
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Table A. Calibration for MP Model

Parameter Value

β 0.9967 4% interest

φ 0.36 Shimer (2005)

η 0.36 Shimer (2005)

yl 1 Normalization

zh 1.0259 U.S. Avg.

zl 0.9748 Output p/w

zss 1 Normalization

λ 0.0339 Shimer (2005)

b 0.4 Shimer (2005)

c 0.24 Match uss = 0.0568

M 0.35 Match f(θss) = 0.45

B Surplus Function and Equilibrium Value of Vacancy

First, write down the values of Je(γ, z, n) − Ju(z, n) and Ve(γ, z, n) − Vu(z, n) by subtracting

(9) and (7) from (10) and (8) respectively.
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Ve(γ, z, n)− Vu(z, n) =

max






w(γ, z, µ)

+β(1− λ)(1− f(v))Ez′|z






α(γ)
(
Ve(γ

h, z′, µ′)− Vu(z
′, µ′)

)

+(1− α(γ))
(
Ve(γ

l, z′, µ′)− Vu(z
′, µ′)

)






+β(1− λ)f(v)α(γ)Ez′|z






Γ(γh)
(
Ve(γ

h, z′, µ′)− Vu(z
′, µ′)

)

+
∫
γh
(Ve(γ

′, z′, µ′)− Vu(z
′, µ′))dΓ(γ′)






+β(1− λ)f(v)(1− α(γ))Ez′|z






Γ(γl)
(
Ve(γ

l, z′, µ′)− Vu(z
′, µ′)

)

+
∫
γl
(Ve(γ

′, z′, µ′)− Vu(z
′, µ′)) dΓ(γ′)






−Vu(z, µ) + βλEz′|zVu(z
′, µ′) + β(1− λ)(1− f(v))Ez′|zVu(z

′, µ′)

+β(1− λ)f(v)α(γ)Ez′|zVu(z
′, µ′)

+β(1− λ)f(v)(1− α(γ))Ez′|zVu(z
′, µ′), 0






(27)

Je(γ, z, n)− Ju(z, n) =

max






z(α(γ)yh + (1− α(γ))yl)−w(γ, z, n)

+β(1− λ)(1− f(v))Ez′|z






α(γ)
(
Je(γ

h, z′, n′)− Ju(z
′, n′)

)

+(1− α(γ))
(
Je(γ

l, z′, n′)− Ju(z
′, n′)

)






+β(1− λ)f(v)α(γ)Ez′|z





Γ(γh)

(
Je(γ

h, z′, n′)− Ju(z
′, n′)

)

+
(
1− Γ(γh)

)
Ju(z′, n′)






+β(1− λ)f(v)(1− α(γ))Ez′|z





Γ(γl)

(
Je(γ

l, z′, n′)− Ju(z
′, n′)

)

+
(
1− Γ(γl)

)
Ju(z′, n′)




− Ju(z, n)

+βλEz′|zJu(z
′, n′) + β(1− λ)(1− f(v))Ez′|zJu(z

′, n′)

+β(1− λ)f(v)α(γ)Ez′|zΓ(γ
h)Ju(z

′, n′)

+β(1− λ)f(v)(1− α(γ))Ez′|zΓ(γ
l)Ju(z

′, n′), 0






(28)

Imposing the free entry condition, Ju(z, n) = 0 ∀z, n, and some simplification, yield the

43



following two equations.

Ve(γ, z, n)− Vu(z, n) =

max






w(γ, z, n)

+β(1− λ)(1− f(v))Ez′|z






α(γ)
(
Ve(γ

h, z′, n′)− Vu(z
′, n′)

)

+(1− α(γ))
(
Ve(γ

l, z′, n′)− Vu(z
′, n′)

)






+β(1− λ)f(v)α(γ)Ez′|z






Γ(γh)
(
Ve(γ

h, z′, n′)− Vu(z
′, n′)

)

+
∫
γh
(Ve(γ

′, z′, n′)− Vu(z
′, n′))dΓ(γ′)






+β(1− λ)f(v)(1− α(γ))Ez′|z






Γ(γl)
(
Ve(γ

l, z′, n′)− Vu(z
′, n′)

)

+
∫
γl
(Ve(γ′, z′, n′)− Vu(z′, n′)) dΓ(γ′)






−Vu(z, n) + βEz′|zVu(z
′, n′), 0






(29)

Je(γ, z, n)− Ju(z, n) =

max






z(α(γ)yh + (1− α(γ))yl)−w(γ, z, n)

+β(1− λ)(1− f(v))Ez′|z






α(γ)
(
Je(γh, z′, n′)− Ju(z′, n′)

)

+(1− α(γ))
(
Je(γ

l, z′, n′)− Ju(z
′, n′)

)






+β(1− λ)f(v)α(γ)Ez′|z





Γ(γh)

(
Je(γ

h, z′, n′)− Ju(z
′, n′)

)

+
(
1− Γ(γh)

)
Ju(z

′, n′)






+β(1− λ)f(v)(1− α(γ))Ez′|z





Γ(γl)

(
Je(γ

l, z′, n′)− Ju(z
′, n′)

)

+
(
1− Γ(γl)

)
Ju(z

′, n′)




 , 0






(30)

Let S(γ, z, n) = Je(γ, z, n) − Ju(z, n) + Ve(γ, z, n) − Vu(z, n) denote the match surplus.

Adding (29) and (30) provides the following expression for the match surplus.
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S(γ, z, n) = max






z(α(γ)yh + (1− α(γ))yl)

+β(1− λ)(1− f(v))Ez′|z
[
α(γ)S(γh, z′, n′) + (1− α(γ))S(γl, z′, n′)

]

+β(1− λ)f(v)α(γ)Ez′|z






Γ(γh)S(γh, z′, n′)

+
∫
γh
(Ve(γ

′, z′, n′)− Vu(z
′, n′)) dΓ(γ′)






+β(1− λ)f(v)(1− α(γ))Ez′|z






Γ(γl)S(γl, z′, n′)

+
∫
γl
(Ve(γ

′, z′, n′)− Vu(z
′, n′)) dΓ(γ′)






−Vu(z, n) + βEz′|zVu(z
′, n′), 0






(31)

The surplus sharing rule implies that Ve(γ, z, n)−Vu(z, n) = φS(γ, z, n) for all γ, z, n. This

leads to following equalities:

∫

γh

(
Ve(γ

′, z′, n′)− Vu(z
′, n′)

)
dΓ(γ′) = φ

∫

γh
S(γ′, z′, n′)dΓ(γ′)

∫

γl

(
Ve(γ

′, z′, n′)− Vu(z
′, n′)

)
dΓ(γ′) = φ

∫

γl
S(γ′, z′, n′)dΓ(γ′)

Then the surplus function reduces to

S(γ, z, n) = max






z(α(γ)yh + (1− α(γ))yl)

+β(1− λ)(1− f(v))Ez′|z
[
α(γ)S(γh, z′, n′) + (1− α(γ))S(γl, z′, n′)

]

+β(1− λ)f(v)α(γ)Ez′|z

[
Γ(γh)S(γh, z′, n′) + φ

∫
γh
S(γ′, z′, n′)dΓ(γ′)

]

+β(1− λ)f(v)(1− α(γ))Ez′|z

[
Γ(γl)S(γl, z′, n′) + φ

∫
γl
S(γ′, z′, n′)dΓ(γ′)

]

−Vu(z, n) + βEz′|zVu(z
′, n′), 0






(32)

Now I need to use (7) to pin down the value of −Vu(z, n) + βEz′|zVu(z
′, n′) in terms of

surplus function. It is possible by substituting Vu(z, n) + φS(γ, z, n) for Ve(γ, z, n), using the

surplus sharing rule.
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Vu(z, n) = b+ βEz′|z

{
f(v)

∫ [
Vu(z

′, n′) + φS(γ′, z′, n′)
]
dΓ(γ′) + (1− f(v))Vu(z

′, n′)

}
(33)

And further simplification of (33) yields the desired expression.

Vu(z, n)− βEz′|zVu(z
′, n′) = b+ βEz′|zf(v)φ

∫
S(γ′, z′, n′)dΓ(γ′) (34)

Substituting (34) in (32) reduces (32) to a recursive functional equation in S(γ, z, n).

S(γ, z, n) = max






z(α(γ)yh + (1− α(γ))yl)− b

+β(1− λ)(1− f(v))Ez′|z
[
α(γ)S(γh, z′, n′) + (1− α(γ))S(γl, z′, n′)

]

+β(1− λ)f(v)α(γ)Ez′|z

[
Γ(γh)S(γh, z′, n′) + φ

∫
γh
S(γ′, z′, n′)dΓ(γ′)

]

+β(1− λ)f(v)(1− α(γ))Ez′|z

[
Γ(γl)S(γl, z′, n′) + φ

∫
γl
S(γ′, z′, n′)dΓ(γ′)

]

−βEz′|zf(v)φ
∫
S(γ′, z′, n′)dΓ(γ′), 0






(35)

On the other hand, one can write down the equilibrium value of vacancy as a function

of the surplus function. This follows from the definition of (9) and surplus sharing rule,

Je(γ, z, n)− Ju(z, n) = (1− φ)S(γ, z, n) for all γ, z, n. Using these two conditions I arrive at

the following condition expressed in the text as :

Ju(z) = −c+ βEz′|zJu(z
′) + βh(θ) (1− φ)Ez′|z

∫
S(γ′, z′, n′)dΓ(γ′) (36)
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Figure 1: Unemployment is the quarterly average of the seasonally adjusted monthly series
constructed by the BLS using the CPS data. Average labor productivity refers to real output
per person in the non-farm business sector. This series is part of BLS’s Major Sector Produc-
tivity and Costs program. Index is 100 for 1992. Both unemployment rate and average labor
productivty are expressed in log deviations from an HP filter with a smoothing parameter 10^5.
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Figure 2: Vacancies are proxied by quarterly averages of seasonally adjusted monthly Help-
Wanted Advertising Index constructed by the Conference Board. Index is 100 for 1987. Average
labor productivity refers to real output per person in the non-farm business sector. This series
is part of BLS’s Major Sector Productivity and Costs program. Index is 100 for 1992. Both
vacancies and average labor productivty are expressed in log deviations from an HP filter with
a smoothing parameter 10^5.
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Figure 3: Market tightness is the ratio of vacancies to unemployment. Quarterly averages of
the seasonally adjusted monthly series are reported. Average labor productivity refers to real
output per person in the non-farm business sector. This series is part of BLS’s Major Sector
Productivity and Costs program. Index is 100 for 1992. Both market tightness and average
labor productivty are expressed in log deviations from an HP filter with a smoothing parameter
10^5.
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Figure 4: Vacancies are proxied by the quarterly averages of the seasonally adjusted monthly
Help-Wanted Advertising Index constructed by the Conference Board. Index is 100 for 1987.
Unemployment is the quarterly average of the seasonally adjusted monthly series constructed by
the BLS using the CPS data. Both vacancies and unemployment are expressed in log deviations
from an HP filter with a smoothing parameter 10^5.
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Figure 5: The Job finding Probability is constructed according to equation (1) in Section 2.
All variables are expressed as log deviations from an HP trend with smoothing parameter 10^5.
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Figure 6: The Separation Probability is constructed according to equation (2) in Section 2. All
variables are expressed as log deviations from an HP trend with smoothing parameter 10^5.

54



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
Stationary Match Quality Distributions

E
m

p
lo

y
m

e
n
t

Match Quality

Expansion
Recession

Figure 7:
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