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This paper examines matched point and density forecasts of inflation from the Survey of 
Professional Forecasters to analyze the relationship between expected inflation, 
disagreement and uncertainty. We extend previous studies in terms of data construction 
and estimation methodology. Specifically, we derive measures of disagreement and 
uncertainty using a decomposition proposed by Wallis (2004, 2005) as well as by 
applying the concept of entropy from information theory. We also undertake the 
empirical analysis within a seemingly unrelated regression framework. Our results offer  
mixed support for the propositions that disagreement is a useful proxy for uncertainty and 
that increases in expected inflation are accompanied by heightened inflation uncertainty. 
On the other hand, we document a robust quantitatively and statistically significant 
positive association between disagreement and expected inflation. 
 
 
 
 
 
 
 
We thank J.S. Butler, Tim Cogley, John Ham, Bart Hobijn, John Leahy, Jose Lopez, Simon 
Potter, Til Schuermann, Tom Stark and Giorgio Topa for helpful comments and suggestions. Bess 
Rabin and Ariel Zetlin-Jones provided excellent research assistance. The views expressed in this 
paper are those of the individual authors and do not reflect the position of the Federal Reserve 
Bank of New York or the Federal Reserve System. Address correspondence to the authors at the 
Federal Reserve Bank of New York, Macroeconomic and Monetary Studies Function, 33 Liberty 
Street, New York, NY 10045-0001. Email: Robert.rich@ny.frb.org or joseph.tracy@ny.frb.org .



1 

1. Introduction 

 There is widespread agreement that inflation expectations are important for 

understanding the behavior of individuals and observed macroeconomic outcomes. While 

a great deal of research continues to focus on how people form expectations, there is also 

interest in examining other aspects of predictive behavior and characterizing their 

relationships. For example, Zarnowitz and Lambros (1987) and Giordani and Söderlind 

(2003) investigate the linkage between the dispersion of individual mean forecasts of 

inflation (a measure of disagreement over inflation forecasts) and the average dispersion 

of corresponding density forecast distributions (a measure of uncertainty over inflation 

forecasts). This issue bears upon the validity of using disagreement as a proxy for 

inflation uncertainty in empirical investigations. Other studies seek to determine if 

changes in anticipated inflation are associated with parallel changes in uncertainty about 

inflation. If this relationship holds, then an additional cost of rising inflation is the 

adverse real effects associated with increased uncertainty. More recently, Mankiw, Reis 

and Wolfers (2003) explore the relationship between the dispersion of individual mean 

forecasts and expected inflation to test predictions of the ‘sticky-information’ model of 

Mankiw and Reis (2002). 

 This paper examines matched point and density forecasts of inflation from the 

Survey of Professional Forecasters (SPF) to analyze the relationship between (aggregate) 

expected inflation, disagreement and uncertainty. Our study improves upon previous 

studies in terms of data construction and estimation methodology. With regard to data 

construction, we derive empirical measures of disagreement and uncertainty using two 

alternative approaches. One approach draws upon the work of Wallis (2004, 2005) and 
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uses a decomposition of the variance of the aggregate density forecast distribution. The 

second approach applies the concept of entropy from information theory. While we argue 

that each approach has its own merits, the use of both approaches has the added benefit of 

allowing us to assess the sensitivity of the results to different data constructs. 

 With regard to estimation methodology, the matched point and density inflation 

forecasts from the SPF involve four forecast horizons. Previous studies have either 

selected a single horizon for analysis or examined the horizons separately. We adopt a 

seemingly unrelated regression (SUR) approach in which we group the equations for each 

horizon. This choice of estimation strategy not only stems from theoretical considerations 

suggesting the regression residuals should be correlated across horizons, but also from 

formal statistical tests that confirm this feature of the data. The SUR framework provides 

efficiency gains relative to conventional estimation methods and also allows us to assess 

the robustness of the results across different forecast horizons. 

 Our findings offer mixed evidence concerning the nature of the relationships 

between disagreement (across inflation forecasts) and inflation uncertainty as well as 

between expected inflation and inflation uncertainty. Specifically, when we employ the 

Wallis-based measures of disagreement and uncertainty, the relationships between 

disagreement and uncertainty as well as between expected inflation and uncertainty 

display little economic importance. On the other hand, the entropy-based measures of 

disagreement and uncertainty reveal a positive association between the variables in these 

two relationships that is economically and statistically significant. While we are unable to 

offer a compelling argument that would favor one set of findings over the other, we can 

nevertheless draw some conclusions concerning the use of disagreement as a proxy for 
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inflation uncertainty. The analysis not only raises questions about the validity of this 

practice, but also suggests that the measures of disagreement commonly adopted within 

this practice (i.e., Wallis-type measures) may be particularly problematic.1 

 In contrast, the nature of the relationship between disagreement and expected 

inflation is robust across both data constructs. Specifically, we find strong evidence that 

more diversity among respondents’ point predictions of inflation coincides with increases 

in expected inflation, with the linkage between the variables displaying both economic 

and statistical significance. While we are cautious about the interpretation and 

implications of these findings at the aggregate level for specific models of expectations 

formation, we acknowledge that the positive co-movement between disagreement and 

expected inflation appears to be an important feature of predictive behavior and an issue 

warranting greater attention on the part of researchers.2 

 In the next section of the paper, we provide an overview of the SPF inflation data. 

Section 3 describes our econometric methodology. We present the empirical results in 

Section 4. We then conclude with a short summary of our findings. 

2. Data 

 This section begins with a description of the statistical frameworks that underlie 

our measures of expected inflation, disagreement and uncertainty for the SPF inflation 

                                                           
1 There is an extensive literature that has used forecast dispersion measures from surveys of inflation 
expectations as a proxy for inflation uncertainty. Zarnowitz and Lambros (1987) and Giordani and 
Söderlind (2003) contain references to various studies that have sought to determine the effect of inflation 
uncertainty on macroeconomic and financial variables such as output growth, unemployment, nominal 
interest rates, and labor contract durations. 
2 This finding initially might be viewed as corroborating evidence in support of the ‘sticky-information’ 
model of Mankiw and Reis (2002). In a related paper, however, Rich and Tracy (2004) argue that another 
implication of the ‘sticky-information’ model is that there should be no persistent differences across SPF 
respondents in their forecast behavior. When we examine the SPF inflation data at the individual level, we 
strongly reject the model’s prediction that there are no significant fixed effects associated with either the 
respondents’ ex ante forecast uncertainty or their ex post forecast accuracy. 
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data. We then provide details on the construction of the variables for the empirical 

analysis and also discuss particular features of the SPF inflation data that bear upon 

estimation of the relationships of interest. We conclude by comparing our approach to 

that in Zarnowitz and Lambros (1987) and Giordani and Söderlind (2003). 

A. Variable Definitions 

 The SPF has undergone significant changes throughout its history. The survey 

was jointly initiated in late 1968 by the National Bureau of Economic Research (NBER) 

and the American Statistical Association (ASA), and was first known as the NBER-ASA 

Economic Outlook Survey. The survey is mailed four times a year, on the day after the 

first release of the National Income and Product Accounts data for the preceding quarter. 

Over time, the number of respondents declined, and in early 1990 the NBER-ASA 

Economic Outlook Survey was discontinued. However, later that year the Federal 

Reserve Bank of Philadelphia revived the survey and renamed it the SPF. 

 The survey originally asked respondents to provide point forecasts for 10 

variables over a range of forecast horizons. Unlike other surveys, the questionnaire also 

solicits density forecasts for aggregate output and inflation in the form of histograms. 

That is, respondents are asked to attach a probability to each of a number of pre-assigned 

intervals, or bins, in which output growth and inflation might fall. Because these forecasts 

relate to the spread of a probability distribution of possible outcomes, they provide a 

unique basis from which to derive empirical measures of uncertainty. 

 We will restrict our attention to data on the inflation forecasts due to the lack of a 

homogeneous sample for the output forecasts.3 With regard to the density forecasts of 

inflation, in the fourth quarter the survey asks respondents about the annual average 
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percentage change in prices between the current year and the following year. In the first, 

second and third quarters, however, the survey asks respondents about the annual average 

percentage change in prices between the current year and the previous year. 

Consequently, the target variable for the density forecasts remains fixed for four 

consecutive surveys (from the fourth quarter of year t through the third quarter of year 

t+1), with a corresponding forecast horizon (h) that declines from approximately 1
24  

quarters to 1
21  quarters.4 For convenience, we refer to these horizons as 4, ,1.h = K  

 Defining notation, let , ( )j h tφ π denote respondent j’s h-quarter-ahead density 

forecast of inflation ( )π  in year t. Therefore, 4, ( )j tφ π  will denote respondent j’s density 

forecast in the fourth quarter (h=4) of year t, while 3, 1( )j tφ π+  will denote the subsequent 

density forecast in the first quarter (h=3) of year t+1. We will then let , ( )e
j h tφ π  and 

2
, ( )j h tσ π  denote, respectively, the mean and variance of the corresponding density 

forecasts. 

 With regard to the point forecasts, the SPF asks respondents for predictions of the 

price level for the current quarter and the next four quarters. Because data is available on 

the price index in preceding quarters, a point forecast, ,
e

j h tf , can be constructed that 

matches each density forecast. Therefore, we will let 4,
e

j tf  denote respondent j’s point 

forecast of the annual average percentage change in prices in the fourth quarter (h=4) of 

year t. The subsequent point forecast of the annual average percentage change in prices in 

the first quarter (h=3) of year t+1 will be denoted by 3, 1
e

j tf + . 

                                                                                                                                                                             
3 Specifically, respondents switched from forecasting nominal output to real output in the early 1980s. 
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 Our study considers two alternative approaches to derive measures of 

disagreement and uncertainty. The first is based on the statistical framework of Wallis 

(2004, 2005) that yields a formal relationship among measures of disagreement and 

uncertainty. Specifically, let , ( )h tφ π denote the h-quarter-ahead aggregate density forecast 

of inflation in year t defined as: 

 
,

, , ,
1

( ) (1/ ) ( ) ,
h tN

h t h t j h t
j

Nφ π φ π
=

= ∑  (1) 

which averages the density forecasts across all ,h tN  respondents. As Wallis notes, the 

combined density forecast in equation (1) is an example of a finite mixture distribution. 

 If we assume that the individual point forecasts ,( )e
j h tf  are the means of the 

individual forecast densities ,( ( ))e
j h tφ π , then the first two moments of the aggregate 

density forecast about the origin are given, respectively, by:5 

 1
1

(1/ )
N

e e
j

j
N f fμ

=

′ = =∑  (2) 

and 

 2 2
2

1

(1/ ) ( ) ( ) ,
N

e
j j

j

N fμ σ π
=

′ ⎡ ⎤= +⎣ ⎦∑  (3) 

where for convenience we temporarily suppress the subscripts denoting the specific 

forecast horizon and year. Consequently, the variance of ( )φ π  is given by: 

                                                                                                                                                                             
4 Zarnowitz and Lambros select these values for the distances between the dates of the surveys and the end 
of the target year. As we demonstrate shortly, the horizons also reflect publication lags in the price index. 
5 Engelberg, Manski and Williams (2006) provide evidence that most SPF forecasters give point 
predictions that are consistent with the means/medians/modes of their density forecast distributions.  
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= +

∑ ∑
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The resulting decomposition of the variance of the aggregate distribution underlies our 

choice of this strategy to obtain measures of disagreement and uncertainty. The first term 

on the right-hand side of (4) is the cross-sectional variance of the point forecasts 2( )ef
s and 

provides the corresponding measure of disagreement. The second-term is the average 

individual variance 2
( )( )φ πσ and provides a natural measure of aggregate uncertainty. 

 Our second approach to derive measures of disagreement and uncertainty draws 

upon information theory and the concept of entropy.6 To better understand the motivation 

for the entropy-based measures, one can think about trying to assess the information in a 

message confirming the occurrence of a particular event. If the event was expected to 

occur with almost complete certainty, then the message causes little surprise and contains 

little information. On the other hand, if there was very little reason to believe the event 

would occur, then the message causes considerable surprise and contains a great deal of 

information. Thus, the informational content of the message is inversely related to the 

likelihood of the event. 

 The concept of entropy extends the previous illustration by computing the 

expected informational content of the message based on all possible events and their 

associated probabilities. As such, there is a direct connection between the expected 

information of the message and the notion of uncertainty. If there is little uncertainty 

prior to the message, due to the number of events being small or the existence of one 

                                                           
6 Interested readers can consult The New Palgrave Dictionary of Economics for a useful summary of the 
history and development of information theory. 
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highly anticipated event, then its arrival is expected to convey little information. 

However, if there is greater uncertainty arising from an increase in the number of events 

and/or a greater uniformity of probabilities across events, then more information is 

expected from the message. While we have originally introduced the entropy as the 

expected information of the message, it is clear that it can also be regarded as a measure 

of the uncertainty associated with an empirical distribution, and hence with the SPF 

histograms. 

 Following convention in the information literature and continuing to suppress 

subscripts denoting forecast horizon and year, we calculate the entropy of an individual 

SPF histogram as: 

 2

1

1( ) log ,
( )

n

j H j
k j

p k
p k

σ
=

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  (5) 

where ( )j p k  denotes the probability that individual j attaches to interval k. The entropy 

is nonnegative, and can attain a value of zero when ( ) 1p k =  for one of the n bins. If we 

hold the number of bins fixed at n, then the entropy is maximized when ( ) (1 )p k n= . 

However, this maximum increases when the number of possible outcomes (n) increases. 

Our entropy-based measure of aggregate uncertainty is then obtained by averaging the 

individual values of (5) across the N respondents: 

 2 2

1
(1/ )

N

H j H
j

Nσ σ
=

= ∑  (6) 

 While our previous discussion of entropy has been cast in terms of uncertainty, its 

close association with the notion of divergence suggests that it can also be used to 

measure disagreement. Consequently, we can derive an entropy-based measure of 
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disagreement that parallels that for uncertainty. Using the same pre-assigned bins as those 

for the SPF density forecasts, an aggregate histogram for the individual point forecasts 

can be constructed. We can then recast the formula in (5) in terms of aggregate 

probabilities to obtain an entropy measure of disagreement which we denote by 2 .Hs 7 

B. Variable Construction 

 While the expressions for expected inflation, disagreement and uncertainty in the 

previous section serve as useful definitions, they need to be made operational for our 

empirical analysis. We now provide details on the construction of these measures.   

 For our purposes, it is relatively straightforward to construct the individual point 

forecasts of inflation and the measures of disagreement. Recalling the structure of the 

target variable for the density forecasts, the matching point forecast for respondent j of 

the annual average percentage change in prices in the fourth quarter of year t is given by: 

 1,1 1,2 1,3 1,4
4,

,1 ,2 ,3 ,4

100 1 ,
e e e e

j t j t j t j te
j t e

t t t j t

P P P P
f

P P P P
+ + + +⎡ ⎤+ + +

= ∗ −⎢ ⎥
+ + +⎢ ⎥⎣ ⎦

 (7) 

where ,
e

j t qP  is respondent j’s predicted value of the price level in quarter q of year t and 

,t qP is the “actual” value of the price level in quarter q of year t.8 The subsequent point 

forecast of the annual average percentage change in prices in the first quarter of year t+1 

is then given by: 

                                                           
7 We recognize that it would be useful if the entropy-based measures of disagreement and uncertainty could 
be constructed along the same lines as in Wallis (2004, 2005). However, while the entropy for the 
aggregate density forecast of inflation can be calculated and decomposed into two terms, their 
interpretation would not be identical to those in (4). One of the terms would correspond to average 
uncertainty, but the other term would correspond to the dispersion in respondents’ forecast uncertainty and 
not in their inflation forecasts. This consideration accounts for the disconnect between the construct of the 
entropy-based measures of uncertainty and disagreement relative to the Wallis-based measures. 
8 The term “actual” value includes recently reported figures that the SPF provides to assist respondents with 
their forecasts. 
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 1,1 1,2 1,3 1,4
3, 1

,1 ,2 ,3 ,4

100 1 ,
e e e e

j t j t j t j te
j t

t t t t

P P P P
f

P P P P
+ + + +

+

⎡ ⎤+ + +
= ∗ −⎢ ⎥

+ + +⎢ ⎥⎣ ⎦
 (8) 

where the 'eP s  and 'P s  reflect the new quarterly price level predictions and 

realizations, respectively. A similar updating would occur for 2, 1
e

j tf +  and 1, 1
e

j tf + . The 

availability of the individual point forecasts then allows us to calculate the mean point 

forecast ( ),ef  the cross-sectional variance of the point forecasts 2( )ef
s , and the entropy-

based measure of disagreement 2( )Hs  with little effort.  

 Turning to the density forecast data, the construction of the entropy-based 

measure of average uncertainty 2( )Hσ  is also relatively straightforward. However, the 

nature of the data does not immediately lend itself to deriving the remaining variables of 

interest. Therefore, we proceed by making additional assumptions and calculating 

moments of the aggregate distribution of inflation. The estimate of the mean will provide 

a measure of expected inflation ( ( ))eφ π from the density forecast data. Given an estimate 

of the corresponding variance, we can then use the decomposition in (4) and the 

calculated values of the series 2
ef

s  to back out the Wallis-based measure of average 

uncertainty 2
( )( ) :φ πσ  

 2 2
( ) [ ( )] ef

Var sφ πσ φ π= −  (9) 

 
 Continuing the previous discussion, there are two common approaches that have 

been used to estimate the mean and variance of the SPF aggregate histograms. The first 

approach assumes all the probability mass is located at the interval midpoints. The 

alternative approach assumes the probability mass is distributed uniformly across each 
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interval. For the analysis, we adopt the first approach and apply the following formulas to 

compute the mean and variance of the aggregate density forecast, respectively: 

 1
2

1

( ) ( ) ( )

[ ( )] ( ) ( ) ( )

n
e Mid

k

n
Mid e

k

p k k

Var p k k

φ π π

φ π π φ π

=

=

=

⎡ ⎤= −⎣ ⎦

∑

∑
 (10) 

where ( )p k  denotes the aggregate probability of interval k, and ( )Mid kπ  denotes the 

midpoint of the corresponding interval. We omit the results for the uniform assumption 

because they are similar, although slightly weaker.9   

C. Other Features of the SPF Inflation Data 

 The discussion up to this point has abstracted from a number of other important 

features of the SPF inflation data. For example, there have been occasional errors in the 

conduct of the survey where the probability variables have been subject to a mismatch 

between the intended and requested forecast horizon. As noted earlier, the matching of 

the point forecast and density forecast series is based on definitions in which the 

probability variables in the fourth quarter refer to the following year, whereas the 

probability variables in the first through third quarters refer to the current year. However, 

the surveys conducted in 1974:Q4 and 1980:Q4 mistakenly asked respondents for density 

forecasts of inflation between 1973-74 and 1979-80, respectively. Conversely, the 

surveys conducted in 1972:Q3, 1979:Q2-Q3, 1985:Q1 and 1986:Q1 mistakenly asked 

survey respondents for density forecasts of inflation between 1972-73, 1979-80, 1985-86, 

and 1986-87, respectively. Thus, these data are excluded from the analysis due to their 

forecast horizons not being comparable to those in related quarters. 

                                                           
9 These results are available from the authors upon request. 
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 There have also been changes in the price index used to define inflation in the 

survey as well as periodic changes in the base year of the relevant price indexes. There is 

also a question of whether to use real-time or final revised data. Another issue concerns 

the exclusion of respondents due to either their failure to provide matching point and 

density forecasts or due to discrepancies between their point and density forecasts that are 

judged to be excessive.10 We refer the reader to Appendix A for further details. 

D. Comparison To Other Studies 

 For our purposes, the statistical framework of Wallis (2004, 2005) is extremely 

attractive for analyzing the SPF inflation data. The decomposition of the variance of the 

aggregate density forecast and the resulting measures of disagreement and uncertainty 

correspond closely to the notions underlying previous studies. Moreover, and in contrast 

to other studies, there is a formal derivation underlying the measures of uncertainty and 

disagreement. For example, Zarnowitz and Lambros (1987) generate measures of 

uncertainty by calculating the average standard deviation from the individual density 

forecasts.11 With regard to measures of disagreement, they calculate the cross-sectional 

standard deviation of the point forecasts. While these measures are analogous to the two 

terms on the right-hand side of (4), the use of standard deviations rather than variances 

breaks the link to the decomposition. 

 For their analysis, Zarnowitz and Lambros examine the same three relationships 

that are of interest to us. They find that disagreement and uncertainty display a weak 

positive relationship, while expected inflation contributes almost nothing to movements 

                                                           
10 This is similar to Engelberg, Manski and Williams (2006) who also find there are some SPF forecasters 
whose point predictions appear to be inconsistent with the means/medians/modes of their density forecasts. 
11 Zarnowitz and Lambros make their calculations assuming the probability mass is distributed uniformly 
within bins. 
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in disagreement. They do, however, document an economically and statistically 

significant association between expected inflation and uncertainty. It should be noted that 

Zarnowitz and Lambros base their findings on a sample that runs from  

1968:Q4–1981:Q2, resulting in estimated regressions for individual forecast horizons that 

only use 10-13 observations. 

 Giordani and Söderlind (2003) extend the work of Zarnowitz and Lambros by 

developing a statistical framework that features individual forecasters with private 

information. Their analysis yields the following expression that is similar to (4): 

 2( ) ( ( )) ( )e
j jVar Var Eφ π φ π σ⎡ ⎤⎡ ⎤ = +⎣ ⎦ ⎣ ⎦  (11) 

where E denotes the expectations operator. However, Giordani and Söderlind make no 

subsequent use of the variance of the aggregate distribution or the equality in (11). 

Rather, they elect to follow the approach of Zarnowitz and Lambros and calculate the 

measures of disagreement and uncertainty as standard deviations and not variances. 

Unlike Zarnowitz and Lambros, however, the standard deviation calculations are based 

on normal approximations to the individual forecast histograms. Consequently, Giordani 

and Söderlind exclude the individual point forecast data from their analysis.12 

 In contrast to Zarnowitz and Lambros, Giordani and Söderlind restrict their 

attention to the question of whether disagreement is a valid proxy for uncertainty. They 

principally focus on first quarter (h=3) data and find a correlation of 0.60 between their 

                                                           
12 The normal approximation provides the estimates of the mean and standard deviation of each individual 
forecast histogram. As previously noted, it is straightforward to construct a measure of disagreement from 
the point forecast data. On the other hand, it is much more problematic to derive a measure of disagreement 
from the density forecast data. As we will discuss, the nature of the data may limit the ability to estimate a 
mean for each individual forecast histogram. The use of an estimate may also introduce a source of 
measurement error into the analysis. Abstracting from the previous two considerations, there is a more 
general question of relevance in that Giordani and Söderlind’s approach is not consistent with the 
conventional practice of using disagreement across point forecast data as a proxy for uncertainty. We return 
to this latter issue in Section 3 where we discuss the specification of the regression equations.   
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measures of disagreement and uncertainty, although they report that correlations for the 

other quarters are similar and range from 0.46 to 0.68. They interpret their findings as 

showing that disagreement is a better proxy of inflation uncertainty than previously 

thought.  

 With regard to the methodology of Giordani and Söderlind, there are two issues 

that merit special discussion. The first is theoretical in nature and relates to the statistical 

foundation of their model. As noted by Wallis (2004, 2005), the pooling of disparate 

information sets actually presents conceptual difficulties and greatly complicates the 

issue of aggregation. This consideration may explain why Giordani and Söderlind are 

unable to provide an interpretation for the aggregate density forecast and may also 

underlie their acknowledgement that the expression in (11) may be problematic. In 

contrast, the finite mixture distribution proposed by Wallis provides an appropriate 

representation for combining the individual densities of the SPF respondents. Moreover, 

as Wallis notes, the sample average notation on the right-hand side of (4) is statistically 

more accurate than the use of E and Var on the right-hand side of (11). 

 The second issue is empirical in nature and relates to fitting distributions to the 

individual density forecasts. Specifically, an examination of the histograms reveals that 

respondents typically assign probabilities to only a few bins. As we discuss in greater 

detail in Appendix B, this concentration of probabilities raises concerns about the 

feasibility and reliability of estimating means and standard deviations based on fitted 

normal distributions.13 While our approach also involves estimating moments of a 

                                                           
13 The ability to fit a unique normal distribution to a histogram is only possible when a respondent uses 
three or more bins. The relevance of this condition is not trivial for the SPF inflation data, especially as the 
forecast horizon declines. Engleberg, Manski and Williams (2006) and D’Amico and Orphanides (2006) 
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distribution, we are much more comfortable working with aggregate histograms due to 

the greater diffusion of predictive probabilities. Moreover, we feel that the assumption 

concerning the location of probability mass in (10) is less tenuous than the maintenance 

of a particular distributional assumption.14 

 With regard to the entropy-based measures of disagreement and uncertainty, they 

are less formal than the Wallis-based measures. However, the entropy approach has the 

advantage of not requiring any assumption for the location of probability mass for the 

density forecasts and thereby circumvents concerns related to the accuracy of 

approximations to the underlying distributions. Moreover, our entropy-based measure of 

average uncertainty are derived using data on the individual density forecasts and 

therefore afford some comparability to the constructs in Zarnowitz and Lambros (1987) 

as well as Giordani and Söderlind (2003). 

3. Empirical Framework 

 The previous discussion focused on the construction of measures of expected 

inflation, disagreement and uncertainty. We now turn our attention to evaluating the 

economic and statistical significance of the various relationships of interest. Specifically, 

we will consider the following model to gauge whether disagreement is a symptom of 

uncertainty: 

 2 2sσ α β ε= + +  (12) 

                                                                                                                                                                             
also question the appropriateness of using a normal distribution to approximate each repondent’s 
probabilistic beliefs. Consequently, they consider alternative distribution fitting methods. 
14 Giordani and Söderlind cite the ‘visual’ normality of the aggregate density forecasts to motivate their 
approach. We will also discuss the issue of fitting normal distributions to the SPF histograms at the 
aggregate level in Appendix B. It is worth noting here, however, that we will report formal statistical tests 
that overwhelmingly reject the normality assumption for the aggregate density forecasts. 
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where 2σ  is average uncertainty, 2s  is the degree of disagreement among forecasts, and 

ε  is a mean-zero, random disturbance term. We will consider both data approaches in the 

course of estimating (12), although we will maintain a consistency across the measures of 

average uncertainty and disagreement. That is, we will examine the relationship between 

2
( )φ πσ  and 2

ef
s  as well as the relationship between 2

Hσ  and 2
Hs .15 

 With regard to analyzing the contribution of expected inflation to movements in 

uncertainty and disagreement, we differentiate between the use of the density forecast 

data and the point forecast data.16 However, we allow for differences in the construction 

of the measures within each of the relationships we examine. Specifically, we adopt the 

following model to investigate the linkage between expected inflation and uncertainty: 

 2 ( )eσ α βφ π ε= + +  (13) 

where we consider both 2
( )φ πσ  and 2

Hσ  as measures of inflation uncertainty, and where 

( )eφ π  again denotes the mean of the aggregate density forecast. 

 In the case of the linkage between expected inflation and disagreement, we adopt 

the following model: 

 2 es fα β ε= + +  (14) 

where we consider both 2
ef

s  and 2
Hs  as measures of disagreement, and where ef  again 

denotes the mean of the point forecasts. 

                                                           
15 With the exception of using variances rather than standard deviations, equation (12) is identical to the 
model used in Zarnowitz and Lambros. This similarity also includes the use of the density forecast data to 
construct the uncertainty measure and the use of the point forecast data to construct the disagreement 
measure. These selected measures are the appropriate choice to assess the validity of using measures of 
disagreement across point forecasts as a proxy for uncertainty.     
16 Zarnowitz and Lambros adopted this same approach. 
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 While we have touched on differences between the analyses of Zarnowitz and 

Lambros (1987) and Giordani and Söderlind (2003), it is worth noting these studies share 

one important feature. Specifically, they almost exclusively base their analysis on data for 

a single horizon or for individual horizons. We will argue, however, that the nature of the 

data lends itself to applying the method of seemingly unrelated regression (SUR). 

 As previously discussed, the forecasting horizon for the SPF inflation data is not 

constant and instead declines from the fourth quarter of year t through the third quarter of 

year t+1. Because of the variation in forecast horizons, it is more reasonable to treat the 

data as annual observations on four different series than as quarterly observations on a 

homogenous series. By itself, this consideration would suggest estimation of the 

following regression equations across the individual horizons: 

 , , , , 4,3, 2,1h t h h h t h tY X hα β ε= + + =  (15) 

where ,h tY and ,h tX denote, respectively, the relevant independent and dependent variables 

specified in (12), (13) and (14), and where we allow the intercept and slope coefficients 

to vary across forecast horizons. 

 While the different forecast horizons argue for separate equations for the data, it 

does not seem reasonable to view the equations as completely unrelated due to their 

sharing a common inflation target over four contiguous quarters. This feature of the 

survey suggests that the corresponding error terms ( )4, 3, 1 2, 1 1, 1, , ,t t t tε ε ε ε+ + +⎡ ⎤⎣ ⎦  are likely 

correlated with each other. If this is the case, then it is possible to exploit the correlation 

structure of the error terms and apply the generalized-least squares estimators proposed 
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by Zellner (1962) to generate more efficient parameter estimates than those obtained by 

the application of ordinary least squares (OLS) to each equation individually.17 

 Our seemingly unrelated regression (SUR) estimation strategy is standard except 

for one minor modification. Specifically, we group the equations based on their affiliation 

with the forecast horizon and target rate of inflation. In particular, we stack the four time 

series regressions as follows: 
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1, 1 1 1, 1,
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M M

 (16) 

where we order the equations from horizon h=1 to horizon h=4.18 We will follow 

convention with regard to the structure of the variance-covariance matrix Ω . 

Specifically, we assume the disturbance term in any single equation is conditionally 

homoscedastic and non-autocorrelated, although allowance is made for the data to be 

conditionally heteroskedastic across equations. These assumptions imply the following 

correlation pattern for the errors: 
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+

+

= =
= ≠ =
=

 (17) 

Consequently, our estimate of Ω  will have the following form: 

                                                           
17 It should also be noted that the explanatory variables will not be identical across the different forecast 
horizons. If this condition did not hold, then no gains in efficiency could be realized from the SUR 
estimator over the OLS estimator. 



19 

 

1 12 14

21 2 24

41 42 4

Q R R
R Q R

R R Q

⎡ ⎤
⎢ ⎥
⎢ ⎥Ω =
⎢ ⎥
⎢ ⎥
⎣ ⎦

L

L

M M O M

L

 (18) 

where 
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and 
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 Following Breusch and Pagan (1980), we can construct the following Lagrange 

multiplier test to formally test for non-zero correlations between the disturbance terms in 

the four equations: 

 
1

2

1 1

i i

mn
m n

Tλ ρ
−

= =

= ∑∑  (22) 

where mnρ  is the estimated correlation between the OLS residuals of the i=4 equations 

and T is the number of observations in each equation. The tests statistic is distributed 

asymptotically as a chi-square random variable with i(i-1)/2 degrees of freedom under the 

null hypothesis of zero correlation between the disturbance terms.19 

                                                                                                                                                                             
18 We assume the number of observations on each equation is the same, which accounts for the slight 
difference in the time subscripts for the data associated with horizons h=1, 2, 3 (t=2, . . . , T) and horizon 
h=4 (t=1, . . . , T-1). 
19 The assumptions underlying the specification of Ω are broadly consistent with the data. Our decision not 
to incorporate additional own- and cross-covariance processes was based on further inspection of the OLS 
residuals as well as degrees of freedom considerations. 
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4. Empirical Results 

A. Measures of Expected Inflation, Disagreement and Uncertainty 

 There is one additional feature of the SPF inflation data that merits special 

attention. Specifically, there have been periodic changes in the number of intervals and 

their widths in the SPF’s survey instrument. As shown in Table 1, the survey initially 

provided 15 intervals. From 1981:Q3-1991:Q4, however, the number of intervals was 

reduced to 6. Since 1992:Q1, there have been 10 intervals. The interval widths also 

varied from 1 percentage point before 1981:Q3 and after 1991:Q4 to 2 percentage points 

in the intervening period. 

 The presence of varying interval widths poses a particular concern because it will 

impact on some of our summary measures and their movements across sub-periods. 

Therefore, we redefine the intervals to impose a common 2 percentage point width 

throughout the whole sample period.20 To understand the importance of this 

consideration, the upper and lower panels of Figure 1 depict, respectively, the entropy of 

the aggregate density forecast distribution and the entropy of the aggregate point forecast 

distribution using both the raw and adjusted data.21 The profiles for the entropy differ 

markedly before 1981:Q3 and after 1991:Q4, especially in the case of the aggregate 

density forecast distribution. Thus, the use of the raw data would result in an artificial 

increase in the entropy during the sub-periods associated with the narrower interval 

widths. 

                                                           
20 Due to the odd number of intervals used over the sub-period 1968:Q4-1981:Q2, we use a unit interval 
length for the middle interval. As an alternative to imposing a common 2% width, one might think about 
redefining the intervals from 1981:Q3-1991:Q4 to have a unit interval width. We found this adjustment 
procedure to be much less satisfactory due to the difficulty of determining how to allocate the probabilities 
across the subdivided intervals. 



21 

 As shown in Figure 2, the changes in interval widths also affect the profile for the 

estimated variance of the aggregate density forecast distribution used for the Wallis 

decomposition.22 Specifically, while the estimates of the variance are generally higher 

during the 1980s, the use of the adjusted data partly reduces the differential during the 

pre-1981:Q3 and post-1991:Q4 sub-periods. Consequently, the use of the raw data would 

lead to lower estimates of inflation uncertainty during the pre-1981:Q3 and post-1991:Q4 

sub-periods. 

 Figures 3-5 present the time profiles for the measures of disagreement, 

uncertainty and expected inflation used in the empirical analysis. As shown in Figure 3, 

the behavior of the two disagreement measures is qualitatively similar and indicates a 

greater diversity of opinion about expected inflation during the earlier part of the sample 

period. The entropy-based measure 2( )Hs  displays slightly more variability, although the 

cross-sectional variance of the point forecast 2( )ef
s is characterized by occasional spikes 

in disagreement. The sawtooth pattern evident in both measures speaks to the greater 

unanimity across point forecasts as the forecast horizon shrinks.  

 In contrast to the measures of disagreement, there is a marked difference in the 

features of the average uncertainty measures across the two data approaches. In 

particular, the Wallis-based measures are generally higher and more variable than the 

entropy-based measure.23 Nevertheless, both measures depict a decline in inflation 

                                                                                                                                                                             
21 The missing observations in Figure 1 (as well as in subsequent figures) reflect the excluded survey dates 
discussed in Section 2.C. We only display one series during the middle period due to the coincidence of the 
raw and adjusted data. 
22 The impact of the changes in interval widths on the estimated mean of the aggregate density forecast 
distribution turns out to be negligible. The measure of disagreement using the point forecast data is not 
affected by changes in interval width.  
23 The Wallis-based measure of uncertainty is about twice as high on average with a standard deviation that 
is more that twice that for the entropy-based measure. 
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uncertainty starting around 1990. As expected, they also tend to reflect a greater 

dispersion of intrapersonal probabilistic beliefs as the forecast horizon increases,  

although there is a surprising slight decline at the h=4 quarter horizon. Comparing the 

average levels of disagreement and uncertainty across the same data approach, 

disagreement understates uncertainty to a considerable extent. Specifically, the 

uncertainty measure is larger by a factor of five using the Wallis approach and is nearly 

twice as large using the entropy approach. While uncertainty displays greater variability 

than disagreement for the Wallis-based measures, the opposite is true for the entropy-

based measures. 

 When we examine the measures of expected inflation in Figure 5, however, we 

observe that the series display a high degree of conformity and are practically 

indistinguishable from each other. The two inflation expectations series display the same 

pronounced rise and subsequent decline as actual inflation during the course of the 

sample period.  

B. Estimated Relationships 

 The sample covers the surveys conducted from 1968:Q4 through 2003:Q3, so that 

the values on the realized annual rate of inflation cover the periods 1968-69 through 

2002-2003. We begin by examining correlations and goodness-of-fit measures from OLS 

estimation of equations (12)–(14) reported, respectively, in Tables 2-4.24 Because we will 

subsequently address the issue of estimation efficiency, we defer for the moment from 

any discussion of statistical significance and instead focus our initial attention on the 

economic significance of the relationships. 
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 As shown, the variables display a positive association across all of the 

relationships. With regard to any systematic pattern to the correlations, they do not 

behave in a monotonic fashion as the forecast horizon increases. Rather, the correlations 

tend to be highest at the h = 2 and 3 quarter horizons. There are, however, several other 

notable findings that that emerge from the analysis. 

 One is immediately struck by the extremely low explanatory content of 

disagreement for movements in average uncertainty when disagreement is measured by 

the variance of the point forecasts. With the exception of the regression associated with 

the h=3 quarter horizon in the upper panel of Table 2, disagreement accounts for less than 

10 percent of the variation in uncertainty.25 The results are qualitatively similar when we 

turn to the linkage between expected inflation and the Wallis-based measure of 

uncertainty in the upper panel of Table 3. The lack of any meaningful co-movement 

between the variables suggests the issue of the statistical significance of these 

relationships is largely irrelevant for the remaining analysis. 

 Equally striking, however, is the marked increase in the strength of these same 

relationships when the entropy-based measures of disagreement and uncertainty are used 

in the regressions. For example, the correlations exceed 0.6 at the h=2 and 3 quarter 

horizons in the lower panel in Table 2 and Table 3, with the other correlations of 

moderate size. Last, an examination of Table 4 indicates the relationship between 

disagreement and expected inflation is much more robust to the construct of the measure 

of forecast dispersion. While the correlations indicate a somewhat weak relationship at 

                                                                                                                                                                             
24 We recognize there is little difference in the information conveyed by the reported correlations and the 

2R ’s, as the latter simply involves squaring the former and adjusting for degrees of freedom. Nevertheless, 
we report both statistics to allow for a basis of comparison to the results of other studies.  
25 Recall that Söderlind and Giordani focus their analysis on the data for the h=3 quarter horizon. 
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the h=1 quarter horizon, the other horizons display reasonably strong correlations that are 

comparable to those associated with the entropy–based measures in Tables 2 and 3. 

 To address the issue of statistical significance in the relationships, we initially 

applied the Breusch-Pagan (1980) testing procedure to the OLS residuals within each 

system of four equations. As shown by the values of the test statistic reported in the last 

column of Tables 2-4, there is significant correlation between the equations’ disturbance 

terms associated with the same inflation target. The one exception is the relationship 

between disagreement and expected inflation using the variance of the point forecasts to 

measure dispersion. Consequently, we retain the method of OLS for estimation in this 

case. In all other cases, we will estimate the relationships using the method of SUR. 

 Tables 5-7 report the estimates of the parameters and the corresponding standard 

errors.26 Because the definition of an 2R  statistic is not obvious in the case of SUR 

estimation, we do not attempt to report any type of goodness-of-fit statistic. Moreover, 

because most researchers typically posit a positive relationship between the variables, we 

conduct a one-tailed test for statistical significance. The conclusions, however, generally 

will not depend on the choice of a one- versus two-tailed test for statistical significance. 

 As shown, the findings typically document a statistically significant positive 

association between the variables in the relationships. Not surprisingly, the qualitative 

features of the results parallel those from the previous analysis in terms of forecast 

horizon and data construct. That is, the statistical significance of the relationships 

between disagreement and uncertainty as well as between expected inflation and 

uncertainty is less robust using the Wallis-based measures than the entropy-based 

                                                           
26 There are an unequal number of observations across the equations. However, we ignored this difference 
and calculated the own- and cross-covariances using all available observations.  
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measures. Moreover, the relationship between disagreement and expected inflation 

remains highly statistically significant across both data constructs. 

 Taken together, there are several conclusions that can be drawn from the reported 

results in Tables 2-7. There is mixed support for the propositions that greater 

disagreement is indicative of heightened uncertainty and that higher expected inflation is 

accompanied by increased uncertainty. The lack of robustness of these results likely 

stems from the greater variability of the Wallis-based measure of uncertainty relative to 

the entropy-based measure of uncertainty (as well as the corresponding measures of 

disagreement). In light of the conflicting evidence, it is natural to ask if one set of results 

might be viewed as more persuasive. The answer to this question would be guided by 

selecting the approach that provides the better approximation to the measures of interest. 

Because we see advantages and disadvantages to each approach that are roughly equal on 

balance, we are unable to offer any resolution to this matter at present. 

 While we cannot resolve the disparity in the results, we can still comment on the 

results associated with a particular data approach. In this regard, the estimated 

relationship between disagreement and inflation uncertainty using the Wallis-based 

measures has particular relevance. This is because almost all empirical studies using 

disagreement as a proxy for uncertainty have measured disagreement by the variance (or 

standard deviation) of point forecasts. We find, however, that among all of the estimated 

relationships, the association between this measure of disagreement and inflation 

uncertainty is the weakest in terms of economic and statistical significance.27 

                                                           
27 As discussed in Section 2.B, the results for the disagreement-inflation uncertainty and disagreement-
expected inflation relationships using the Wallis-based measures are slightly weaker if we adopt the 
uniform assumption for the location of the probability mass within intervals. Thus, these results are being 
presented in a more favorable light.   
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Thus, there appears to be little justification for this conventional measure of disagreement 

to serve as a proxy for uncertainty. 

 The estimated relationship between disagreement and uncertainty using the 

Wallis-based measures also allows for a reasonable basis of comparison to the results of 

Zarnowitz and Lambros (1987) and Giordani and Söderlind (2003). Our findings are 

closer to those reported by Zarnowitz and Lambros and contrast sharply with the 

conclusions of Giordani and Söderlind. With regard to the latter study, their results likely 

differ because of a smoother measure of uncertainty due to the use of normal 

approximation methods as well as a measure of disagreement that pertains to the density 

forecast data. As noted in the text and Appendices, we have discussed various concerns 

about the logic and statistical basis of their methodology. 

 On the other hand, the evidence is much less ambiguous and quite favorable about 

a positive co-movement between disagreement and expected inflation. When we restrict 

our attention to the Wallis-based measures to allow for a basis of comparison to 

Zarnowitz and Lambros, our findings are much stronger in terms of economic and 

statistical significance. This may be a consequence of the longer sample period used in 

our analysis. It is also interesting to note that, of the three relationships examined in the 

paper, the linkage between disagreement and expected inflation has received the least 

attention on the part of researchers.  

V. Conclusion 

 Our study uses matched point and density forecasts of inflation from the Survey 

of Professional Forecasters to revisit questions concerning the co-movement between 

aggregate expected inflation, the degree of disagreement among individual inflation 
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forecasts, and the level of average inflation uncertainty. We attempt to improve upon 

previous studies in terms of the construction of the measures used for the empirical 

analysis as well as the statistical methods used to assess the nature of the relationships. 

As such, we derive measures of disagreement and uncertainty by using a statistical 

framework recently proposed by Wallis (2004, 2005) as well as by drawing upon the 

concept of entropy from the more established literature on information theory. We also 

adopt a seemingly unrelated regression framework to exploit efficiency gains that are 

afforded by the recurrent declining forecast horizon of the SPF inflation data. 

 The variables generally display a statistically significant association, although this 

feature varies somewhat across the particular relationships. Specifically, the incidence 

and level of statistical significance is highest for the linkage between disagreement and 

expected inflation, and somewhat lower for the other relationships. In terms of economic 

significance, however, we obtain markedly different results across the relationships and 

data constructs. We document that movements in disagreement and expected inflation 

display reasonably strong positive correlations, and would contend that an adequate 

model of expectations formation must be able to account for this co-movement. 

 On the other hand, the evidence of a meaningful relationship between 

disagreement and uncertainty as well as between expected inflation and uncertainty 

essentially disappears when we switch from the entropy-based measures of uncertainty 

and disagreement to the Wallis-based measures. The lack of robustness of these results 

leads us to conclude that the relevance of one of the posited channels of effect of 

expected inflation on real activity remains an open question. The same holds true 

concerning the validity of using disagreement as a proxy for uncertainty. With respect to 



28 

the last point, we are especially cautious about the conclusions of empirical studies that 

have used conventional forecast dispersion measures to proxy inflation uncertainty.
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Appendix 

A. Additional Data Considerations 

 The analysis takes into account changes in the price index used to define inflation 

in the survey. Specifically, the survey originally asked about inflation based on the GNP 

deflator (1968:Q4-1991:Q4), and then asked about inflation based on the GDP deflator 

(1992:Q1-1995:Q4). Presently, the survey asks about inflation as measured by the chain-

weighted GDP index. We also account for periodic changes in the base year of the 

relevant price indexes. 

 To construct the point forecasts of inflation, we followed the formulas in 

equations (7)-(8) and combined the respondent’s predictions with values of the ‘actual’ 

price index from the real-time macroeconomic data set collected by the Federal Reserve 

Bank of Philadelphia. The availability and use of the vintage data sets allows us the 

constructed inflation forecast to correspond to the same value that would have been 

computed at the time of the survey. 

 Last, we found it necessary to exclude some individual responses either due to our 

inability to generate matching point and density forecasts or due to discrepancies in the 

point and density forecasts that were judged to be excessive. Our sample initially covered 

5547 respondents. However, 278 responses were excluded because they corresponded to 

‘bad’ survey dates. We then excluded 436 responses because the individuals did not 

provide density forecasts, while an additional 79 responses were excluded because the 

probabilities assigned to the bins did not sum to unity. An additional 301 responses were 

excluded because individuals did not provide point forecasts. Finally, we wanted to try 

and safeguard against situations in which a respondent’s point forecast and density 



31 

forecast were at odds with each other. To do so, we applied the midpoint formula to the 

individual density forecasts to construct a forecasted mean of inflation. We then 

compared the mean of the density forecast to the corresponding point forecast and 

excluded those responses for which the differential (in absolute value) exceeded 1.5 

percent. This resulted in an additional 226 responses being dropped from the survey. This 

left a total of 4,227 responses that were used for the analysis. 

B. Fitting Normal Distributions to the SPF Histograms 

 This Appendix summarizes our findings regarding the appropriateness of fitting 

normal distributions to the SPF histograms at both the individual level as well as at the 

aggregate level.28 While we recognize that Giordani and Söderlind fit normal 

distributions to individual histograms and also recognize that the use of a normal 

approximation to the individual histograms does not carry any implications for the 

distribution of a combination of the density forecasts, we are interested in exploring this 

issue at the aggregate level for two reasons. First, Giordani and Söderlind appeal to the 

‘normal appearance’ of the aggregate density forecasts to motivate their approach. 

Second, it would be relatively straightforward to incorporate this approach within the 

statistical framework of Wallis. Specifically, one could fit a normal distribution to the 

aggregate density forecasts and use the resulting estimate of the variance in equation (9) 

(along with the cross-sectional variance of the point forecasts) to derive an alternative 

average uncertainty series. 

 If we initially consider normal approximations to the aggregate density forecasts, 

then two interesting results emerge. First, statistical evidence overwhelmingly rejects the 

                                                           
28 The mean and variance are estimated by minimizing the sum of the squared differences between the 
survey probabilities and the probabilities for the same intervals implied by the normal distribution. 
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assumption of normality for the aggregate probability distributions for inflation. While 

the distributions are characterized by occasional episodes of skewness (19 out of 133 

distributions), the deviation from normality is principally due to the distributions being 

leptokurtic (68 out of 133 distributions).29 That is, the distributions have higher peaks and 

fatter tails than those of a normal. These findings are consistent with those previously 

reported in Lahiri and Teigland (1987). 

 Second, the estimated moments of a distribution using the normal approximation 

can differ markedly from those based on other approaches. The upper panel of Figure 6 

compares estimates of the variance of the aggregate density forecasts using a normal 

approximation to those derived under the assumption that the probability mass is at the 

midpoint of an interval. As shown, the variance estimates from the fitted normal 

distribution are consistently lower, much less variable, and occasionally move in an 

opposite direction. Not surprisingly, these disparate features carry over when we apply 

the Wallis decomposition and subtract the corresponding measure of disagreement 

2( )ef
s from the estimated variance series. There is, however, another concern that now 

emerges from this undertaking. As shown in the lower panel of Figure 6, the Wallis-

based measures of uncertainty using the normal approximation are actually negative in 

1980:Q1 and 1985:Q4. 

 When we examine the individual density forecasts, the idea of fitting normal 

distributions to the data becomes even more problematic. One concern is that the choice 

of a normal distribution is hard to justify given that few respondents place positive 

probabilities on the two tail intervals, suggesting that some sort of truncated distribution 

                                                           
29 These calculations are based on a 5% significance level for the tests of skewness and kurtosis under the 
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would be a more appropriate choice. Another concern is that most respondents do not 

assign probabilities to more than a couple of bins. For example, 21% of the respondents 

assign non-zero probabilities to 2 bins or less which precludes us from fitting a unique 

normal distribution. 

 The previous findings relate to the individual histograms using the raw data. 

When we impose a common 2% interval width, this consideration only exacerbates the 

problems encountered by this method. In particular, if we were to try to fit a normal 

distribution to the 4,227 responses described in Appendix A, then there would be 2,083 

responses that assign non-zero probabilities to 2 bins or less. Compared to our Wallis-

based and entropy-based measures of disagreement and uncertainty, the adoption of 

Giordani and Söderlind’s methodology would require us to exclude almost half of the 

respondents from the analysis. 

 Taken together, the evidence suggests to us that fitting appropriate distributions to 

histograms, at either the individual or aggregate levels, is not as straightforward as may 

be assumed on the part of researchers. 

                                                                                                                                                                             
assumption that the aggregate density forecast distributions are normally distributed.  
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Table 1 

Intervals for Density Forecasts of Inflation 
 

Period 
1968:Q4- 
1973:Q1 

1973:Q2- 
1974:Q3 

1974:Q4- 
1981:Q2 

1981:Q3- 
1985:Q1 

1985:Q2- 
1991:Q4 

1992:Q1- 
Present 

Intervals ≥ 10% ≥ 12% ≥ 16% ≥ 12% ≥ 10% ≥ 8% 

  +9% to +9.9% +11% to +11.9% +15% to +15.9% +10% to +11.9% +8% to +9.9% +7% to +7.9% 

  +8% to +8.9% +10% to +10.9% +14% to +14.9% +8% to +9.9% +6% to +7.9% +6% to +6.9% 

  +7% to +7.9% +9% to +9.9% +13% to +13.9% +6% to +7.9% +4% to +5.9% +5% to +5.9% 

  +6% to +6.9% +8% to +8.9% +12% to +12.9% +4% to +5.9% +2% to +3.9% +4 to +4.9% 

  +5% to +5.9% +7% to +7.9% +11% to +11.9% < +4% < +2% +3% to +3.9% 

  +4% to +4.9% +6% to +6.9% +10% to +10.9%     +2% to +2.9% 

  +3% to +3.9% +5% to +5.9% +9% to +9.9%     +1% to +1.9% 

  +2% to +2.9% +4% to +4.9% +8% to +8.9%     0 to +0.9% 

  +1% to +1.9% +3% to +3.9% +7% to +7.9%     < 0 

  0% to +0.9% +2% to +2.9% +6% to +6.9%       

  -1% to -0.1% +1% to +1.9% +5% to +5.9%       

  -2% to -1.1% 0 to +0.9% +4% to +4.9%       

  -3% to -2.1% -1% to -0.1% +3% to +3.9%       

  < -3% < -1% < +3%       
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Table 2 
 

2 2
( ) ef

sφ πσ α β ε= + +  
 
 

Correlations 

 
Breusch-

Pagan 
 
Horizon/Quarter 

 
Observations 

 
Estimator 

 
r  

 
2R  

 
λ=55.750** 

h=1/Q3 33 OLS 0.318 0.073  
h=2/Q2 34 OLS 0.107 -0.018  
h=3/Q1 33 OLS 0.398 0.134  
h=4/Q4 33 OLS 0.216 0.023  

 
 

 
2 2
H Hsσ α β ε= + +  

 
 

Correlations 

 
Breusch-

Pagan 
 
Horizon/Quarter 

 
Observations 

 
Estimator 

 
r  

 
2R  

 
λ=23.740** 

h=1/Q3 33 OLS 0.504 0.287  
h=2/Q2 34 OLS 0.824 0.679  
h=3/Q1 33 OLS 0.731 0.554  
h=4/Q4 33 OLS 0.341 0.109  

Note: Breusch-Pagan test is distributed asymptotically as a χ2(6) random variable. 
** Significant at 1% level 
* Significant at 5% level 
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Table 3 
 

2
( ) ( )e

φ πσ γ δφ π ε= + +  
 
 

Correlations 

 
Breusch-

Pagan 
 

Horizon/Quarter 
 

Observations 
 

Estimator 
 
r  

 
2R  

 
λ=47.433** 

h=1/Q3 33 OLS 0.216 0.021  
h=2/Q2 34 OLS 0.273 0.053  
h=3/Q1 33 OLS 0.497 0.227  
h=4/Q4 33 OLS 0.260 0.075  

 
 

 
2 ( )e
Hσ γ δφ π ε= + +  

 
 

Correlations 

 
Breusch-

Pagan 
 

Horizon/Quarter 
 

Observations 
 

Estimator 
 
r  

 
2R  

 
λ=54.828** 

h=1/Q3 33 OLS 0.486 0.239  
h=2/Q2 34 OLS 0.621 0.406  
h=3/Q1 33 OLS 0.656 0.421  
h=4/Q4 33 OLS 0.426 0.255  

Note: Breusch-Pagan test is distributed asymptotically as a χ2(6) random variable. 
** Significant at 1% level 
* Significant at 5% level  
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Table 4 
 

2
e

e
f

s fα β ε= + +  
 

 
Correlations 

 
Breusch-
Pagan 

 
Horizon/Quarter 

 
Observations 

 
Estimator 

 
r  

 
2R  

 
λ=4.211 

h=1/Q3 33 OLS 0.374 0.130  
h=2/Q2 34 OLS 0.690 0.514  
h=3/Q1 33 OLS 0.591 0.331  
h=4/Q4 33 OLS 0.601 0.526  

 
 

2 e
Hs fα β ε= + +  

 
 

Correlations 

 
Breusch-

Pagan 
 

Horizon/Quarter 
 

Observations 
 

Estimator 
 
r  

 
2R  

 
λ=14.678* 

h=1/Q3 33 OLS 0.394 0.149  
h=2/Q2 34 OLS 0.633 0.428  
h=3/Q1 33 OLS 0.589 0.329  
h=4/Q4 33 OLS 0.427 0.250  

Note: Breusch-Pagan test is distributed asymptotically as a χ2(6) random variable. 
** Significant at 1% level 
* Significant at 5% level  
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Table 5 
 

2 2
( ) ef

sφ πσ α β ε= + +  
 
 

Regression Estimates 

 
 

 
Horizon/Quarter 

 
Observations 

 
Estimator 

 
α  

 
β  

 
 

 
h=1/Q3 

 
33 

 
SUR 

0.851** 
(0.057) 

1.97** 
(0.554) 

 

 
h=2/Q2 

 
34 

 
SUR 

1.05** 
(0.089) 

0.235 
(0.514) 

 

 
h=3/Q1 

 
33 

 
SUR 

1.120** 
(0.080) 

0.390* 
(0.171) 

 

 
h=4/Q4 

 
33 

 
SUR 

1.154** 
(0.093) 

0.121 
(0.217) 

 

 
 

 
2 2
H Hsσ α β ε= + +  

 
 

Regression Estimates 

 

 
Horizon/Quarter 

 
Observations 

 
Estimator 

 
α  

 
β  

 
 

 
h=1/Q3 

 
33 

 
SUR 

0.493** 
(0.025) 

0.365** 
(0.098) 

 

 
h=2/Q2 

 
34 

 
SUR 

0.532** 
(0.018) 

0.377** 
(0.050) 

 

 
h=3/Q1 

 
33 

 
SUR 

0.596** 
(0.025) 

0.272** 
(0.047) 

 

 
h=4/Q4 

 
33 

 
SUR 

0.654** 
(0.037) 

0.129* 
(0.070) 

 

Note: One-tailed test for statistical significance of β 
0 1: 0, : 0h hH Hβ β= >  

** Significant at 1% level 
* Significant at 5% level  
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Table 6 
 

2
( ) ( )e

φ πσ γ δφ π ε= + +  
 
 

Regression Estimates 

 

 
Horizon/Quarter 

 
Observations 

 
Estimator 

 
α  

 
β  

 

 
h=1/Q3 

 
33 

 
SUR 

0.776** 
(0.111) 

0.037 
(0.022) 

 

 
h=2/Q2 

 
34 

 
SUR 

0.837** 
(0.138) 

0.055* 
(0.028) 

 

 
h=3/Q1 

 
33 

 
SUR 

0.870** 
(0.122) 

0.081** 
(0.023) 

 

 
h=4/Q4 

 
33 

 
SUR 

0.945** 
(0.134) 

0.058* 
(0.029) 

 

 
 

2 ( )e
Hσ γ δφ π ε= + +  

 
 

Regression Estimates 

 

 
Horizon/Quarter 

 
Observations 

 
Estimator 

 
α  

 
β  

 

 
h=1/Q3 

 
33 

 
SUR 

0.417** 
(0.044) 

0.032** 
(0.009) 

 

 
h=2/Q2 

 
34 

 
SUR 

0.440** 
(0.042) 

0.043** 
(0.008) 

 

 
h=3/Q1 

 
33 

 
SUR 

0.553** 
(0.036) 

0.038** 
(0.006) 

 

 
h=4/Q4 

 
33 

 
SUR 

0.548** 
(0.044) 

0.041** 
(0.009) 

 

Note: One-tailed test for statistical significance of β 
0 1: 0, : 0h hH Hβ β= >  

* Significant at 5% level 
** Significant at 1% level 
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Table 7 
 

2
e

e
f

s fα β ε= + +  
 
 

Regression Estimates 

 

 
Horizon/Quarter 

 
Observations 

 
Estimator 

 
α  

 
β  

 

 
h=1/Q3 

 
33 

 
OLS 

-0.002 
(0.022) 

0.011** 
(0.004) 

 

 
h=2/Q2 

 
34 

 
OLS 

0.000 
(0.021) 

0.027** 
(0.004) 

 

 
h=3/Q1 

 
33 

 
OLS 

-0.022 
(0.089) 

0.075** 
(0.018) 

 

 
h=4/Q4 

 
33 

 
OLS 

-0.042 
(0.068) 

0.095** 
(0.015) 

 

 
 

2 e
Hs fα β ε= + +  

 
 

Regression Estimates 

 
 

 
Horizon/Quarter 

 
Observations 

 
Estimator 

 
α  

 
β  

 

 
h=1/Q3 

 
33 

 
SUR 

-0.015 
(0.065) 

0.037** 
(0.013) 

 

 
h=2/Q2 

 
34 

 
SUR 

-0.073 
(0.068) 

0.075** 
(0.014) 

 

 
h=3/Q1 

 
33 

 
SUR 

0.111 
(0.085) 

0.073** 
(0.017) 

 

 
h=4/Q4 

 
33 

 
SUR 

0.103 
(0.098) 

0.084** 
(0.022) 

 
 

Note: One-tailed test for statistical significance of β 
0 1: 0, : 0h hH Hβ β= >  

* Significant at 5% level 
** Significant at 1% level 
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Entropy of Aggregate Density Forecast Distribution
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Figure 1: 
Effects of Changing Interval Widths 
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Estimated Variance of Aggregated Density Forecast Distribution: Midpoint
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Figure 2: 
Effects of Changing Interval Widths 
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Entropy of Point Forecast Distribution
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Figure 3: 
Measures of Disagreement 
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Entropy-Based Measure of Uncertainty
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Figure 4: 
Measures of Average Uncertainty 
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Figure 5: 
Measures of Expected Inflation 



 46

Comparison of Estimated Variances of Aggregate Density Forecast Distribution
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Figure 6: 
Results from Fitted Distributions 


