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Abstract

We present a model of endogenous total factor productivity which
generates poverty traps. We obtain multiple steady state equilibria
for an arbitrarily small degree of increasing returns to scale. While
the most productive �rms operate across all the steady states, in a
poverty trap less productive �rms operate as well. This results in lower
average �rms productivity and lower TFP. Our model is consistent
with cross-country empirical evidence on di¤erences in productivity
and employment distribution across �rms. In our model a growth
miracle is accompanied by a shift of employment from small to large
�rms, consistently with the Industrial Revolution and Japan�s post-
war growth experiences.
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1 Introduction

We present an endogenous total factor productivity (TFP) model which leads
to multiple steady state equilibria, and hence poverty traps. Our model is a
variant of the neoclassical growth model with increasing returns introduced
by Benhabib and Farmer (1994), with �rms modelled in the tradition of
Lucas (1978), Jovanovic (1982) and Hopenhayn (1992). There are many ex-
ante identical potential �rms which face an entry cost. Firms which choose
to enter are entitled to produce an intermediate good with a productivity
level drawn independently across �rms from a given distribution. Because
�rms face a �xed operating cost, the decision to operate or not depends on
the level of the �rm�s productivity. Productivity must be high enough so
that the �rm generates enough revenue (net of payments to factor inputs) to
cover the operating cost. In other words, the operating cost de�nes a cuto¤:
�rms with productivity above the cuto¤ choose to operate, the rest of the
�rms choose not to. The higher the cuto¤, the more productive the average
�rm is.
The existence of multiple steady states depends on small demand exter-

nalities and on the nature of the operating cost. If the operating cost is
endogenous, then the cuto¤ determining the lowest level of �rms�productiv-
ity is endogenous as well. We model the �xed operating cost as payments
to overhead labor. Since the wage is endogenous, so is the lowest level of
productivity used in the economy. This endogeneity may lead to multiple
steady states. The intuition is as follows: Consider an economy in a steady
state with a high productivity cuto¤ and a large capital stock. The high
cuto¤ implies that the �rms� average productivity is high. Large capital
stock and high productivity imply that wage is high, as is the operating cost.
A high operating cost makes low productivity �rms unpro�table, e¤ectively
cleansing the pool of �rms. This justi�es why the cuto¤ is high in the �rst
place. Since only high productivity �rms are operating, TFP is high. Con-
versely, in a steady state where capital is low and lower productivity �rms
are operating (i.e. the cuto¤ is low), wage is low. Since wage is low, lower
pro�ts are su¢ cient to cover the operating cost. That is, the low operating
cost sullies the pool of producers, leading to lower TFP and capital. Notice
that in a good equilibrium high productivity �rms produce more than in a
bad equilibrium, despite facing higher wage and the same interest rate. This
is optimal because they face a higher demand for their goods, which o¤sets
the contractionary pressure of higher factor prices.
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Our paper is closely related to Galí (1995) which analyzes multiplicity of
equilibria in a model with increasing returns induced by endogenous mark-
ups. In Galí (1995) multiplicity of equilibria obtains for a high value of
increasing returns. One of the main results of our paper is that poverty
traps may occur for arbitrarily small values of increasing returns to scale.
Endogenizing TFP allows us to bridge the gap between poverty trap models
based on increasing returns and the most recent empirical literature on the
degree of returns to scales.1

An empirical motivation for our work comes from the studies of the deter-
minants of cross-country income di¤erences of Klenow and Rodriguez-Clare
(1997), Hall and Jones (1999) and Caselli (2005). These authors �nd that
income di¤erences can be attributed, in part at least, to di¤erences in TFP.
Previous studies of poverty trap models with endogenous TFP pointed to
the failure of adopting the most productive technology as the cause of low
TFP and income in poor countries.2 However, there is evidence pointing to
the fact that di¤erences in TFP across economies are related to the lowest
level of �rms�productivity. For example, Mokyr (1990, 2001) argues that
the Industrial Revolution was characterized by a shift from less productive
forms of production (workshops) to more productive ones (factories). Baner-
jee and Du�o (2005) cite the McKinsey Global Institute (2001) report on
India, which �nds that while larger production units (�rms) use relatively
new technologies, smaller (in home) production units have low productivity.
Comin and Hobijn (2004) take a comprehensive look at the uses of various
technologies as determinants of TFP and �nd that the key is not when new,
better technologies are adopted, but when old, obsolete ones are let go of.
A successful model of cross-country income and productivity di¤erences

should also provide a plausible story of how a �growth miracle�can occur,
i.e. it should be consistent with the transition of a country from low to
high output and productivity. In our model economy, a growth miracle is a
transition from a bad (low productivity cuto¤) equilibrium to a good (high
productivity cuto¤) one. Such a take o¤ can be triggered by technological
progress which makes the highest productivity �rms even more productive, or
by a decline in the entry cost. In the �rst case, the increase in productivity
of the best �rms makes them more competitive, raising factor prices and

1Recent estimates of the elasticity of scale are of the order of 1� 1:25. See section 3.4.
2See, for example, Murphy, Shleifer, and Vishny (1989) and Ciccone and Matsuyama

(1996). For comprehensive reviews of the literature on poverty traps see Matsuyama (2005)
and Azariadis and Stachurski (2005).
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driving low productivity �rms out of business. In the second case, a decline
in the entry cost brings about more competition from entering �rms, driving
out of the market low productivity �rms. In both cases, along the transition
path, the economy�s TFP, output, capital, and �rms�average productivity
(and size) rise. An increase in the average �rm size, caused by a massive
shift of employment from small to large establishments, is a de�ning feature
of the Industrial Revolution. A similar increase is recorded in the case of
Japan�s growth miracle. Between 1957 and 1969, the employment share of
Japan�s smallest establishments declined from 41% to 31.5%.
The rest of the paper is organized as follows. Section 2 presents the model,

and Section 3 studies its steady state and dynamics properties. Section 4
provides an interpretation of growth miracles that arises naturally in the
model. We conclude in Section 5.

2 The Model

The model below is a variant of the neoclassical growth model. The model
departs from the standard framework by having a richer structure of the
production side in the economy. Firms are heterogenous: each �rm has a
monopoly power over the good it produces, and �rms have di¤erent produc-
tivity levels. Two features of the production side in the economy are crucial
for the results of the paper:

1. a sunk entry cost;

2. an operating cost: in addition to capital and labor used directly in
production, �rms pay for a �xed amount of overhead labor.

A part of the entry costs stems from satisfying di¤erent o¢ cial regulatory
requirements (see Djankov, La Porta, Lopez de Silanes, and Shleifer, 2002).
In addition, in some countries, entry requires signi�cant side payments to
local o¢ cials.3 Entry cost may also include expenses related to acquisition
of �rm speci�c capital,4 acquisition of appropriate technology,5 and market
research.

3In the case of Peru, this is documented by DeSoto (1989).
4Shapiro and Ramey (2001) show that in some instances the speci�city of �rm capital

is so extreme, that the sale price of such capital after a �rm has been dissolved is only a
tiny fraction of the original cost of capital.

5See, for example, Atkeson and Kehoe (2005).
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The operating cost typically refers to overhead labor, and expenses that
are lumpy in nature, for example, renting a physical location. According
to �ndings of Domowitz, Hubbard, and Petersen (1988), in U.S. manufac-
turing plants, the overhead labor accounts for 31% of total labor. Ramey
(1991) suggests that overhead labor is about 20%. The preferred estimate of
overhead inputs in Basu (1996) is 28%.
We also assume that the �rms learn their productivity only after the

sunk entry cost is paid. This assumption re�ects very high uncertainty faced
by entering �rms. This is routinely found in the data and documented, for
example, by Klette and Kortum (2004) as a stylized fact.

2.1 Households

There is a continuum of households. They supply a �xed amount of labor,
consume, and invest. They also own all �rms in the economy. The problem
of the representative household is given by

max
1X
t=0

�tU(Ct); � 2 (0; 1)

s.t. Ct + It = rtKt + wt +�t + Tt;

It = Kt+1 � (1� �)Kt:

where Ct denotes consumption, It is investment, Kt denotes the total house-
hold capital, rt is the rental rate on capital, and wt is the wage:6 �t is the
�rms�pro�ts, and Tt is a lump-sum transfer from the government; � and
� 2 (0; 1) are the discount rate and the depreciation rate, respectively. We
assume a constant elasticity of substitution utility function with elasticity
� > 0.

6We assume that the household inelastically supplies one unit of labor.
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2.2 Firms

2.2.1 Final Good Producers

The �nal consumption good in this economy is produced by perfectly com-
petitive �rms, according to the following production function:

Yt =

�Z �t

0

[yt(i)]
1
� di

��
;

where �t is the number of intermediate goods produced in the economy, �
is a constant which is greater than one, and yt(i) is the quantity of the
intermediate good i. Let pt(i) be the price of the ith intermediate good
relative to the �nal good. Then, the maximization problem of the �nal good
producer can be written as

�FFt = max

�Z �t

0

[yt(i)]
1
� di

��
�
Z �t

0

pt(i)yt(i)di;

and the �rst order optimality condition implies that the demand function for
an ith intermediate good is given by:

pt(i) =

�
yt(i)

Yt

����1
�

:

2.2.2 Intermediate Goods Producers

A �rm in the intermediate goods sector lives one period, and is pro�t max-
imizing. All �rms are ex-ante identical. There is a sunk entry cost �. Once
the entry cost is paid, a �rm gains an ability to produce an intermediate
good. The �rm has monopoly power over the good it can produce. Next, the
�rm draws a productivity parameter A(j), where j is drawn from an i.i.d.
uniform distribution over [0,1]. The production function for the good j is
given by

[A(j)]1�
�
k(j)�n(j)1��

�
where k(j) and n(j) denote capital and labor respectively. The productivity
parameter di¤ers among the �rms. A �rm with a higher index has a higher
productivity parameter, i.e. A(j) > A(i) for j > i. In addition, function A(j)
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is assumed to be continuous, and A(0) = 0: The parameter  2 (0; �) deter-
mines the degree of returns to scale in variable inputs7, and the parameter
� 2 (0; 1). We assume that � is not too big.8
If a �rm decides to produce, it must incur an operating cost in terms of

wages paid to �n units of overhead labor. Consider a decision of a �rm born
in time t with a draw j. If it decides to produce, its pro�ts are

�Pt (j) = maxkt(j);nt(j)

h
yt(j)
Yt

i���1
�
yt(j)� rtkt(j)� wtnt(j)� �nwt

s.t. yt(j) = [A(j)]1�
�
k�t (j)n

1��
t (j)

� (1)

where rt denotes the rental rate on capital. Note that rt = Rt � (1 � �);
where � is the depreciation rate of capital used in production. The decision
to produce or not depends on whether �Pt (j) is positive. Therefore, the j

th

�rm�s pro�ts �Ft (j) are given by:

�Ft (j) = maxf�Pt (j); 0g:

Free entry implies that, in equilibrium, �rms�expected pro�ts must be equal
to the entry cost �: Z 1

0

�Ft (j)dj = �: (2)

2.2.3 Firms�average productivity

We derive the equilibrium relationship between the �rms�average productiv-
ity and the operating cost. First, we determine the lowest productivity level
necessary for a �rm to decide to produce. The existence of economy-wide
competitive factor markets implies that in equilibrium, the gross pro�ts, cap-
ital, and labor ratios of any two �rms are equal to their (scaled) productivity
ratio:

pt(j)yt(j)

pt(i)yt(i)
=
kt(j)

kt(i)
=
nt(j)

nt(i)
=
a(j)

a(i)
; 8i; j (3)

where a(j) � A(j)
1�
�� . The �rst order conditions of problem (1) imply that

pro�ts from producing are equal to the �rm�s share of the gross pro�ts (1� 
�
)

7This is what Lucas (1978) calls managers�span of control.
8In particular, � < 1 +  � min((1 � �); �): This assumption is not restictive at all,

because for reasonable values of � and ; it implies that � should not be bigger than 1.30.
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minus the operating cost:9

�Pt (j) = (1�


�
)pt(j)yt(j)� �nwt:

Clearly �Pt (j) is increasing in j and, since a(j) = 0; there exists a cuto¤�rm,
Jt, which is indi¤erent between producing or not:

(1� 
�
)pt(Jt)yt(Jt) = �nwt: (4)

Firms with indices higher than Jt will produce, and those with lower indices
will not. Thus, �rms�zero pro�t condition in (2) can be written as:

� = �nwt

Z 1

Jt

�
a(j)

a(Jt)
� 1
�
dj: (5)

The previous equation de�nes the cuto¤ Jt as a function of the operating
cost �nwt: An increase in the cuto¤ Jt has two e¤ects: pro�ts of every �rm
decline, and the number of producing �rms as a fraction of entering �rms
declines. Therefore, the right hand side of (5) is decreasing in Jt; while it is
clearly increasing in the �xed cost (�nwt) : Hence, the cuto¤ is increasing in

the operating cost. Therefore, �rms�average productivity, �a (Jt) =
R 1
Jt
a(j)dj

1�Jt ;
is an increasing function of the operating cost.

2.2.4 Entry and the number of operating �rms

Entry in this model refers to the number of �rms which pay the entry cost
�: The number of entering �rms di¤ers from the number of operating �rms
because only a fraction of entrants will have productivity high enough to
operate: the pool of producers consists only of �rms which have index higher
than Jt. In particular, let �t denote the entry, and �t the number of operating
�rms. Then

�t = �t

Z 1

Jt

dj:

9Later on, with some abuse of terminology, we will refer to (1 � 
� )pt(j)yt(j) as �rms

gross pro�ts.
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2.3 Aggregate Output and TFP

Let Kt and Nt denote the total amount of capital and labor used by the
�rms:

Kt = �t

Z 1

Jt

kt(j)dj;

Nt = �t

Z 1

Jt

[nt(j) + �n] dj = utNt + �t (1� Jt)�n;

where ut is the fraction of labor used in production. Aggregate output can
be written as

Yt =
h
(�t�a (Jt))

(��) u
(1��)
t

i
K�
t (Nt)

(1��) : (6)

Finally, the rental rate on capital, wage and the equation determining the
cuto¤ Jt can be written as:

�


�

Yt
Kt

= rt; (7)

(1� �)
�

Yt
utNt

= wt; (8)

(1� 
�
)
a(Jt)

�a (Jt)

Yt
(1� ut)Nt

= �nwt: (9)

2.4 Closing the Model

The resource constraint is given by:

Ct +Kt+1 = Yt + (1� �)Kt:

The only role the government has in the model is to collect the entry fees
�t� from �rms and rebate them lump-sum to the households:

Tt = �t�:

Pro�ts and the labor market clearing condition are:

�t = �
FF
t + �t

Z 1

0

�Ft (j)dj;

Nt = 1:

The de�nition of equilibrium is standard.
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3 Properties of the Model

In this section we present some properties of the model economy developed in
the previous section. In particular, we focus on the existence and the stability
of the steady states. The main �nding is that there can be multiple stable
steady states with dramatically di¤erent levels of �rms�average productivity,
TFP, capital and output.
Intuitively, if there are multiple steady states, their existence is due to

the endogenous productivity mechanism imbedded in the model. To see this
it is useful to start with a closer look at the key equation which determines
the cuto¤ J , the zero pro�t condition in (6):

� = �nwt

Z 1

Jt

�
a(j)

a(Jt)
� 1
�
dj: (10)

The equation above determines the relation between the cuto¤ J and
the operating cost, �nwt: In particular, recall that the integral on the right
hand side of this equation is decreasing in J: Thus, a higher operating cost
translates into a higher cuto¤, and vice-versa. In an economy where the
operating cost is high, higher (gross) pro�ts are required to cover this cost.
Only high productivity �rms can generate such pro�ts. Therefore, the lower
productivity �rms are forced out from the pool of producers. This can be
restated in broader terms: as the operating cost increases, the entry cost
relative to operating cost falls, allowing more �rms to enter. However, out
of these �rms, only the ones with higher productivity are pro�table enough
to operate. This relation between the operating cost and the cuto¤ provides
economic intuition for the existence of multiple steady states. If multiple
steady states exist, then one steady state will have high capital and only
high productivity �rms will be operating. High capital stock and high pro-
ductivity imply that wage will be high, and so will be the operating cost.
High operating cost, in turn, justi�es why only high productivity �rms will
be operating. Finally, since productivity is high, a high capital stock is nec-
essary to equate the return on capital to 1=�: Conversely, in a �low�steady
state, capital stock and �rms�average productivity will be low, and so will be
the operating cost, allowing lower productivity �rms to operate. Since �rms�
average productivity is low, the capital stock must be low to have the return
on capital equal to 1=�: A �rm productive enough to be active in di¤erent
steady states produces more in a good steady state than in a bad one, despite
a higher wage and the same interest rate. This is optimal because it faces
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a higher demand for its goods, which o¤sets the contractionary pressure of
higher factor prices.

3.1 Steady States

We present the argument formally in propositions 1 and 2, and provide proofs
in appendix A. First, note that the number of �rms is proportional to the
total amount of labor used to cover the �xed cost:

�t =
1� ut
�n

Nt:

Therefore, aggregate output is given by:

Yt =

"�
1

�n

�(��)
(�a (Jt))

(��) (1� ut)��u(1��)t

#
K�sk
t ;

where sk =
�
�
denotes the capital share of output, and total factor produc-

tivity is

TFPt =

"�
1

�n

�(��)
(�a (Jt))

(��) (1� ut)��u(1��)t

#
: (11)

There are two components of TFP: �rms�average productivity (�a (Jt))
(��) ;

and the term u
(1��)
t (1� ut)�� ; which we call the labor allocation compo-

nent. Firms�average productivity is increasing in Jt. The labor allocation
component is a function of Jt as well, though not necessarily monotone.
However, the e¤ect of Jt on average productivity dominates, and TFPt is
increasing in Jt.
The following proposition allows to present the model economy in a more

familiar, neoclassical framework.

Proposition 1 The aggregate production function in (6) and the total factor
productivity in (11) are increasing in the cuto¤ Jt: The cuto¤ Jt; the wage
wt; and the aggregate output Yt are all increasing functions of capital Kt: The
rate of return on capital Rt � (rt + 1� �) is a function of Kt:

Proof. See appendix A.
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The proposition above implies that the dynamics of the economy can be
characterized by the following system of di¤erence equations:�

ct+1
ct

�1=�
= �R(Kt+1);

Ct +Kt+1 = Y (Kt) + (1� �)Kt;
(12)

plus a transversality condition. We now turn to the existence and multiplicity
of steady states.

Proposition 2 The economy characterized by the system in (12) generically
has an odd number of steady states. For any � > 0, there exists a distribution
of productivities, a (j), such that the system (12) has multiple steady state
equilibria.

Proof. (sketch) Some staightforward manipulations of the �rst order condi-
tions lead to the following relation between the rate of return on capital and
the cuto¤ J :

r
1��
�

t � = � � �(Jt) (13)

where

�(J) �
"

�a(J)

�a(J) + ��
(1��)a(J)

# ��1
1��

a(J)
��
1��

Z 1

J

�
a(j)

a(J)
� 1
�
dj; (14)

and � is a constant. Since �(J) is continuous and �(0) =1; �(1) = 0; there
always exists a J� which satis�es the equation below:

[1=� � (1� �)]
1��
� � = � � �(J�): (15)

In order for this equation to have more than one solution it is necessary that
the function �(J) is increasing at some point (see �gure 2). In appendix we
show that there always exists a function a(j) such that this is the case. Note
that (13) implies that if �(J) is increasing, so is r(K): That is, the necessary
condition for the existence of multiple steady states in our framework is
equivalent to the one in Galí (1995): for multiple steady states to exist, for
some values of K the return on capital must be increasing. See appendix A
for a detailed proof.
Given propositions 1 and 2 it is easy to establish that the good economy

has higher capital stock, higher output, higher total factor productivity, and
higher �rms�average productivity.
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3.2 Dynamics

Following Galí (1995), we characterize the behavior of the economy around
the steady state(s) in the following proposition.

Proposition 3 Steady states with an odd index are saddles. Steady states
with an even index can be classi�ed as follows:

1. source, if Y 0 � � > �CR0

R
and

�
(Y 0 � �)� �CR0

R

�2
> 4�CR

0

R
;

2. unstable spiral, if Y 0 � � > �CR0

R
and

�
(Y 0 � �)� �CR0

R

�2
< 4�CR

0

R
;

3. sink, if Y 0 � � < �CR0

R
and

�
(Y 0 � �)� �CR0

R

�2
> 4�CR

0

R
;

4. stable spiral, if Y 0 � � < �CR0

R
and

�
(Y 0 � �)� �CR0

R

�2
< 4�CR

0

R
:

Proof. See appendix A.
An analysis of the global dynamics of our model is beyond the scope of

this paper, and we refer the reader to Galí (1995). For the parameter values
we consider in the rest of the paper, we obtain three steady states, with the
odd steady state unstable (cases 1 and 2 in propositon 3). In comparing
output and TFP across steady states we will focus on the two stable steady
states.

3.3 Productivity Distribution and the Upper Bound
on TFP Di¤erences

So far we have shown that for some functions a(j) there will be multiple
stable steady states. The key property of the function a(j) that generates
multiplicity of equilibria is that �aJ strongly dominates aJ for some J .10

A type of function that has this property is one that is nearly constant on
some interval (J1; J2). The larger this interval is, the farther apart the stable
steady states are from each other. In terms of �rms�productivity distribution,
this translates into the lower steady state having a large number of �rms with
nearly the same low productivity.
The property of the function a(j) established above yields a surprising re-

sult about the magnitude of the di¤erences between the steady states. Recall

10See proof of propositon 2 in appendix A.
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that the limiting case of � equal to one has the least favorable implications
for the existence of multiple steady states, because the model essentially col-
lapses to the standard neoclassical model. Thus, it is important to see how
large the steady state di¤erences can be for � arbitrarily close to one. The
condition for the existence of multiple steady states translates to a(J) being
(almost) a constant over some interval. In this case, the extremes of this in-
terval correspond to the two steady state values of J . Since a(J) is constant,
the di¤erences between TFP are due only to di¤erences in:"

�a (J)

�a (J) + 1�
(1��)a(J)

#1��
:

The upper and the lower bounds for this object are

LB �
�
 � �
1� �

�1��
<

"
�a (J)

�a (J) + 1�
(1��)a(J)

#1��
< 1 � UB:

The lower bound depends on ; and the share of capital sk = (�) =�:
The corresponding upper bounds on the TFP di¤erences are presented in
tables 1 and 3.

3.4 Numerical Examples

The numerical examples below illustrate that for the range of parameters
�;  and � typically used in the literature, the di¤erences between the steady
states can be very substantial. In particular, with conservative values of
�;  and �, aggregate output and capital in the high steady state can be 40
percent higher than these quantities in the lower steady state.
There are seven parameters in the model: �; �; �n; �; �; ; and �, which

must be chosen before solving the model. The model�s implications are robust
to the choice of � and � for the commonly used values of � 2 (0:94; 0:99)
and � 2 (0:08; 0:12) : Therefore, we set � = 0:95; and � = 0:10:We normalize
�n to one

11 and we consider di¤erent values for �, chosen in line with the
�ndings of Djankov, La Porta, Lopez de Silanes, and Shleifer (2002). The
other three parameters: �; ; and �; deserve more consideration.

11Notice that for our results only �= (�n)
��
1�� matters (see equations 13, and 20 in

appendix A).
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The �rst parameter, �; governs the degree of increasing returns to scale
in the economy. There has been a large debate in the recent literature on the
magnitude of increasing returns in the economy. While earlier researchers
(most notably, Hall (1988)) suggested that there are large increasing returns
to scale in the economy, subsequent work has shown that the returns to
scale can be best described as constant to moderately increasing. The lat-
est estimates of � are probably those constructed by Laitner and Stolyarov
(2004). Their preferred point estimate is � = 1:10, with con�dence interval
(1:03; 1:20). These numbers are not far from the estimates of Bartelsman,
Caballero, and Lyons (1994), Burnside (1996), Burnside, Eichenbaum, and
Rebelo (1995), Basu (1996), Basu and Fernald (1997), and Harrison (2003).
Because of the above, we restrict � to be between 1 and 1:25.
The next parameter, ; represents the share of output that goes to capital

and labor used directly in production, for a given value of �. As a benchmark,
we consider  = 0:85�, which is the preferred value of Atkeson and Kehoe
(2005). This is very close to the estimated value of 0.84 in Basu (1996).
Other values of  which we consider, are 0:80�, 0:90� and 0:95�.12

The choice of the next parameter, �, depends on the interpretation of sk:
Interpreted literally, this is the capital share of output. However, if a part
of �rms�(entrepreneurs�) share of output, i.e. (1 � =�); is interpreted as
capital income, then sk is less than the capital share of output. With this
interpretation, one needs to take a stand on how the �rm�s share of output
is divided between capital and labor. A commonly used rule is to split this
share so that the capital share of output is �: As a starting point, we set sk
to 0:36: This implies, for example, that when  is set to 0:85�; � is equal to
0:42:
Tables 1-4 present the resulting di¤erences in values of output and TFP

across the steady states. Note that the di¤erence in the levels of TFP for
� = 1:01 is very close to the theoretical upper bounds constructed earlier.
The di¤erences in the levels of TFP translate into substantial di¤erences in
12Note, that in the model there is a di¤erence between aggregate returns to scale and

�rm level returns to scale. While at the aggregate level there are increasing returns to scale,
at the �rm level, as long as  < 1; the returns to scale in variable inputs are decreasing. In
our model, heterogenous productivity leads to heterogenous degree of returns to scale in
all inputs. For �rms with higher productivity, the decreasing returns to scale in variable
inputs dominate the increasing returns to scale e¤ect of the �xed cost; for the �rms with
lower productivity, it is the opposite. These observations are broadly consistent with
empirical �ndings of Basu (1996), and Basu and Fernald (1997).
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levels of capital and in levels of output. In particular, even for � = 1:01; the
economy in the good steady state produces 27 percent more output than the
economy in the bad steady state.
In the studies of the long run behavior of an economy, using the proper

measure of capital share of output is of crucial importance. For example, for
the uni�ed theory of Parente and Prescott (2005) to be successful, the capital
share of output should be between 0.55 and 0.65. The magnitude of this share
depends on the de�nition of investment (capital). In the context of this
paper it is proper to de�ne investment as �any allocation of resources that is
designed to increase future productivity�(see Parente and Prescott, 2000).
That is, investment should include maintenance and repair, research and
development, software, investment in organizational capital, and investment
in human capital. Parente and Prescott (2000) �nd that including these
items into investment implies that the capital share of output is larger than
0.50 and can reach as high as 2/3.13

For the model developed above, the capital share is important for two
reasons. First, there is the standard �neoclassical� e¤ect, the higher the
capital share is, the higher the e¤ect of the TFP is on the economy. To see
this note that for two identical economies, di¤ering only in TFP, the steady
state capital ratio relates to the TFP ratio as follows:

KHIGH

KLOW
=

�
TFPHIGH

TFPLOW

� 1
1�sk��

:

Clearly, the higher the share of capital is, the higher the di¤erence in steady
state capital is between the two economies.
Second, the capital share directly impacts TFP, because it enters into the

de�nition of TFP in (11), and into the de�nition of the function �(J) in (14).
Because of the highly non-linear nature of TFP and � as functions of the
cuto¤J; it is not possible to analytically derive the e¤ect of an increase in the
capital share of output on resulting TFP di¤erences across the steady states.
However, when � tends to one, it can be shown that the theoretical upper
bound on these di¤erences gets larger as the capital share grows. Indeed,

13For details and references see the original paper. A large portion of the unmeasured
capital is organization capital. Findings of Atkeson and Kehoe (2005) imply that the
value of organizational capital in the US manufacturing sector is larger than the value of
physical capital.
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recall that this upper bound is given by:

UB

LB
=

�
1� sk
 � sk

�1�sk
:

Since  < 1; an increase in the capital share leads to an increase in UB=LB.
For all numerical experiments (table 3) the increase in the capital share
of output increases the TFP di¤erences. Combined with the �neoclassical
e¤ect�described above, this leads to even larger di¤erences in output and in
capital across the steady states (table 4).
Di¤erences across steady states become very large, as long as either � or

sk is large. For example, for sk = 0:65 and � = 1:01; output di¤ers across
the steady states by a factor of 1:67, while with sk = 0:36 and � = 1:25
the economy in the good steady state produces 1:48 times more output than
the economy in the bad steady state. When both sk and � are high, the
resulting di¤erences in output and in capital are huge, reaching as much as
4; 600 percent.

�
1� 1:01 1:05 1:1 1:15 1:2 1:25

0:95� 1:04 1:04 1:05 1:05 1:05 1:06 1:06
 0:9� 1:1 1:1 1:1 1:11 1:12 1:13 1:14

0:85� 1:17 1:16 1:17 1:19 1:21 1:22 1:24
0:8� 1:26 1:24 1:26 1:28 1:31 1:35 1:38

�Theoretical upper bound for �! 1.

Table 1: Relative TFP and returns to scale (sk = 0.36)

�
1:01 1:05 1:1 1:15 1:2 1:25

0:95� 1:07 1:08 1:09 1:1 1:11 1:12
 0:9� 1:16 1:17 1:19 1:22 1:24 1:27

0:85� 1:27 1:3 1:33 1:38 1:42 1:48
0:8� 1:4 1:47 1:51 1:6 1:69 1:82

Table 2: Relative output and returns to scale (sk = 0.36)
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�
1� 1:01 1:05 1:1 1:15 1:2 1:25

0:36 1:17 1:16 1:17 1:19 1:21 1:22 1:24
0:45 1:18 1:17 1:18 1:2 1:22 1:24 1:27

sk 0:55 1:19 1:18 1:2 1:22 1:26 1:3 1:37
0:6 1:19 1:19 1:21 1:24 1:3 1:38 1:55
0:65 1:2 1:2 1:23 1:29 1:39 1:63 2:05

�Theoretical upper bound for �! 1.

Table 3: Relative TFP and capital share ( = 0.85)

�
1:01 1:05 1:1 1:15 1:2 1:25

0:36 1:27 1:3 1:33 1:38 1:42 1:48
0:45 1:33 1:37 1:43 1:51 1:61 1:74

sk 0:55 1:44 1:53 1:66 1:86 2:19 2:76
0:6 1:53 1:66 1:9 2:32 3:2 5:76
0:65 1:67 1:9 2:41 3:71 9:16 46:49

Table 4: Relative output and capital share ( = 0.85)

3.5 Entry and Operating Costs

The key feature of the model that allows for multiple steady state equilibria
is the asymmetry between the entry and the operating cost. While the op-
erating cost is endogenous and changes with the state of the economy, the
entry cost is not. One might try to relax this assumption, and allow both
the entry and the operating costs to be endogenous. In this case, multiple
steady state equilibria may exist as long as a weaker form of asymmetry is
preserved. In particular, the operating cost should be �more�increasing in
capital than the entry cost, so that the ratio of the operating cost to the
entry cost is increasing in capital. We suggest a simple example, based on
Atkeson and Kehoe (2005). Let the entry cost take a form of � units of entry
services which �rms need to purchase to enter. Let the production function
of these services be exactly the same as it is for consumption goods, except
that it is more or less labor intensive. Then, it can be shown that in a steady
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state the zero pro�t condition in (10) becomes

� = �w!
Z 1

J

�
a(j)

a(J)
� 1
�
dj;

where � and ! are positive constants. When ! is one, it is the same zero
pro�t condition as before. When ! is zero, it is the case of Atkeson and
Kehoe (2005).
Then, as long as ! is not zero, the key relation between wage w and the

cuto¤ J; which leads to multiple steady states, is preserved.

4 Growth Miracles: an Interpretation

A puzzle closely related to cross-country income di¤erences is the question of
how and why countries grow and what causes growth miracles. A common
view in the literature is that growth miracles are a result of a dramatic shift
towards more productive �rms and better forms of industrial organization.
For example, Mokyr (2001) states that the Industrial Revolution was accom-
panied by �the ever-growing physical separation of the unit of consumption
(household) from the unit of production (plant),...�due to �... concentration
of former artisans and domestic workers under one roof (plants), in which
workers were more or less continuing what they were doing before, only away
from home ...�and �... a more radical change in production technique, with
substantial investment in �xed capital combined with strict supervision and
rigid discipline.�Thus, plants and factories (i.e. bigger establishments) must
have been more productive than "in home" production units (i.e. the small-
est establishments), and the Industrial Revolution can be viewed as a shift of
resources from the smallest, less productive units, to larger, more productive
ones.
An intriguing question is whether other growth miracles are similar in

this aspect to the Industrial Revolution. One way to shed light on this
question is to ask what happens to the share of labor employed in the smallest
establishments during such miracles. The data to answer this question is
available for Japan and it reveals a striking pattern (see �gure 1): the labor
share of the smallest establishments (i.e. establishments with nine employees
or less) fell by 9% between 1957 and 1969. But the period of 1957 to 1969
was a period of remarkable economic growth, which Parente and Prescott
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Figure 1: Smallest establishments during Japan�s growth miracle. Dotted
line: US data for establishments with N<4 for the �gures in the �rst column, and
with N<7 for �gures in the second column. Solid line with dots: US data.

(2005) classify as a period of a growth miracle.14 Even more interestingly,
in countries which are yet to start catching up with developed countries, the
smallest �rms have the largest employment share.15 In developed countries
it is the opposite: the largest �rms have the largest share of employment.
Thus, a successful model of cross-country income di¤erences should be able
to generate growth miracles which are accompanied by a shift in employment

14It must be noted, that during 1964 to 1969 there was a decline in the employment
share of smallest establishments in the U.S., too. However, this decline was less pronounced
and could be explained by the strong negative correlation of the labor share of smallest
establishments and GDP per capita over the business cycle. This correlation ranges from
-0.37 to -0.70, depending on the detrending method employed.
15See table 1 in Tybout (2000, p.16).
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from smallest establishments to larger, more productive ones.
Such a shift in our model�s framework depends on the properties of the

function a(j): If the corresponding probability density function of productiv-
ity is one which implies the existence of multiple steady states, i.e. it has a
high density somewhere at the lower tail, then a shift from the smallest to
largest establishments occurs when the economy moves away from a �low J�
steady state, to a �high J�steady state.
There are two reasons that can cause such a shift.16 The �rst one, is the

decline in the entry barriers, i.e. the decline in the entry cost �.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Intermediate κ: "low  J" and "high J" equilibria

Low κ: "high J" equilibrium

J

Φ
 (J

) a
nd

κ

Figure 2: The role of the entry cost �.

To illustrate this point, it is useful to start with �gure 2. An interesting
pattern emerges. For larger values of �, there is a unique, low cuto¤, steady
state, and for lower ��s there is a unique steady state, with large J . For
intermediate values of � there can be two steady states. A small change in
the value of � can lead to large di¤erences in J and the corresponding values

16Even in the case of a unique steady state a reduction in the entry cost or techno-
logical progress can chage the location of the steady state dramatically. However, if the
steady state is unique, cross-country di¤erences in output and TFP are to be attributed
to di¤erences in fundamentals.
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of capital and output. In our model economy, the best technologies available
are used regardless of the magnitude of the entry cost. The usage of worse
technologies, on the other hand, depends on the entry cost. A reduction
in the entry cost can cleanse the economy from lower productivity �rms,
increasing �rms�average productivity and TFP. This mechanism of growth
miracles shares a common driving force, reduction of barriers, with the one
of Parente and Prescott (2000). However, the e¤ect of the reduction of the
barries is di¤erent. In their model new, better technologies are not being used
because of the barriers. Here, the entry barriers determine not the highest,
but the lowest level of technology that is being used in the economy.
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old J
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Figure 3: A growth miracle driven by technological progress.

The second reason for a growth miracle is technological progress. A nat-
ural way to introduce this into our model is to consider a one-time permanent
increase in the function a(j) for values of j close to one.17 That is, the best
technologies become even better. Mathematically, this can be written, for

17A better model to address the e¤ect of productivity improvements would be one where
the highest level of technology that is available in the economy grows over time. Building
and examining such a model is left for future research.
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example, as

a(j) =

(
a(�j)

h
a(j)
a(�j)

iq
; if j � �j;

a(j); otherwise;

where �j is close to one, and q is greater than one. For any J < �j; the change
in the function a(j) will cause �(J) to rise. If such a rise is su¢ ciently large,
the �low J�steady state will disappear (see �gure 3), and the economy will
start growing toward a �high J�steady state.
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Figure 4: Employment Shares: model versus data.

The resulting change in the distribution of employment across �rms of
di¤erent sizes is reported in the �rst column of �gure 4. The di¤erences in
the employment distribution between �high J�and �low J�countries is very
similar to those between an average low income country and the U.S., in the
sample of Tybout (2000).
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5 Conclusions

Recent empirical studies attribute a sizable fraction of cross-country income
di¤erences to di¤erences in TFP. These di¤erences re�ect, in part, the fact
that the fraction of low productivity �rms in less developed countries is much
higher than in industrilized countries.
We introduce heterogeneity in productivity across �rms in an otherwise

standard model. In our model di¤erences in TFP arise endogenously, and
we obtain multiple steady state equilibria for an arbitrarily small degree of
increasing returns to scale. Economies with the same fundamentals can be
at very di¤erent steady states. If an economy is in a good steady state only
the most productive �rms operate, leading to high TFP, capital and output.
In an economy locked in a poverty trap the pool of producers is sullied by
low productivity �rms, with low TFP, capital and output.
In our model a growth miracle, induced by technological progress or a

decline in entry barriers, is accompanied by a shift of employment from small
to large �rms. This is consistent with the Industrial Revolution and Japan�s
post-war growth experiences.
Finally, our model�s implications for the employment distribution across

�rms of di¤erent sizes is consistent with the empirical evidence.
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A Proofs of Propositions

A.1 Proof of Proposition 1

Equations in (8) and (9) imply that the fraction of labor used in production
ut is a function only of the cuto¤ Jt :

ut =
�a (Jt)

�a (Jt) +
��
(1��)a(Jt)

:

Substituting this expression of ut into the equation (11), we get that

TFP (Jt) =

�
1

�n

�(��) " ��
(1��)a(Jt)

�a (Jt) +
��
(1��)a(Jt)

#(��) "
�a (Jt)

�a (Jt) +
��
(1��)a(Jt)

#(1��)
(�a (Jt))

��

(16)
Di¤erentiating the previous expression:

signum (TFPJ) = signum

"
(�� ) (1� �) 

(1� �) �a+ (�� ) a
aJ
a
(�a� a) + �aJ

 
1

�a
� 1

�a+ ��
(1��)a

!#
;

(17)
where

TFPJ =
@TFP (J)

@J
, aJ =

@a (J)

@J
, �aJ =

@�a (J)

@J
:

The terms in parenthesis in (17) are positive and they are multiplied by
positive terms. Hence, TFPJ > 0.
Using the �rms��rst order condition in (8) and the zero pro�t condition

in (5) we get that the following relation between the cuto¤ Jt and capital
Kt :

� = (1� �)
�
[c0]

(��)
�

�a(Jt)

�a(Jt) + c0a(Jt)

�(1��)+(��)�1
[c0a(Jt)]

(��)K�
t

�
1

a(Jt)

Z 1

Jt

a(j)dj � (1� Jt)
�

For a given Kt the left hand side of this equation varies with Jt from +1;
to zero. Moreover, one can easily show that the left hand side is decreasing
in Jt: Thus, there exists a unique Jt which solves the equation. In addition,
it is increasing in Kt:Because Jt is increasing in Kt; so is output Yt, and wage
wt: In addition, since for a given Kt output Yt is uniquely determined, so is
the Rt; i.e. Rt is a function of Kt. �
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A.2 Proof of Proposition 2

Use equations (7) and (16) to express Kt as a function of rt and Jt: Then,
substituting this expression of Kt into the equation (16). Finally, using the
equation (8), we get

r
1��
�

t � = � � �(Jt) (18)

where

�(J) �
"

�a(J)

�a(J) + ��
(1��)a(J)

# ��1
1��

a(J)
��
1��

Z 1

J

�
a(j)

a(J)
� 1
�
dj; (19)

and � is a constant:

� =

�
1

�n

� (��)
1�� �

1� 
�

� h�
r�

i �
1��

�
(�� )
(1� �)

� ��
1���1

: (20)

Since �(J) is continuous and �(0) = 1; �(1) = 0; there always exists a J�
which satis�es the equation below:

[1=� � (1� �)]
1��
� � = � � �(J�): (21)

We now have to show that for any J� satisfying the equation above there
exists a pair (c�; K�), both positive, such that R(K�) = 1=�; and c� =
Y (K�)� �K�: This is an immediate consequence of proposition 1.
If there is more than one J� satisfying equation in (21), then there will

be multiple steady states. Note that for given parameters �; ; and �; the
shape of the function �(J) is entirely determined by the shape of function
a(j): The shape of the function a(j) is the key for the existence of multiple
steady states. Note that if a(j) is such that �J > 0 then (21) has multiple
solutions. Therefore, to conclude the proof, we must show that there exists
a function a(j) such that �J > 0: The sign of �J can be checked as follows:

signum (�J) = signum

8><>:
��1
1��

�
�aJ
�a
� �aJ+

��
(1��) aJ

�a+ ��
(1��) a

�
+
h
��
1�� �

(1�J)R 1
J (a(j)�a(J))dj

i
aJ
a

9>=>; :
Consider a function

a(j) =

8>>><>>>:
j; if j � J1

J1 + b1

�
j�J1
J2�J1

�N
; if J1 < j � J2

(J1 + b1)
�
j
J2

�10�15
; if j > J2:

(22)
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where b1 is a positive constant and N > 0: Then,

lim
N!1

aJ = 0;

lim
N!1

a = J1;

lim
N!1

�a =
J2 � J
1� J J1 +

1� J2
1� J (J1 + b1) +O(10

�6);

lim
N!1

�aJ =
1� J2
(1� J)2 b2;

where J = J1+J2
2
.

Therefore, as long as � > 1, limN!1�J > 0. It follows that there exists
a �nite N exists for which �J > 0. �

A.3 Proof of Proposition 3

Linearizing (12) about a steady state:�
K̂t+1

Ĉt+1

�
=

�
Y 0 + 1� � �1

�R0

R
C (Y 0 + 1� �) 1� �R0

R
C

� �
K̂t

Ĉt

�
The eigenvalues of the transition matrix are given by:

�1;2 = 1 +
(Y 0 � �)� �CR0

R
�
q�
(Y 0 � �)� �CR0

R

�2 � 4�CR0
R

2
:

If R0 < 0 (odd steady states) both eigenvalues are real and �1 < 1 < �2.
If R0 > 0 (even steady states) there are four possible cases:

1. Y 0 � � > �CR0

R
^
�
(Y 0 � �)� �CR0

R

�2
> 4�CR

0

R
) �1;2 2 R;

�1;2 > 1;
2. Y 0 � � > �CR0

R
^
�
(Y 0 � �)� �CR0

R

�2
< 4�CR

0

R
) �1;2 2 C;

�1;2 > 1;
3. Y 0 � � < �CR0

R
^
�
(Y 0 � �)� �CR0

R

�2
> 4�CR

0

R
) �1;2 2 R;

�1;2 < 1;
4. Y 0 � � < �CR0

R
^
�
(Y 0 � �)� �CR0

R

�2
< 4�CR

0

R
) �1;2 2 C;

�1;2 < 1:
�
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Condition
Steady state
stability

R0 < 0 saddle
Y 0 � � > �CR0

R
> 0�

(Y 0 � �)� �CR0

R

�2
> 4�CR

0

R

source

Y 0 � � > �CR0

R
> 0�

(Y 0 � �)� �CR0

R

�2
< 4�CR

0

R

unstable
spiral

�CR0

R
> Y 0 � � > 0�

(Y 0 � �)� �CR0

R

�2
> 4�CR

0

R

sink

�CR0

R
> Y 0 � � > 0�

(Y 0 � �)� �CR0

R

�2
< 4�CR

0

R

stable
spiral

Table 5: Steady state stability for di¤erent parameters con�gurations

B Data Sources

The data used in the paper are available from the following sources:

1. Data on the establishments in Japan: Japan Statistical Yearbook, edited
by the Statistical Training Institute, and published by the Statistics
Bureau, both under the Ministry of Internal A¤airs and Communica-
tions, various issues. Data is available every three years for the period
1951-1981, and every �ve years subsequently. The data is for estab-
lishments. An establishment is a single physical location where the
business is conducted or where services or industrial operations are
performed.

2. Data on the establishments in the United States: U.S. Department
of Commerce, U.S. Census Bureau, County Business Patterns, various
issues. The employment shares of establishments of various sizes are
available for each year from 1974 to 2002. For this period, the small-
est two groups are de�ned as the ones which have 1 to 4 and 5 to
9 employees, respectively. The employment shares of establishments
of various sizes are also available for the period of 1964-1973, but the
smallest two groups are de�ned as the ones which have 1 to 3 and 4
to 7 employees, respectively. The number of establishments of various
sizes are available for each year from 1974 to 2002. For this period,
the smallest two groups are de�ned as the ones which have 1 to 4 and
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5 to 9 employees, respectively. The number establishments of various
sizes are also available for the years 1948, 1951, 1953, 1959, 1962 and
1964-1973, but the smallest two groups are de�ned as the ones which
have 1 to 3 and 4 to 7 employees, respectively.

3. U.S. GDP per capita: U.S. Department of Commerce, Bureau of Eco-
nomic Analysis, National Income and Product Account, available at
http://www.bea.gov/bea/dn/nipaweb/index.asp. We consider GDP
per capita, and GDP per capita lagged by two quarters. The reason to
consider the latter case, is that establishment data is typically collected
in March.

4. U.S. TFP: U.S. Department of Labor, Bureau of Labor Statistics mea-
sure of multifactor productivity, available at http://www.bls.gov/mfp/home.htm.

5. Developing countries�labor share of smallest manufacturing plants: Ty-
bout (2000).
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