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Abstract: We assess the empirical relevance of forward-looking behavior in a standard New-
Keynesian model of the macroeconomy. We find that forward-looking behavior explains a small 
fraction of the variation in this model. The portion of movements in inflation, consumption, and 
investment attributable to movements in the expected present-discounted value of their 
respective driving processes is small. Only the dynamics for the real wage depend significantly on 
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Purpose of the paper 

We provide an empirical assessment of the dynamic 

stochastic general equilibrium model featured in Christiano, 

Eichenbaum, and Evans (2005). This model has been shown to 

successfully replicate the dynamic response of nominal and real 

quantities to monetary policy shocks and to productivity shocks 

(see Christiano, Eichenbaum, and Evans, 2005, and Altig, 

Christiano, Eichenbaum, and Linde, 2004). It is still an open 

question, though, whether the model is a good approximation to 

the data from a more general standpoint. Del Negro, Schorfheide, 

Smets, and Wouters (2004) argue that, while misspecified, the 

model is a useful tool for quantitative analysis at the 

policymaking stage. [...]  

In this paper, we consider a test of the model that focuses 

on its forward-looking features. These features play a prominent 

role in the model’s structural equations. Essentially, 

expectations of current and future interest rates affect current 

aggregate demand, and expectations of current and future activity 

affect current inflation and wages. This intertemporal 

specification generates present-value relationships for key 

macroeconomic variables such as inflation, the real wage, 

consumption, and investment. These relationships can be thought 

of taking the form: 
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where y  is the structural variable (i.e., inflation, the real 

wage, consumption, or investment), x is a driving process, and 

tE  denotes expectations as of time t. The error term ε  denotes 

some form of misspecification in the relationship or a shock to 
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y  not embedded in the driving process.1 The lagged value for y  

captures the inertial response of the structural variables to 

shocks observed in empirical vector autoregression (VAR) studies. 

The inertial response of consumption is usually attributed to 

habits in consumption expenditures, while the inertial response 

of inflation, the real wage, and investment is largely motivated 

on empirical grounds by adjustment costs and/or by some form of 

deviations from an optimizing behavior. The parameters γ ,λ , and 

ζ  are model structural parameters. In short, ζ  plays the role of 

a discount factor, γ  governs the degree of “backwardness” in 

spending and pricing decisions, and λ  is the elasticity with 

which the structural variable responds to present discounted 

movements in the driving process.  

When equation (1) is interpreted as a relationship for 

inflation, the equation says that inflation is a function of past 

inflation and of the present discounted value of current and 

future real marginal costs. When the structural variable is the 

real wage, equation (1) relates the real wage to its value in the 

previous period and to the present discounted value of the 

expected marginal rate of substitution between consumption and 

leisure. For consumption, the equation implies that the expected 

change in next period consumption is a function of the current 

change in consumption and of the present discounted value of a 

stream of real interest rates. Finally, when the structural 

variable is investment, equation (1) says that investment depends 

                                                           
1 For example, in the present-value relationship for consumption, ε  can 
be interpreted as a shock to tastes (a preference shifter that affects 
the marginal utility of consumption vis-à-vis labor) or as a shock to 
intertemporal preferences (a shock to the value of current consumption 
vis-à-vis future consumption for a given stream of expected real 
interest rates). 
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on past investment and on the present discounted value of the 

return to investment.  

Taking expectations at time t-1 and assuming that 01 =− εtE , 

equation (1) can be rewritten as follows: 
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Equation (2) says that expected movements in ty  given 1−ty  are 

perfectly correlated with the present discounted value of future 

expected movements in x .  

We test the prediction of a perfect correlation between 

expected movements in the structural variable and expected 

movements in the present discounted value of the driving process 

on actual data. Our findings indicate that the empirical 

correlation of inflation, consumption, and investment with their 

respective driving processes in close to zero. Only the 

correlation of the real wage with its driving process is 

estimated to be high and close to the unit correlation implied by 

the theory.  

Given these findings, it is appropriate to ask whether the 

test we are performing has sufficient power to reject some of the 

model’s predictions. In this regard, small sample bias will drive 

the estimated correlations away from unity even if the model is 

the true underlying process generating the data. The larger the 

noise in equation (1), the more difficult it is to detect a 

relationship between y  and the present discounted value of x  in 

small samples. For this reason, we construct a Monte Carlo 

experiment where the data are generated by the model and assess 

the extent to which the estimated correlation between the left-
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hand side and the right-hand side of equation (2) is biased away 

from unity in a small sample.  

We find that the small sample bias is indeed important, but 

not sufficient to explain some of the low correlations found in 

the data. For the model to generate correlations close to zero, 

the variance of the error term ε  must explain most of the 

variation in y . This is akin to saying that y  is mainly driven 

by something other than the present discounted value of the 

driving process x .  

Our findings are robust to a variant of the test that, 

instead of focusing on expected movements in y  and x , relies on 

innovations in y  and x . Define the time t innovation in a 

variable z  as the difference between its expected value at time 

t and its expected value as of t – 1: kttkttkt zEzEz +−++ −≡ 1ˆ , for any 

0≥k . Then equation (1) can be written in terms of innovations as 

follows: 

∑
∞
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This specification of the test has the advantage of removing the 

backward-looking component of y  from the tested relationship. 

However, it has the drawback that the covariance between the 

innovation in x and ε  is not necessarily zero. In particular, a 

low correlation between ŷ  and the present discounted value of x̂  

could be the result of a negative covariance between x̂  and ε , 

and not the consequence of the model being counterfactual. Thus, 

to better gauge the validity of the present value relationship in 

                                                           
2 We make use of the fact that 0111 =− −−− ttt yEy . 
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terms of innovations, one should consider the correlation between 

the part of innovation in y  and the part of innovation in the 

present discounted value of x that are orthogonal to ε . From 

equation (3) it follows that : 

 ∑
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where the subscript ε⊥  denotes that the variable is orthogonal 

to ε . 

  Finding the portion of ŷ  and x̂  that is orthogonal ε  

requires to identify the shock ε . We identify structural shocks 

in equation (3) by assuming that empirical and model responses to 

shocks are identical on impact. Because of this strong 

identifying assumption, our estimates of the correlation between 

innovations in the structural variables and innovations in the 

present discounted value of the driving processes should be 

interpreted with caution. Still, it is interesting that the 

results from this exercise largely mirror the findings for the 

version of the test that relies on expected changes in the 

structural variables and the driving processes. Specifically, the 

estimated correlations are low except for the wage equation. We 

again assess the power of the test in the context of a Monte 

Carlo exercise.  

 

Relationship with previous literature 

This is not the first study to assess the empirical fit of 

models with nominal rigidities using present value relationships. 

In particular, the present value relationship has been exploited 

(in different ways) in studies on the empirical relevance of the 
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“New-Keynesian” Phillips curve (see Ruud and Whelan, 2006, 

Kurmann, 2005, and Sbordone, 2002). Still, the uncertainty 

surrounding the test has not been fully explored. Kurmann is an 

exception, though his exercise is not cast in terms of a Monte 

Carlo experiment of the kind we perform here. In addition, we 

provide a test not just of the inflation equation, but also of 

other key structural equations in the dynamic stochastic general 

equilibrium setup of Christiano, Eichenbaum, and Evans.  

 

Methodology 

We construct empirical processes for structural and driving 

variables according to an unrestricted VAR which, in first-order 

form, can be written as follows:  

ttt uAYY += −1 ,     (5) 

where Y  is a vector that includes both structural and driving 

variables, A  is a vector of coefficients, and u  is a vector of 

reduced-form residuals. Each of the equations in the VAR is 

estimated by OLS, and we denote by Â  the matrix of estimated 

coefficients. The test of relationship in (2) between the 

expected value of a structural variable and the expected present 

discounted value of its driving process is then performed by 

computing the following correlation on the estimated reduced-form 

VAR: 

)ˆ)ˆ()ˆ(( 1
1

1 −
−

− −− txty IIcorr YAAe  ,  YAe ζλγ ,   (6) 

where ye  is a row vector that has the value of one in the same 

position where y  is located in Y  and zero elsewhere, xe  is a row 

vector with the value of one where x  is located in Y  and zero 
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elsewhere, and I  is an identity matrix conformable with A . In 

order to evaluate this correlation, we need an estimate of the 

magnitude of the parameters γ  and ζ . We rely on parameter values 

estimated or calibrated in Christiano, Eichenbaum, and Evans. 

While we do not need to calibrate λ  for the purpose of our 

exercise, it is important to note that the driving process x is 

often a linear combination of several variables, and the specific 

linear combination is a function of deep model structural 

parameters. Again, we take the linear combination implied by the 

model with parameters estimated or calibrated in Christiano, 

Eichenbaum, and Evans.   

The dynamic general equilibrium model we are testing has an 

approximate reduced form solution of the form: 

ttt εBYAY 0R += −1 ,     (7) 

where RA  and 0B  are matrices of structural parameters that 

impose the restrictions implied by the model, and ε is a vector 

of structural shocks. In terms of the structural model, equation 

(2) is then given by:  

1
1

1 )()( −
−

− −=− txty II YAAeYAe RRR ζλγ .   (8) 

It is apparent that the only difference in the construction of 

the variables in (6) and (8) is given by the matrix of 

coefficients A . As long as the model is a good approximation of 

actual data, the reduced form VAR should recover a matrix Â  

close enough to RA  to deliver a positive correlation between 

expected movements in the structural variables and expected 

movements in the present discounted value of their driving 

processes. Because of finite sample bias, however, we do not 
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expect the estimated correlation to be unity even if the model is 

the true data generating process.  

The test we are performing differs from the present-value 

test developed by Campbell (1987). The reduced form solution (7) 

to the dynamic general equilibrium model implies that the 

evolution of the variables in Y is such that equation (7) holds 

at any point in time. The model, however, does not impose a 

restriction of the form 

RRR AAIeIAe 1)()( −−=− ζλγ xy   

on the model parameters. [...] 

The variant of the test that relies on innovations – 

equation (3) – can be written in terms of the reduced form VAR 

and of the structural shocks as follows:       

tεeuAIeue ytxty +−= −1)ˆ( ζλ .   (9) 

As already mentioned, the estimated correlation between the left-

hand side and the first term on the right-hand side of (9) can be 

biased because of a nonzero covariance between u  and ε. To 

correct for this bias, we identify the structural shocks in the 

data as 

t
0 εuB

-1
=t ,     (10) 

where 0B  is the matrix of model structural parameters that 

determines the contemporaneous effect of ε  on Y  in the model. In 

other terms, our identification procedure assumes that the impact 

responses to shocks in the empirical VAR are identical to the 

model responses. We evaluate the matrix 0B  according to the 

parameters estimated or calibrated in Christiano, Eichenbaum, and 
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Evans. With this identification assumption, we then compute the 

following correlation:  

),)ˆ(( ,
1

, txtycorr εε ζλ ⊥
−

⊥ − uAIe  ,  ue    (11) 

where the subscript ε⊥  indicates that we are taking the portion 

of the reduced form shocks u  orthogonal to εe y . 

     The relationship between innovations in the structural 

variable and in the present discounted value of the driving 

process can be written in terms of the structural model as 

.)( ,
1

, txty εε ζλ ⊥
−

⊥ −= εBAIeεBe 0R0    (12) 

Because of the identifying assumption in equation (10) for the 

structural shocks, the only difference in the construction of the 

variables between (11) and (12) is again given by the matrix of 

coefficients A . Insofar as the model is a good approximation to 

actual data, the estimated matrix A  from the reduced form VAR 

will deliver a positive correlation between innovation in the 

structural variables and innovations in the present discounted 

value of their driving processes.     

 

Model Equations 

We now describe the set of relationships that we test on 

actual data. These relationships are derived by Christiano, 

Eichenbaum and Evans (2005) in a dynamic stochastic general 

equilibrium framework with wage and price stickiness and capital 

accumulation, and we refer the interested reader to their work 

for a more detailed analysis.  

The equation for inflation takes the form 
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where π  is inflation (the log difference of the price level) and 

s  is (the log of) real marginal costs, defined as  

ttttt Ryhws +−+= ,     

with w denoting the log real wage, h the log of per capita 

hours, y  the log of per capita GDP, and R  the log of the gross 

nominal rate of interest. The inflation equation is derived in 

the context of a Calvo-style setp where firms that do not re-

optimize in a given period change prices according to the most 

recent rate of inflation (hence the presence of lagged inflation 

in the equation). As is well known, because in this setup firms 

cannot adjust prices optimally every period, inflation is a 

function not only of current marginal costs, but of the expected 

present discounted value of current and future marginal costs. 

 The equation for the real wage is given by  

  ∑
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where ψ  defines the marginal utility of a monetary unit, which 

is equal to  

∑
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As with the price-setting equation, the wage equation is derived 

from a Calvo-style setup where workers face a constant 

probability of re-optimizing their nominal wage every period. The 

set of workers that in each period are not able to re-optimize 

their wage are assumed to adjust their nominal wage according to 

the most recent rate of inflation. As a consequence of this 
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setup, when workers have the ability to re-optimize their nominal 

wage, they will take into account expected changes in future 

inflation and the evolution of current and future marginal rates 

of substitutions between consumption and leisure. The dynamic 

wage-updating scheme for workers that cannot re-optimize in a 

given period accounts for the presence of the lagged real wage in 

equation (14). As in the case of inflation, this feature helps 

the model account for the slow, persistent movement in prices and 

nominal wages after a policy shock.  

 The model equation for consumption is derived under the 

assumption of habit formation in consumption preferences. Habit 

persistence effectively replaces the level of consumption with 

its growth rate in the utility function. As a result, the 

equation for consumption takes the form 
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where c  is (the log of) consumption per capita, and b  is the 

habit persistence parameter. According to the equation, the 

expected change in next period consumption depends on the current 

change in consumption and on a present discounted stream of 

expected real interest rates.  

 The specification for investment incorporates adjustment 

costs. The motivation for having adjustment costs to investment 

is largely empirical. Several authors have noted that the 

response of investment to monetary policy shocks is 

counterfactually large without some mechanism that penalizes 

changes in investment. As a result, the present value relation 

for investment takes the form 
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where i  is (the log of) per capita investment and tkP , is the 

hypothetical spot price of a unit of capital stock installed at 

time t. In turn, the price of capital is determined according to 

a familiar asset pricing equation whereby the price of capital at 

time t depends on the price of capital next period plus its 

period t dividend, equal to the rental rate of capital 

tttt
k

t khRwr −++= , with k denoting the log of the capital stock. 

Forward iteration of the equation for the price of capital yields 

the following relationship: 
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This relationship can be substituted into (16) to obtain an 

expression for the change in investment in terms of a present 

discounted value of the rental rate of capital and of the real 

interest rate.  

 The four present value relationships for inflation, the 

real wage, consumption, and investment – equations (13) to (16) – 

are the subject of our empirical test. We compute the correlation 

between the right-hand side and the left-hand side of each of the 

equations, where the variables are either expressed as expected 

values as of t-1, or as period t innovations. In the appendix, we 

define the expressions for the left-hand side and the right-hand 

side of each of the four relationships in terms of the reduced-

form VAR used in our empirical analysis. Some of these 

expressions – notably the driving process for the real wage and 

the driving process for investment – are tedious, but they are a 



 13

straightforward application of the formulas (6) and (11) outlined 

in the previous section.     

 

Data and Empirical Specification 

We estimate a reduced form VAR in the following variables: 
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where all variables have been defined already in the previous 

section. A similar VAR (with three additional variables) is used 

in Altig, Christiano, Eichenbaum, and Linde (2004). These seven 

variables are sufficient to characterize the Christiano 

Eichenbaum and Evans model when the monetary policy reaction 

function takes the form of a Taylor rule.  

Hours h are defined as total hours in the non-farm business 

sector. Inflation π is the quarterly log difference in the GDP 

deflator, and y  is real GDP. The real wage w is compensation in 

the non-farm business sector deflated by the GDP deflator. 

Consumption c is consumption of nondurable goods, services, and 

government consumption deflated by the GDP deflator, while 

investment is total private investment plus durable consumption 

deflated by the GDP deflator. The nominal interest rate R  is the 

Federal Funds rate. Hours, output, consumption, and investment 

are expressed in per-capita terms. 
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The VAR is estimated on quarterly U.S. data over the period 

1966:Q1 to 1995:Q4. The number of lags in the estimated VAR is 

four. Our results do not depend on the specific sample we use. 

However, we focus on this particular sample because the VAR 

estimated over this period is very stable, with the largest root 

of the estimated matrix of coefficients A   only slightly above 

.97. Given that we are computing present discounted values, 

stability of the estimated VAR  is crucial.  

 

Empirical Findings 

The estimated reduced form VAR described in the previous 

section is used to compute the correlation of the structural 

variables with their respective driving processes. When 

estimating these correlations, we need to calibrate several model 

parameters. The calibrated values, taken from Christiano, 

Eichenbaum, and Evans, are reported in the appendix. The appendix 

also describes how the estimated correlations can be written in 

terms of the estimated reduced form VAR.  

Table 1 reports the estimated correlations for inflation, 

the real wage, consumption, and investment. Standard errors are 

computed by bootstrapping the residuals of the estimated reduced 

form VAR.3 Panel A considers the estimated correlations in terms 

of equation (6) – that is, when variables are expressed in terms 

of expectations as of t-1. The estimates are low except for the 

real wage, whose correlation with the expected evolution of the 

driving process is close to .90, though estimated imprecisely. 

                                                           
3 At each draw, we generate a new data set and compute a new estimated 
value for the correlations. This procedure is repeated 1000 times to 
obtain a bootstrap standard deviation.   
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Figure 1A plots the actual relationships between the expected 

value of the structural variables and the expected value of the 

present discounted value of their driving processes over the 

sample period we consider.  

Panel B of the table reports the estimated correlations in 

terms of equation (11) – that is, when variables are expressed in 

terms of time t innovations. As mentioned in the methodology 

section, we take the portion of the innovations that is 

orthogonal to the structural shocks, which are identified from 

the reduced-from residuals by means of equation (10). The 

estimated correlations essentially mirror the estimates for the 

predictable component of the variables reported in the previous 

panel. Figure 1B plots of the actual relationship between 

innovations in the structural variables and innovations in their 

driving processes over the sample period we consider.   

Overall, our findings do not lend strong support for some key 

predictions of the model, with the notable exception of the wage 

equation. Whether the findings are significantly at odds with the 

model, however, is still an open issue. We address this issue in 

the next section in the context of a Monte Carlo exercise.            

 

Monte Carlo Simulation 

We now evaluate the magnitude of the empirical correlations 

under the assumption that the model is the true data generating 

process. To do so, we generate model-consistent artificial data, 

estimate a reduced form VAR on these artificial data, and 

evaluate the correlation between the structural variables and 

their driving processes. This exercise is repeated 1000 times to 

generate a distribution of the estimated correlations when the 
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model is the true data generating process. Because we are 

interested in evaluating the small sample properties of the 

estimated correlations, at each repetition the reduced form VAR 

is estimated on 150 artificial data – about the same sample size 

used in actual data. 

The Christiano, Eichenbaum, and Evans (2005) dynamic 

stochastic general equilibrium model can be summarized by seven 

equations in seven variables when monetary policy is defined by 

means of a Taylor rule. Four of these equations are the 

structural relationships (13)-(16) for inflation, the real wage, 

consumption, and investment. When generating the artificial data, 

we append a shock to each of these four equations. The 

disturbances can be interpreted as misspecification in the 

relationships or as fundamental shocks, depending on the 

relationship in question. We label these shocks generically as 

structural shocks to inflation, the real wage, consumption, and 

investment. We consider also three additional structural shocks: 

a shock to the nominal interest rate, a shock to the price of 

capital, and a shock to hours. We draw from these seven shocks to 

generate model consistent artificial data.  

We run different Monte Carlo simulations for each of the 

structural variables we are interested in. Let y  be any of these 

four variables. Then, in terms of equation (7), the variance of 

an innovation to y  is given by 

'
y

'00
y eBBe εΣ ,     (17) 

where εΣ  is the covariance matrix of the structural shocks. We 

assume that the structural shocks are uncorrelated with each 

other, so that εΣ  is a diagonal matrix. To generate the data, we 
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keep (17) constant but vary the weight of the variance of the 

structural shock to y  relative to the variance of the other 

structural shocks. Specifically, we assess the distribution of 

correlations for variable y  with its driving process when the 

structural shock to that variable accounts for 25 percent, 50 

percent, 75 percent, or 90 percent of the innovation to y . As a 

result, for each variable y  we consider four different model-

consistent data generating processes, where the difference lies 

in the importance of the structural shock y  relative to the 

other shocks.  

A low variance of the structural shock to y  means that 

movements in y  are mainly driven by movements in the driving 

process. Conversely, a high variance of the structural shock to 

y  means that the driving process is relatively unimportant in 

explaining the behavior of y . We cast the Monte Carlo simulation 

within this framework because the relative weight of the variance 

of the structural shock to y  can influence the estimated 

correlation between y  and its driving process in small samples. 

Table 2A shows the result of the Monte Carlo exercise for 

the predictable component of the structural variables – that is, 

the estimated correlations in terms of equation (6). For each 

variable, the table reports the median correlation, the standard 

deviation of the correlation, and the 10th and 90th percentile 

correlation from 1000 replications under the four different 

assumptions about the relative importance of the variable’s 

structural shock.  

The estimates in the table show that a small sample biases 

the estimated correlations away from unity. The standard 
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deviation of the estimates is also fairly large. In addition, the 

larger the relative variance of the structural shock to y , the 

lower the estimated median correlation between y  and its driving 

process. Still, the 10th percentile estimated correlation is 

safely into positive territory unless the relative variance of 

the structural shock becomes very large.  

Overall, we interpret the findings as indicating that the 

estimated correlations on actual data reported in panel A of 

Table 1 are unlikely to have been generated by the model. Of 

course, it’s possible that some of the estimated correlations are 

low because of the presence of large structural shocks. However, 

in the model at hand a structural shock to variable y  is often a 

shock to the driving process of some other structural variable. 

For example, large structural shocks to consumption can explain 

the low empirical correlation of consumption with its driving 

process. But these large structural shocks to consumption affect, 

among other things, the driving process for investment. Results 

from our Monte Carlo exercise (not reported) indicate that when 

the variance of the structural shock to consumption is large, the 

median correlation of investment with its driving process is .75. 

Thus, it is difficult to reconcile the contemporaneous presence 

of low correlations for inflation, consumption, and investment 

with their respective driving processes in light of the model. 
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Table 1 
 
 
 

A. CORRELATIONS FOR PREDICTABLE COMPONENT  
Inflation Consumption Real Wage Investment 

 0.06147 
 (0.06423) 

-0.00326 
 (0.16331) 

 0.87142 
 (0.49563) 

0.11928 
(0.07086) 

Bootstrap standard errors in parenthesis. 
 
 

B. CORRELATIONS FOR INNOVATIONS  
Inflation Consumption Real Wage Investment 

 0.32165 
 (0.23989) 

-0.18616 
 (0.29024) 

 0.83343 
 (0.16494) 

 0.13724 
 (0.24914) 

Bootstrap standard errors in parenthesis. 
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Table 2A 
Estimated Correlations from Monte Carlo  

Simulations: Predictable Component  
 

Inflation  

Relative weight 
of own variance   

 

25% 50% 75% 90% 

median 

std 

10th percentile 

90th percentile 

0.58 

0.19 

0.29 

0.79 

0.53 

0.19 

0.26 

0.73 

0.44 

0.19 

0.17 

0.67 

0.33 

0.19 

0.07 

0.57 
 
 

Consumption  

Relative weight 
of own variance   

 

25% 50% 75% 90% 

median 

std 

10th percentile 

90th percentile 

0.57 

0.11 

0.40 

0.70 

0.49 

0.12 

0.33 

0.64 

0.35 

0.12 

0.19 

0.52 

0.24 

0.12 

0.09 

0.39 
 
 

Real Wage  

Relative weight 
of own variance   

 

25% 50% 75% 90% 

median 

std 

10th percentile 

90th percentile 

0.68 

0.19 

0.37 

0.85 

0.57 

0.20 

0.26 

0.75 

0.50 

0.20 

0.21 

0.69 

0.46 

0.19 

0.19 

0.66 
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Figure 1A 
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Figure 1B 
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