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ment in office only considers intertemporal distortions over two consecutive periods in choosing

taxes. We then use our framework to quantify the value of commitment, which we define as

that obtained from binding governments to a course of actions that produce the second-best al-

locations. Because this calculation relies on numerical approximations, we contrast alternative

approaches in the literature. We find that both linear quadratic and perturbation methods de-

liver accurate steady states, but that the former can yield spurious policy implications along the

transition. Ultimately, our analysis suggests that very small costs of setting up a commitment

technology are enough to prevent its adoption. Furthermore, while households’ decision to forego

government commitment may be rational at some initial date, it is nevertheless the case that

consumption allocations may differ considerably in the long run.
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1 Introduction

The notion that governments cannot always commit to a sequence of actions is a subject of increas-

ing interest for economists in general and policymakers in particular. To this point, the literature

on time consistent fiscal policy has confined itself to simple environments where taxes are used to

finance a flow of public goods or services that are rapidly exhausted. In contrast, the benefits of

government spending have been mainly documented for durable public goods that can be accu-

mulated over time.1 This fact is ignored in recent studies because introducing public capital (an

additional state variable) significantly complicates the characterization of the optimal discretionary

policy. This paper, therefore, tackles the problem of understanding how the absence of government

commitment affects the provision of public infrastructure as well as the implied welfare effects over

an economy’s transition to its long-run equilibrium. We solve for Markov-perfect equilibria and pro-

vide a quantitative assessment of the value of commitment, which we define as that obtained from

binding the government to an optimal course of actions. In doing so, we evaluate the performance

of different numerical methods used in approximating time-consistent policy.

Several papers have recently analyzed optimal fiscal policy absent commitment. These include,

among others, Klein, Krusell, Rios-Rull (2004), who analyze the trade off between providing a

consumable public good and its financing, Hassler, Storesletten, and Zilibotti (2005), who study

time-consistent redistribution under repeated voting, and Azzimonti, De Francisco and Krusell

(2006), who explore the distortionary effects of income taxes on the evolution of wealth inequality.

In contrast to these papers, our analysis focuses on the provision of a durable public good that

expands the production frontier and which we interpret as infrastructure. Previous work on op-

timal public investment, including by Glomm and Ravikumar (1994, 1997), or Turnovsky (1997),

characterize optimal policy only under full commitment. Thus, we contribute to the literature on

public investment and discretionary policy in mainly three ways.

First, we provide an assessment of the value of government commitment for an economy whose

stocks of private and public capital are initially below their long-run levels. The economy we en-

vision is one that is still in a development phase and where the government’s inability to make

credible policy promises regarding infrastructure financing can affect both its transition dynamics

and steady state. We find that a very small cost of setting up a binding constitution is enough to

prohibit its adoption. Furthermore, although households’ decision to forego government commit-

ment may be entirely rational at some initial date, the resulting allocations can look considerably

different in the long run. The disparity in steady state allocations emerges because the stocks of

private and public capital take on very different paths under the two institutional alternatives.

Our findings indicate that the lack of government commitment discourages long-run private capital

accumulation, despite tax rates being actually lower in the Markov-perfect equilibrium. The reason

is that discretionary policy also results in less public infrastructure being developed.
1See Fernald (1999), or Haughwout (2002), for example.
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Second, at a theoretical level, we show that governments following a Markov-perfect policy

choose a tax rate such that they trade off marginal inefficiencies arising in private savings with

those arising in the provision of public infrastructure over two consecutive periods. The derivation

of the government Euler equation (GEE) in this case is substantially more involved than those

developed in previous work but remains analytically tractable. More importantly, we show that this

derivation is essential for the application of numerical methods that accurately describe transition

dynamics.

Finally, in computing the Markov-perfect policy problem, we compare numerical solutions ob-

tained using GEE-based perturbation methods recently suggested in Krusell, Kuruscu, and Smith

(2002), with those that emerge under the more common Linear Quadratic (LQ) approximation

developed in Svensson and Woodford (2004). We know of no other papers in the literature that

compare these two methods for a single problem. Because we study a model that allows for a closed-

form Markov-perfect equilibrium under a particular parameterization, we can directly contrast the

accuracy of these two methods. While both the LQ and perturbation methods deliver accurate

steady state allocations, we find that the approximation error associated with the former can yield

inaccurate estimates and misguided policy recommendations in response to changes in the state

variables. An application of the perturbation method is able to essentially generate the closed-form

decision and policy rules, and we use this approach to compute the evolution of discretionary policy

for an example economy.

This paper is organized as follows. Section 2 describes the basic economic environment. In

section 3, we define the competitive equilibrium given a stationary policy rule. Section 4 character-

izes the Markov-perfect equilibrium that yields the optimal policy. Section 5 contrasts numerical

solution methods, and we calculate the value of government commitment in Section 6. Section 7

offers some concluding remarks.

2 Economic Environment

Consider an economy populated by infinitely many households whose preferences are given by

U =
∞X
t=0

βtu(ct),

where 0 < β < 1 is a subjective discount rate, and households’ period utility, u(ct), satisfies uc > 0,

ucc < 0, and the usual Inada conditions. The size of the population is normalized to one.

A single consumption good is produced using the technology

yt = F (kt, lt, kgt),

where kt and kgt denote the date t stocks of capital in the private and public sector respectively.

We interpret kg either as public capital in the form of physical infrastructure, or as a more general
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kind of public good, such as education, that enhances the productivity of other factor inputs. Labor

input is denoted by lt, and we assume that F exhibits constant returns to scale with respect to

private capital and labor. We denote the public capital elasticity of output, Fkg
kg
y , by θ ∈ (0, 1),

and assume that Fkkg > 0.

Both types of capital can be accumulated over time and evolve according to

kt+1 = ikt + (1− δ)kt, (1)

and

kgt+1 = ikgt + (1− δ)kgt, (2)

where ik and ikgare the levels of private and public investment respectively, and δ ∈ (0, 1) is the
depreciation rate.

2.1 The First-Best Solution

To begin the analysis, it is useful to characterize efficient allocations in this environment. These

allocations will then be used as a benchmark with which to compare the decentralized solutions that

emerge under two key policy frictions: distortionary taxation and the inability to make credible

promises regarding future tax policy.

Pareto-optimal allocations are found by solving the problem of a benevolent planner who chooses

sequences of consumption, private capital, and public capital so as to maximize households’ lifetime

utility

max
{ct,kt+1.kgt+1}

∞X
t=0

βtu(ct), (P∗)

subject to

ct + kt+1 + kgt+1 = F (kt, kgt, lt) + (1− δ)(kt + kgt).

The first-order necessary conditions imply that2

uc(ct) = β[Fkt+1 + 1− δ]uc(ct+1) (3)

and that

uc(ct) = β[Fkgt+1 + 1− δ]uc(ct+1). (4)

Therefore, in the absence of frictions, the standard result obtains whereby it is optimal to invest in

k and kg up to the point where their marginal products are equalized at each date,

Fk(kt+1, kgt+1, lt+1) = Fkg(kt+1, kgt+1, lt+1).

2We use uct to indicate uc(ct), Fkt+1 to indicate Fk(kt+1, kgt+1, lt+1), etc... to simplify notation when the context

is clear.
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We refer to the optimal levels of private and public capital as the ‘unconstrained optimum’, and

denote these levels by k∗t and k
∗
gt respectively.

It is straightforward to show how to obtain these allocations in a decentralized competitive

equilibrium when the government has access to lump sum taxation. In the absence of such an

instrument, however, a distortion emerges that creates a wedge, or gap, in conditions (3) and (4)

above. In addition, to the degree that policies other than lump sum taxes are used, such policies

will generally be time inconsistent3. In general, we define a wedge in the efficient private investment

decision by

∆kt = −uct + βuct+1 (Fkt+1 + 1− δ) , (5)

where ∆kt = 0 ∀t under first-best allocations. Similarly, we define a wedge in public investment by

∆kgt = −uct + βuct+1
¡
Fkgt+1 + 1− δ

¢
. (6)

3 The Decentralized Economy given Policy

Because lump sum taxes are almost never observed, we focus on a decentralized economy where

the government uses distortionary income taxes to finance its public capital. In that setting, a

new government coming into office typically has an incentive to disregard promises made by its

predecessors. Hence, setting taxes once and for all at time zero results in policy announcements

that are not credible. In other words, absent a commitment technology, the Ramsey policy is

time inconsistent. Our analysis centers on the determination of optimal time consistent tax rates,

and contrasts the findings with those that obtain under full commitment. In particular, we study

Markov-perfect equilibria whereby sequential governments choose policy optimally based on the

state they inherit when taking office.4

Throughout the paper, we assume that the government balances its budget every period. While

we recognize that the presence or absence of government debt matters importantly for the types

of policies that emerge as optimal, we maintain the balanced budget assumption in this paper

for mainly three reasons. First, we wish to contrast our findings regarding the lack of government

commitment with previous studies of optimal public investment carried out under full commitment.

We shall show that under full commitment, our framework nest findings in Glomm and Ravikumar

(1994) among others. Second, Azzimonti, Sarte and Soares (2006) show that government debt can

be a powerful instrument that helps mitigate the time consistency problem in questions of optimal

taxation. Therefore, an environment where domestic government debt is in limited use, such as in

developing economies, is also one where the time consistency problem is likely to have the greatest

effects. Finally, under a specific parameterization of the model, the framework we write down is
3See Kydland and Prescott (1977) for an early treatment of time inconsistent policy.
4An alternative approach finds the set of all possible sustainable equilibria, and characterizes the problem using

reputational mechanisms that rely on trigger strategies involving reversions to the worst possible equilibrium (Chari

and Kehoe [1993]). Such mechanisms, however, have been criticized for not being renegotiation proof.
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simple enough to admit a closed form solution that allows us to gauge the accuracy of different

numerical solution methods.

Suppose that the tax rate households face at any date stems from a stationary policy rule that

depends only on the states of the economy at that date, Ψ(k, kg). Since the government maintains

a balanced budget by assumption, public investment satisfies ig = Ψ(k, kg)y, and we can express

new outlays of public capital, k0g as

k0g = Ψ(k, kg)y + (1− δ)kg. (7)

The financing of public infrastructure, therefore, follows that of Baxter and King (1993), who

explore the allocative effects of exogenous policy changes, or Glomm and Ravikumar (1994, 1997),

who later derive the optimal policy with full government commitment. We contribute to these

studies by exploring the effects of relaxing the commitment assumption. Throughout the analysis,

we denote next period’s value of a given variable x by x0.

3.1 The Recursive Competitive Equilibrium

In order to address how governments might choose discretionary policy optimally in our environ-

ment, we first need to describe how households and firms make decisions given that a tax policy,

Ψ(k, kg), is in place. To this end, we first describe the recursive competitive equilibrium of our econ-

omy. In this decentralized equilibrium, households and firms take Ψ(k, kg) as given when making

decisions.

Firms

There exists a large number of homogeneous small size firms that act competitively, where kg
acts as a common externality with respect to each firm’s production. We denote by r and w the

rental price of private capital and the wage. Taking these prices as given, each firm maximizes

profits and solves

max
k, l

Π = F (k, l, kg)− rk −wl.

The corresponding first-order conditions equate r and w to the marginal products of capital,

Fk(k, l, kg), and labor, Fl(k, l, kg), respectively.

Households

At each date, households decide how much to consume and save as well as how much capital to

rent to firms. Each household is assumed to be endowed with one unit of time, l = 1, which they

supply inelastically. Taking the policy rule Ψ(k, kg) as given, households maximize their lifetime

utility subject to their budget constraint and the law of motion describing the accumulation of

private capital. Because the policy rule Ψ is stationary (i.e. it does not depend on time as a

separate argument), we can write the household problem recursively as follows,

V (k, kg) = max
c,k0

©
u(c) + βV (k0, k0g)

ª
(PC)
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subject to

c+ i = (1−Ψ(k, kg)) [wl + rk] , (8)

where

k0 = i+ (1− δ)k. (9)

The solution to the representative household’s dynamic optimization problem yields the familiar

Euler equation (henceforth EE),

uc(c) = βuc(c
0)
£
(1−Ψ(k0, k0g))r0 + 1− δ

¤
, (EE)

Having described the behavior of households and firms, we can define the recursive competitive

equilibrium given taxes:

Definition 1: Given the policy rule Ψ(k, kg), a recursive competitive equilibrium is a set of

functions, V (k , kg), w(k, kg), r(k, kg), l(k, kg), H(k, kg) and KG(k, kg), such that

1. H(k, kg) solves equation (EE), l(k, kg) = 1 , and V (k, kg) solves (PC),

2. prices reflect competitive factor markets, w(k, kg) = Fl and r(k, kg) = Fk,

3. the government Budget Constraint holds,

KG(k, kg) = (1− δkg)kg +Ψ(k, kg)[w(k, kg)l + r(k, kg)k].

In (EE), taxes distort private incentives to consume and save, but also induce higher future

returns to private investment through the development of public infrastructure. Specifically, the

return to private investment, r0, depends on k0g through the marginal product of private capital.

A question then immediately arises as to where to set the tax rate, or equivalently, the share of

public investment in output.

3.2 A Useful Benchmark Case

It is helpful at this point to introduce a benchmark case that will be widely used throughout the

analysis. Suppose that households’ period utility is logarithmic, u(c) = log c, that technology is

Cobb-Douglas, y = kθgk
αl1−α, and that capital depreciates fully within the period, δ = 1. It is well

known that for these specifications of preferences and technology, the household savings function in

the decentralized equilibrium depends only on the current level of taxes and not the entire policy

stream. Specifically, future policy changes lead to income and substitution effects on current savings

that exactly offset each other. This property of our benchmark savings functions will turn out to

play a key role in determining the accuracy of alternative numerical methods.

Under our benchmark assumptions, the household EE reduces to

c0 = αβcF 0k[1−Ψ(k0, k0g)].
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Given policy, we guess that the recursive competitive equilibrium is such that households save a

constant proportion, s ∈ (0, 1), of after tax income, H(k, kg) = s(1 − Ψ(k, kg))kθgkα. It is then
straightforward to show that (EE) holds if and only if s = αβ. It follows that

H(k, kg) = αβ(1−Ψ(k, kg))y, (10)

and that consumption is also proportional to after tax income

c = (1− αβ)(1−Ψ(k, kg))y. (11)

Using equations (10) and (11), the other equilibrium functions can be obtained easily. Furthermore,

precisely because savings at any date depend only on contemporaneous taxes, and therefore cannot

be directly influenced by future or past tax rates, one expects the optimal policy problem to be

degenerate in the benchmark case. In fact, we shall show that optimal tax rates in the benchmark

economy are constant through time irrespective of the states faced by the government.

4 Description of the Markov-perfect problem

We define a stationary Markov equilibrium following Klein, et al. (2004) where, in our setup, the

tax rate depends on the stocks of public and private capital. Unlike Klein et al. (2004), however,

and more generally models with a single state variable, the derivation of the government Euler

equation — which characterizes the solution — is substantially more involved with two states. We

show that such a derivation remains analytically tractable. More importantly, it is essential for the

application of numerical methods that accurately describe transition dynamics.5

A Markov-perfect equilibrium can be described as a sequence of successive governments, each

choosing a single tax rate based on the state it inherits when taking office. In making this choice,

each government correctly anticipates the optimal decision rule adopted by its successors. In

equilibrium, future policymakers’ choices are time consistent if and only if they coincide with the

rule that the current policymaker anticipated them to choose optimally. This implies that the

current planner’s policy choice of τ must also follow Ψ(k, kg).

In order for Ψ(k, kg) to be subgame perfect, no government must ever have an incentive to devi-

ate from this rule. Joint deviations are not feasible since, by assumption, a new government chooses

policy every period and, consequently, cannot enter binding contracts with future governments. It

is sufficient, therefore, to analyze the problem of a government that is allowed to “deviate” in the

current period by setting a tax rate τ 6= Ψ(k, kg), under the assumption that Ψ(k, kg) is forever
followed in the future. Thus, we now describe how an arbitrary deviation perturbs equilibrium allo-

cations, and we allow the government to choose the best possible deviation τ . In a Markov-perfect

equilibrium, it must be the case that the optimal deviation τ and the policy rule Ψ(k, kg) coincide.
5 In related work, Azzimonti, De Francisco, and Krusell (2006) study a politico-economic equilibrium also with

mulitple state variables but where taxes are determined by majority voting.
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From the government budget constraint, we can define the evolution of public capital as a

function of current states and the tax rate, g(k, kg, τ), such that

g(k, kg, τ) = τF (k, l, kg) + (1− δ)kg.

The representative household’s budget constraint is given by

c = (1− τ) [w(k, kg)l + r(k, kg)k] + (1− δ) k − k0,

where prices are written explicitly as a function of current states. Because of the representative

household assumption, this constraint can also be expressed as an economy-wide resource constraint

that implicitly defines a consumption function C,

C(k, kg, τ , k0) ≡ (1− τ)F (k, l, kg) + (1− δ) k − k0.

Let us define the evolution of private capital under the one-period deviation as k0 = H(k, kg, τ),

where H solves households’ optimal consumption-savings decision when the current tax rate is

given by τ , and all future tax rates obey Ψ(k, kg). Since households take policy as given, the EE

then becomes

uc
£
C(k, kg, τ , k0)

¤
= βuc[C(k0, k0g,Ψ(k0, k0g), k00)] ·

©
F 0k(1−Ψ(k0, k0g)) + 1− δ

ª
, (12)

where k0g = g(k, kg, τ) and k
00 = H(k0, k0g).

Households’ first order condition (12) is a functional equation in that it must hold for all k,

kg, and τ . Although each government only chooses taxes for the period in which it is in office,

this choice also affects individual and aggregate behavior in subsequent periods. As savings and

investment in public capital change today following a change in the current tax rate, so do future

taxes as a by-product. Put another way, since Ψ is followed tomorrow onwards, variations in τ that

cause k0 and k
0
g to change will also cause the rate τ

0 to change since τ 0 = Ψ(k0, k0g), thus affecting

future savings and investment (k00 and k00g ). It follows that by affecting future states with current

policy decisions, the current policymaker possesses some leverage over future governments through

Ψ.

Formally, the Markov problem describing optimal discretionary policy at any date is

max
τ
u(C(k, kg, τ ,H(k, kg, τ)) + βV (H(k, kg, τ), g(k, kg, τ)) (PM)

where V (k, kg) is determined by

V (k, kg) = u(C) + βV (H(k, kg),KG(k, kg)), (13)

and C ≡ (1−Ψ(k, kg))F (k, l, kg) + (1− δ) k −H(k, kg).
A Markov-perfect equilibrium is found when, for any pair {k, kg}, τ = Ψ(k, kg). Formally,

Ψ(k, kg) ∈ argmax
τ

u(C(k, kg, τ ,H(k, kg, τ)) + βV (H(k, kg, τ), g(k, kg, τ)).
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Analogously to Definition 1, we can now describe the recursive competitive equilibrium that

obtains under the one-period deviation considered in this section.

Definition 2: A recursive competitive equilibrium under the one-period deviation τ from

Ψ(k , kg) is a set of functions, w(k, kg), r(k, kg), l(k, kg, τ), H(k, kg, τ), g(k, kg, τ), H(k , kg), KG(k , kg),
and V (k , kg) such that

1. l(k, kg, τ) = 1, and H(k, kgτ) solves the Euler equation (12),

2. prices reflect competitive factor markets, w(k, kg) = Fl and r(k, kg) = Fk,

3. the government Budget Constraint holds, g(k, kg, τ) = (1− δkg)kg + τ [w(k, kg)l + r(k, kg)k],

4. H(k, kg), KG(k, kg) and V (k , kg) satisfy the equilibrium conditions in Definition 1.

When the government does not deviate from the rule Ψ in setting τ , the resulting policy

functions must be consistent with the recursive competitive equilibrium described in Definition

1, H(k, kg,Ψ(k, kg)) = H(k, kg) and g(k, kg,Ψ(k, kg)) = KG(k, kg).

4.1 The Government Euler Equation

As shown in Krusell and Kuruscu (2002), there potentially exist an infinite number of discontinuous

equilibria (i.e. where the policy rule is discontinuous in the states) that arise only because of the

infinite horizon nature of the problem. In order to select an equilibrium that is the natural limit

of its finite horizon counterpart, we impose differentiability of the policy functions.

The first-order condition with respect to the current deviation τ in problem (PM) is

ucCτ + β
h
V 0kHτ + V

0
kggτ

i
= 0. (14)

Observe that expressions for Vk and Vkg (where V is given in 13) involve Hk and Hkg . Since
households’ Euler equation (EE) depends on the policy rule Ψ(k, kg), the calculation of Hk and
Hkg– using the implicit function theorem– in turn involves derivatives of the policy function,

Ψk and Ψkg . This feature of the Markov problem imposes an additional burden in solving for the

Markov-perfect equilibrium since, to arrive at the unknown policy Ψ (or even just the tax rate in

the steady state), one already needs to take into account its derivatives with respect to the states.

We saw in section 2.1 that in the presence of lump sum taxes, the government would set all

distortions to zero so that first-best allocations could be attained. In contrast, in our setting,

distortionary taxes induce wedges in the intertemporal conditions describing the efficient provision

of private and public capital. The following proposition states that the optimal discretionary policy

is such that it sets a linear weighted sum of these distortions to zero.

Proposition 1. Let ∆k = −uc + βu0c (F
0
k + 1− δ) and ∆kg = −uc + βu0c

³
F 0kg + 1− δ

´
. Then,
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the government’s first order condition (14) may be re-written as an Euler equation as follows

Hτ∆k + gτ∆kg + β{H̃ 0
τ∆

0
k + g̃

0
τ∆

0
kg} = 0,

where H̃ 0
τ = ξB00kg and g̃

0
τ = −ξB00k , with Bi = gi − gτ

Hi
Hτ

i = k, kg and ξ = −Hτ
B0kHτ+B0kggτ

B00kH
0
τ+B

00
kg
g0τ
.

Proof. See Appendix A.

The derivation of the government Euler equation (GEE) in terms of a weighted sum of deviations

from efficient intertemporal decisions is somewhat involved, but perhaps most intuitive in that form.

Furthermore, it is worth noting that although the economy is dynamic, so that there are potentially

an infinite number of distortions, only those in the current and subsequent period matter directly.

The recursive nature of the problem together with the envelope theorem ensure that other wedges

are handled optimally. Why is it that distortions in the current and subsequent period matter in

proposition 1? In Klein et al. (2004), or Azzimonti et al. (2006), the government attempts to

manipulate one intertemporal distortion using one policy instrument, income taxes. As a result,

the GEE in Klein et al. (2004), for instance, involves trading off one intertemporal wedge, the

one that distorts savings, with one intratemporal wedge, the one between the marginal utilities of

private and public consumption. In our setting, however, the government attempts to manipulate

two intertemporal margins, the ones that determine private and public capital, but still having

access to only one instrument, income taxes. Relative to the earlier frameworks with a single state

variable, therefore, the optimal policy with public investment dictates trading off intertemporal

wedges over one additional period.6

The first term in proposition 1 depicts the increase in the inefficiency of private savings induced

by a marginal increase in distortionary taxes. This inefficiency is captured by the intertemporal

savings distortion that arises with distortionary taxes, ∆k > 0, scaled by the reduction in household

savings that takes place when the tax rate increases, Hτ < 0.7 Similarly, the second term gτ∆kg

in proposition 1 summarizes how changes in current taxes affect the inefficiency of public capital

provision. In particular, this effect is characterized by the wedge ∆kg present whenever τ > 0,

scaled by the rise in public investment implied by a marginal increase in τ , gτ > 0.8 The third and

fourth terms in the weighted sum of distortions in proposition 1 may be interpreted in an analogous

way. In sum, therefore, governments following a Markov-perfect policy choose a tax rate such that

they trade off marginal inefficiencies arising in private savings, Hτ∆k, with those arising in the

provision of public infrastructure, gτ∆kg , over two consecutive periods.
6 In general, what affects the number of intertemporal trade offs in the GEE involves both the number of state

variables and the number of independent financing instruments.
7To see this, simply substitute households’ first-order condition (EE) into the definition of ∆k to obtain ∆k =

τ 0βu0c

³
F 0kg + 1− δ

´
. Thus, ∆k > 0 when τ 0 > 0, which implies a level savings that is lower than optimal, k0 < k∗0.

8Recall that in the first best economy, the optimal level of optimal public capital is determined by the condition

−uc + βu0c

³
F 0kg + 1− δ

´
= 0, evaluated at k0∗ and k0∗g . Since k

0 < k∗0 with distortionary taxes, this equality does

not necessarily hold and ∆kg 6= 0.
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It is worth noticing that the presence of public infrastructure alleviates the time inconsistency

problem in this framework. In particular, while policy time inconsistency stems from choosing taxes

that distort households’ savings decisions, public investment that are financed by these taxes, by

increasing the return to capital, partly offset these distortions. Consequently, being able to commit

to a given sequence of tax rates may be of lesser value when these tax rates ultimately finance

productive public goods.

As in proposition 1, we conjecture that Markov-perfect policies can generally be expressed in

terms of offsetting distortions, and that the derivation of such an expression follows the steps

laid out in Appendix A. The next section centers on a specific parametric example that makes

some of the concepts we have just introduced more tangible. More importantly, the example we

present allows us to derive closed-form solutions that we later use as a benchmark to assess different

numerical methods in the literature on optimal discretionary policy.

4.2 Analytical Solution for the Benchmark economy

Consider the functional assumptions that define the benchmark economy introduced in section 3.1.

In order to solve for the GEE in proposition 1 analytically, we must first find expressions for the

following objects, Hτ , gτ , eH 0
τ , eg0τ , ∆k and ∆kg. Once expressions for ∆k and ∆kg are found, these

can simply be updated to obtain ∆0k and ∆
0
kg.

Since private savings depend only on current tax rates in the benchmark case, the function

describing savings under the one-period Markov deviation is given by H(k, kg, τ) = αβ(1− τ)y, so

that tax increases discourage savings,

Hτ = −αβy < 0.

From the government’s budget constraint, we have that g(k, kg, τ) = τy under full depreciation,

and it follows that

gτ = y > 0.

An increase in taxes raises public infrastructure.

Using the expressions for H and g to derive analytical solutions for H̃ 0
τ and g̃

0
τ , as defined in

proposition 1, we obtain

H̃ 0
τ =

αβθy

τ 0

h
− α
1−τ +

θ
τ

i
h
− α
1−τ 0 +

θ
τ 0

i ,
and

g̃0τ = −H̃ 0
τ

τ 0

(1− τ 0)θβ
.

Under our benchmark functional form assumptions for preferences and technology, the wedge

in private investment is given by

∆k = −
1

c
+ β

αy0

k0
1

c0
,
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whereas the distortion in public investment is simply

∆kg = −
1

c
+ β

θy0

k0g

1

c0
,

where c = y(1− τ)(1− αβ).

Given the expressions for Hτ , gτ , eH 0
τ , eg0τ , ∆k and ∆kg we have just derived, we can substitute

these expressions into the GEE in Proposition 1 to obtain, after basic manipulations, a single

equation in terms of τ , τ 0, the state variables, k and kg, and the structural model parameters.

Suppose we conjecture a Markov-perfect tax policy that is constant over time, τ = τ 0, then it is

straightforward to show that τ = βθ ∀t solves the GEE, as summarized in proposition 2.

Proposition 2. When household preferences are logarithmic, u(c) = log(c), technology is

Cobb Douglas, F (k, kg) = kαkθgl
1−α, and capital depreciates fully within the period, δ = 1, optimal

discretionary income tax rates are independent of the states, Ψ(k, kg) = βθ ∀ (k, kg), and thus
constant through time.

Under more general parameterizations than adopted in our benchmark case, changes in current

taxes, τ , affect private savings, k0, and public investment, k0g, which then impact future policy

through the policy rule, τ 0 = Ψ(k0, k0g). The change in τ 0 feeds back into households’ current

decisions through a substitution effect, by reducing the net return to today’s savings, and an income

effect, by lowering disposable income tomorrow. This feedback creates a political intertemporal

link between successive governments (i.e. between choices of τ and τ 0). The key to proposition 2,

however, is that under our benchmark assumptions, private savings depend only current taxes. As

a result, tomorrow’s policy has no impact on today’s household choices, and the intertemporal link

between governments breaks down. The political decision problem, therefore, essentially collapses

to a static one with a constant policy as its solution9

5 Numerical Solution Methods

The main complication in computing steady states in the Markov equilibrium results from the

GEE depending not only on the levels of capital and taxes, but also on the derivatives of the policy

and saving rules. Numerical work on optimal time consistent policy has generally adopted either

one of two methods: (i) a Linear Quadratic Approximation Method (henceforth LQ) and (ii) a

Perturbation Method. LQ approximations allow for a relatively straightforward computation of

steady states and transition dynamics. They are widespread in the literature and easily handle

multiple state variables. Examples of this approach are found, for instance, in Krusell and Rios-

Rull (1999), and Benigno and Woodford (forthcoming), in the context of fiscal policy, but are more
9Under log preferences, absent the political intertemporal dimension, one can show that the policymaker’s decision

problem is one where the effects of policy do not interact with the state variables.
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prevalent in the monetary policy literature as illustrated in Dotsey and Hornstein (2003), Svensson

and Woodford (2004), King and Wolman (2004), among many others. Developments related to the

Perturbation method are more recent and, to this point, have been used mostly to approximate

steady state equilibria (see Azzimonti et al. 2006). In this paper, we use the Perturbation method

to also approximate transitions to the steady state. To our knowledge, our work offers the first

comparison of the accuracy of these different approaches.

Since our framework allows for a closed form solution in our benchmark economy, any numerical

method can be assessed against the actual solution in that case. One must be cautious of this

exercise because analytical solutions often abstract from important dimensions of the problem, and

replicating this solution with a numerical method is no guarantee that the method works more

generally. In our setting, however, considerable differences in numerical approximations emerge

even in our simple benchmark case.

We find that while both the LQ and Perturbation procedures deliver very accurate estimates of

steady state allocations, transition dynamics obtained using LQ approximations can be inaccurate.

In particular, transition paths for taxes and public investment are noticeably different from those

suggested by the actual solution. This finding stems from the inflexible parametric form assumed by

the savings and income tax rules under the LQ approach. More specifically, the LQ approximation

predicts that decreases in k or kg away from their steady state make policymakers raise the optimal

tax rate in the benchmark economy, in contrast to Proposition 2 where the tax rate was shown to be

independent of the states. In this case, therefore, the poor approximation is potentially associated

with misleading policy conclusions. On a more encouraging note, the Perturbation method allows

us to improve upon the approximation of the policy and savings rule by adjusting the degree of

the polynomial describing them. Thus, for the closed-form solution example worked out in section

4.2, the Perturbation method applied to second-order policy functions does deliver state-invariant

taxes (i.e. the derivatives of the policy rule are zero, Ψk = Ψkg = 0).

5.1 Properties of the Linear Quadratic and Perturbation Methods

The fundamental difference between the LQ and perturbation approaches is that, while the LQ

method approximates the Markov problem with a quadratic objective function and linear con-

straints, the Perturbation method solves the original problem and approximates the corresponding

decision rules with a polynomial. Thus, even with linear decision rules, we expect the Perturbation

method to perform somewhat better than the LQ approximation.

We know from section 4.2 that the following policy functions solve the Markov-perfect problem

in the benchmark case,

Ψ(k, kg) = βθ,

H(k, kg) = αβkαkθg [1−Ψ(k, kg)],
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and

g(k, kg) = Ψ(k, kg)k
αkθg .

The Perturbation Method consists in approximating these decision rules by an n-th order poly-

nomial. Observe that conditional on Ψ, the government’s budget constraint (7) immediately gives

us the rule g. Consequently, we need only approximate the savings rule H and the tax policy Ψ.

Given the assumed functional forms for H and Ψ, calculating the derivatives that appear in the

GEE is now straightforward. In essence, this method recasts the problem in terms of finding the

parameters of two polynomials. For comparison with the LQ approach, we use the Perturbation

approach with two different approximations of the policy functions, one that assumes a linear func-

tional form for H and Ψ, referred to as ‘method PL’, and one that assumes a quadratic form for

H, referred to as ‘method PQ’.

Under method PL, we specify H as follows,

HPL(k, kg, τ) = φk0 + φk1k + φk2kg + φk3τ , (15)

Next period’s public capital satisfies the government’s budget constraint,

gPL(k, kg, τ) = τkαkθg , (16)

and taxes are linear in the state variables,

ΨPL(k, kg) = φτ0 + φτ1k + φτ2kg. (17)

There are 7 unknown φ parameters and 2 unknown steady state values (i.e. kss and kgss).

The corresponding system of 9 equations needed to solve for these parameters consists of the Euler

Equation, the GEE, the derivatives of the Euler Equation with respect to τ , k and kg, the derivatives

of the GEE with respect to k and kg, as well as equations (15) and (16) evaluated at the steady

state (see Appendix B for a detailed description of these calculations).

Under the second approximation used with the Perturbation approach, method PQ, Ψ and g

follow equations (16) and (17), but H is quadratic in its arguments. As a result, the number of

unknown φ parameters rises to 15. The extra equations needed in this case are given by the second

derivatives of the Euler Equation.

In contrast, the LQ Method re-states problem (PM) as one with a quadratic objective subject

to a set of linear constraints. See Appendix C for a detailed description of this approach. The end

result is one where all decision rules are linear in the state variables, including the decision rule for

g in contrast to (16) under method PL.

Table 1 summarizes the steady state values of taxes and capital allocations under optimal

discretionary policy using the three methods we have just described. Table 1 also compares these

approximated steady state values with those obtained from the analytical solution. The parameters
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used in this example are θ = 0.25, β = 0.94 α = 0.33.10 All methods are very accurate in approx-

imating the steady state Markov-perfect equilibrium and, furthermore, give identical numerical

solutions up to the fifth decimal place.

Table 1.

Steady States: LQ vs. Perturbation Methods

Methodb Policya, τ k kg

Closed Form Solution 23.5000 0.03240 0.3210

LQ/PL/PQ 23.5000 0.03237 0.03205

a. The tax rate is expressed in percentage terms.

b. Convergence of the solutions is defined up to 10−9

Also of interest is the accuracy of the approximations for equilibrium transitions to the steady

state. To this end, Table 2 presents estimates of how optimal discretionary policy responds, ceteris

paribus, when the states of the economy change, Ψk and Ψkg .

Table 2.

LQ vs. Perturbation: Policy

Method Ψk Ψkg

Closed Form Solution 0.00000 0.00000

LQ −1.75032 −1.33810
PL 0.36117 0.27629

PQ −0.00001 −0.000001

Table 2 indicates that the LQ method delivers negative partial derivatives of the optimal tax

rate with respect to the state variables whereas, in our closed-form solution example, the optimal

discretionary policy is state invariant. In addition, the values of these derivatives are noticeably

different from zero. The Perturbation method applied to a linear savings rule — method PL —

overestimates the partial derivatives of the optimal tax policy with respect to the states, but the

values of these derivatives are smaller. Encouragingly, an application of the Perturbation method

applied to a quadratic approximation of the savings rules — method PQ — results in a discretionary

tax rate that is indeed almost constant, with partial derivatives that differ from zero only at the

fifth decimal place. We conclude that for this particular parameterization of the model, one needs

to allow for more curvature in the savings function in order to obtain an accurate approximation

to the decision rules.
10These parameters are discussed in the section ahead where the model is calibrated.
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5.1.1 Implications for Transition Dynamics

While the Markov steady state appears unaffected by differences in numerical methods, these

methods nevertheless yield different transition dynamics given some initial states. Figure 1 depicts

the evolution of both types of capital, taxes, and consumption that arise when the economy starts

off with initial levels of public and private capital that are 10 percent below their corresponding

steady state values. We envision, therefore, a developing economy that is transitioning to its long-

run equilibrium.

The most striking difference in these transitions concerns the evolution of taxes. While the true

solution implies a constant policy Ψ, the LQ method predicts an increase in taxes in the first period

followed by a relatively fast decline to the long-run equilibrium. The qualitative implications are

thus incorrect in this case. Given the spurious behavior in taxes, the evolution of public capital

also differs from its true solution. The LQ method overestimates growth in public investment in the

short run, giving the time path of public capital a steeper profile than warranted initially. Observe

that method PQ essentially replicates the transitions obtained under the closed form solutions.

Interestingly, the predicted paths for private capital and consumption do not differ significantly

across methods.

To gain better intuition for the differences in transition paths shown in Figure 1, Figure 2

shows the estimated responses of public capital and taxes to changes in the state variables. In the

left-hand panels, we fix public capital at its steady state value and let private capital vary (the

right-hand panels depict the opposite exercise). Note that the policy functions computed using the

LQ method, shown as the dashed lines, exactly intersect the closed form solutions, shown as the

dotted lines, at the steady state values of private and public capital. These figures, therefore, are

consistent with all approximations giving us a very accurate estimates of the long-run equilibrium

in Table 1.

In general, policy functions associated with method PQ, shown as the solid lines, are again nearly

indistinguishable from the true solutions. In sharp contrast, the policy functions obtained using the

LQ approach indicate obvious differences from the true government decision rules. Consequently,

the LQ method is unlikely to produce accurate time paths for public capital and taxes, especially in

the early stages of development when capital stocks are low. That said, both LQ and method PQ

estimates of the savings rule, H(k, kg), shown in Figure 3, are relatively closer to the true solution.

It is this feature of the numerical solutions that underlies the smaller error in the estimates of the

time path for private capital under either method in Figure 1.

Given that the LQ approach overestimates public capital investment in the short run (the

upper right-hand panel of Figure 1), but that it also overestimates tax rates initially (the lower

right-hand panel of Figure 1), the net return to savings is left relatively unaffected by the LQ

approximation. This implies that households’ consumption-savings decisions are largely unchanged,

and that potential errors in the consumption profile arising from the numerical approximation are

mitigated by these offsetting effects.
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Which numerical method should one select in the study of optimal discretionary policy prob-

lems? Our example suggests that this depends in part on the goal of the investigation. To the

extent that one is mostly interested in long-run equilibrium properties of the Markov-perfect prob-

lem, the LQ method is easy to use, fast, and can accommodate a large number of state variables

without additional complications. If the focus, however, is on transition paths, then the perturba-

tion method seems a preferable choice. The latter method is relatively simple to implement, and

allows for more flexibility in the choice of the polynomials approximating the policy functions. One

disadvantage of the perturbation method is that the number of parameters characterizing the policy

functions increases exponentially with the degree of the polynomial approximation and the number

of state variables. This introduces a trade-off between the gains from using a larger polynomial

and the error introduced by the algorithm used to solve for its parameters. For the model at hand,

with only two state variables, method PQ essentially generates the true decision and policy rules

in our benchmark case. For the remainder of the paper, therefore, we shall use this method in our

computations.

6 The Value of Government Commitment

Having addressed key aspects of optimal discretionary public investment, we briefly present the

more conventional Ramsey setting to assess the importance of having a commitment technology. We

show that the special case of an optimal constant policy, τ t = βθ ∀t ≥ 0, described in Proposition
2 also emerges as a solution to the full commitment problem under the same functional form

assumptions. In this sense, our framework nests previous results in the literature, notably Glomm

and Ravikumar (1994). Moreover, this finding implies that the commitment assumption does not

bind in our benchmark economy. That is not the case in a more general setting, and the objective

of this section is to compare allocations under the two institutional extremes of full commitment

and no commitment.

6.1 Qualitative Analysis

Consider a benevolent government that, at date zero, is concerned with choosing a sequence of tax

rates consistent with the development of public infrastructure that maximizes household welfare. In

choosing policy, this government takes as given the decentralized behavior of firms and households.

We further assume that at date zero, it can credibly commit to any sequence of policy actions. The

problem faced by this government would then be to maximize households’ lifetime utility subject

to their EE, the government budget constraint, and the economy wide resource constraint. The

corresponding Lagrangian can be written as

max
{ct,τ t,kt+1,kgt+1}∞t=0

Lt =
∞X
t=0

βtu(ct) (PR)
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+
∞X
t=0

βtµ1t {βuc(ct+1) [(1− τ t+1)Fk(kt+1, kgt+1) + 1− δ]− u(ct)}

+
∞X
t=0

βtµ2t {τ tF (kt, kgt) + (1− δ)kgt − kgt+1}

+
∞X
t=0

βtµ3t {(1− τ t)F (kt, kgt) + (1− δ)kt − kt+1 − ct} .

The constraint associated with the multiplier µ1t implies that our benevolent planner takes

households’ consumption-savings behavior as given. He can, however, influence the intertemporal

allocations they choose by altering tax policy over time. Because the capital stocks are fixed at

date 0, the first-order conditions associated with (PR) will generally differ at t = 0 and t > 0. As

first noted in Kydland and Prescott (1980), this suggests an incentive to take advantage of initial

conditions in the first period with the promise never to do so in the future. It is exactly in this

sense that the optimal policy may not be time consistent since, once date zero has passed, a planner

at date t > 0 who re-optimizes would want to start with a tax rate, τ t, that differs from what was

chosen for that date at time zero.

While Ramsey plans are typically time inconsistent, that is not necessarily so depending on

the nature of household behavior. In our benchmark economy, for example, next period’s private

capital is determined only by current investment, kt+1 = it, and savings depends only on the current

tax rate through disposable income as shown in section 3.2. In other words, future taxes have no

impact on current investment. Consequently, in implementing a tax rate at any date, the Ramsey

policymaker realizes that this rate never has an effect on past investment decisions. In this sense,

period zero is no different than any other period and the government has no incentive to renege on

its promises. The resulting policy, therefore, is time consistent. We summarize this finding in the

following proposition.

Proposition 3. When preferences are logarithmic, u(c) = log(c), technology is Cobb Douglas,

F (k, kg) = kαkθg , and capital depreciates fully within the period, δ = 1, the optimal sequence of

tax rates with commitment is time invariant and reproduces the Markov-perfect policy, τ t = βθ

∀t ≥ 0.
Proof : See Appendix D.

An implication of proposition 3 is that in the benchmark economy, there are no welfare gains

from adopting a technology that constrains governments to fulfill their promises. In other words,

the commitment assumption is not binding under this parameterization. The value of commitment,

however, is generally related to both the elasticity of intertemporal substitution and the depreciation

rate. In particular,household savings typically depend on the entire stream of tax rates, and setting

τ t > 0 at some date t affects the entire sequence of capital allocations. Since Markov policymakers

take the states they inherit as given, they never internalize the efficiency costs of distortionary
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taxes on past investment decisions. Hence, binding governments to the policy prescribed under the

Ramsey plan at every date opens up the possibility of a welfare improvement.

6.2 Quantitative Evaluation

To gauge the importance of the friction generated by a government’s inability to commit to future

policy, we carry out numerical simulations of our economy with public investment. The parameters

we use are standard and selected along the lines of other studies in quantitative general equilibrium

theory. A time period represents a year and, following Cooley and Prescott (1995), we assume an

undistorted 5.5 percent annual real interest rate, β = 0.947, a 4.8 percent capital depreciation rate,

δ = 0.048, and u(c) = log c. The share of private capital in output in the U.S. is approximately

33 percent so that we set α to 1/3. The one non-standard parameter relates to the elasticity of

public capital with respect to output. Estimates of θ vary significantly across studies. Glomm

and Ravikumar (1997) cite values ranging from as low as 0.03 (Eberts, 1986) to as high as 0.39

(Aschauer, 1989). We set θ to 0.25 to approximate a consensus view, but alternative values ranging

between 0.15 and 0.35 do not materially alter the findings below.

6.2.1 Long-Run Equilibria with and without Commitment

Table 3 summarizes properties of the Markov-perfect policy in the steady state. In contrast to the

predictions in Barro (1990), or Glomm and Ravikumar (1994, 1997), the long-run tax rate, or share

of public investment, is significantly lower than the output elasticity with respect public capital at

only 8.92 percent. In addition, we find that, ceteris paribus, as private capital falls below its long-run

value, so do time consistent tax rates, Ψk > 0. This suggest that Markov governments purposefully

create incentives for the private sector to invest in periods when private capital is lacking. At

the same time, however, optimal discretionary tax rates rise when public infrastructures fall short

of their long-run equilibrium, Ψkg < 0. In this case, higher taxes are necessary to fund public

investments.

Table 3.

Steady State Discretionary Tax Rate

Ψ (percent) Ψk Ψkg

Tax Rate 8.92 0.125 −0.215

Table 4 presents a comparison between stationary outcomes under the Markov-perfect and

Ramsey equilibria. As discussed earlier, the inability of a policymaker to commit to a sequence

of taxes results in too little public capital in the long run. Since such a government takes future

policy as given, it does not internalize the reduction in externalities implied by not developing the

constrained-efficient level of infrastructure. As a result, the accumulation of private capital is dis-

couraged in spite of the lower tax rates. The combination of lower public and private capital result
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in an output loss of approximately 1.4 percent associated with the lack of a commitment technology.

Under this calibration, this output loss translates into a long-run consumption difference of about

1 percent between Markov-perfect and Ramsey equilibria.

Table 5.

Steady State Allocations

Variable Ramsey Markov-Perfect

Tax Rate (percent) 9.23 8.92

Consumption 2.18 2.16

Private Investment 0.40 0.39

Output 2.84 2.80

Private Capital 8.26 8.19

Public Capital 5.46 5.21

Net Interest Rate 5.59 5.59

6.3 Choices and Consequences of Alternative Tax Regimes

Figure 4 shows the transition dynamics in policy, consumption, and welfare under the two extreme

institutional schemes of no commitment (Markov) and full commitment (Ramsey).11 First, the

upper left-hand panel shows that consumption paths are very close along the transition, with the

largest difference occurring in the long run at one percent. However, consumption under time

consistent policy is actually higher than under Ramsey policy in the early stages of development.

This follows from the negative income effect associated with the higher taxes implemented under

full commitment, as shown in the upper right-hand panel of Figure 4. Of course, the lower tax

revenues that emerge in the Markov equilibrium constrain the development of public infrastructure

and eventually result in both lower output and consumption.

Given the consumption streams shown in Figure 4, a basic question one may ask is whether the

better institutional framework, in our case the one where governments are bound by commitment,

would naturally arise. The lower left-hand side panel of Figure 4 depicts the instantaneous utility

derived from each of the consumption sequences, {cRt }∞t=0 and {cMt }∞t=0, under the Ramsey and the
time-consistent policy respectively. Not surprisingly, these mimic the consumption profiles. Note

that while u(cR0 ) < u(c
M
0 ) in the initial period, lifetime utility under full commitment still exceeds

that under the Markovian equilibrium. The difference in welfare measures in period zero, however,

is negligible as shown in the right-hand side panel of Figure 4. Hence, if households were to choose

what institutional framework to implement at the beginning of time, a very small cost of setting

up a commitment technology would prohibit its adoption.
11The initial conditions are such that the government under both institutional schemes inherits private and public

capital stocks that are 5 percent below their long-run level under time-consistent policy.
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Consider a household who, at date 0, is evaluating the consumptions streams {cRt }∞t=0 and
{cMt }∞t=0 that can be achieved under our two institutional frameworks. One easy way to quantify
the value of government commitment is to compute the percentage of consumption, ζ, a household

would be willing to give up at every date to make it indifferent between the two alternatives (Lucas

1987). Denote welfare at date 0 under the Ramsey and Markov-perfect policy by V R(k0, kg0) and

VM(k0, kg0) respectively. Then, ζ solves

VM(k0, kg0) =
∞X
t=0

βtu(cRt (1− ζ)),

which, under our parameterization yields

ζ = 1− (1− β)
£
V R(k0, kg0)− VM(k0, kg0)

¤
.

Thus, under our calibration of the structural parameters, we find that a cost exceeding just 0.02

percent of Ramsey consumption would be enough to deter the implementation of the better insti-

tutional environment.

Although households’ decision to allow for discretionary policy rather than adopt a binding

institution at date 0 may be entirely rational for a small positive ζ, the resulting allocations can

look considerably different in the long run. The difference in continuation utility after a century,

shown in Figure 4, emerges because the stocks of private and public capital take on very different

paths under the two alternatives. Thus, while V R(k0, kg0) and VM(k0, kg0) may be too close to

justify adopting the Ramsey plan initially for given k0 and kg0, V R(kRss, k
R
gss) and V

M(kMss , k
M
gss)

may be quite different in the long run because (kRss, k
R
gss) end up much larger than (k

M
ss , k

M
gss). A

country, therefore, that today has reached its steady state under no commitment would need to

pay a much larger share of consumption to jump to the steady state of another country that, many

years ago, adopted a commitment technology.

7 Concluding Remarks

We characterize Markov-perfect equilibria in a model where the absence of government commitment

affects public investment in infrastructure throughout an economy’s development stage. We show

that in choosing the tax rate, the government trades off intertemporal distortions in the provision of

public and private capital. The implied optimality condition allows us to apply numerical methods

that accurately approximate the Markov-perfect equilibrium.

Our findings indicate that small costs of setting up a strong institution, which we interpret as a

commitment technology, are enough to prevent its adoption. At the same time, once an institution

associated with discretionary policy is adopted, the lack of government commitment can result in

noticeably lower public infrastructure, private capital, output, and consumption in the long run.

Hence, an economy that in the past chose to forego a binding constitution would today need to give
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up a significant share of consumption to jump to the steady state it would have otherwise reached.

These findings evoke the possibility of institutional traps.

Although our findings are suggestive of discretionary institutions that persist over time, we

only consider the initial choice of whether to set up a commitment technology in this paper. To

explore whether institutional traps actually do emerge as equilibrium phenomena, one would need

to formally consider households’ choice between two institutions, say between full government

commitment and the absence of any commitment, at each date of an economy’s transition to its

long-run equilibrium. We plan to address this more complex problem in future work. Finally, our

analysis focuses on two institutional extremes. In practice, different constitutional arrangements

make it partially costly for governments to simply break past promises. Developing a framework

that more closely captures political environments that limit the feasibility of policy change would

represent a significant step towards practical policy analysis.
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A Proof of Proposition 1

This appendix develops and interprets the Government Euler Equation (GEE), the equation that

represents the optimal intertemporal allocation for a Markov policymaker. Although the derivation

below applies to a generic model with two state variables, it should be clear that our generalization

of the method proposed in Klein et al. (2004) can be straightforwardly extended to models with

a larger state space. Throughout the derivation, we make use of the fact that in equilibrium,

H(k, kg,Ψ(k, kg)) = H(k, kg) and g(k, kg,Ψ(k, kg)) = KG(k, kg).
To give an idea of the logic of underlying the derivation of the GEE (with respect to policy),

consider how one derives the standard Euler equation for the representative household (with respect

to savings). In the latter case, one takes the first-order condition with respect to capital next period,

which involves a derivative of the value function. Using the envelope theorem, one obtains a simple

expression for this derivative in terms of marginal utility and the net return to savings. The

resulting expression can then updated one period and substituted in the first-order condition to

yield the standard household Euler equation (EE).

In the case of the government Euler equation, the relevant first-order condition with respect to

taxes involves the derivatives of the value function with respect to the two state variables, k and

kg,

Rτ + β
h
V 0kHτ + V

0
kggτ

i
= 0 (A1)

where Rτ = uc [Ck0Hτ + Cτ ], V 0k = Vk(k
0, k0g), and V

0
kg
= Vkg(k

0, k0g). However, in contrast with

how the household Euler equation is derived, the envelope theorem does not hold and substituting

for V
0
k and V

0
kg
is much more involved. The envelope theorem fails to hold because in choosing

taxes today, the current government is constrained by the future policy rule, Ψ. The rest of this

appendix, therefore, is concerned with substituting out for V 0k and V
0
kg
using expressions that only

involve households’ decision rules and the government policy rule.

Differentiating the value function (13) with respect to each state (where we can cancel out the

terms multiplying derivatives of Ψ by equation A1), we obtain12

Vk = Rk + β
h
V 0kHk + V

0
kggk

i
, (A2)

Vkg = Rkg + β
h
V 0kHkg + V

0
kggkg

i
. (A3)

At this stage, we have a system of three functional equations (A1), (A2), and (A3), in four unknown

functions, Vk, Vkg V
0
k, and V

0
kg
. Since tomorrow’s policymaker faces the same problem, however,

equations (A1) through (A3) updated one period must also hold. Updating these equations then

yields a system of six equations in six unknowns (with the additional unknowns being V 00k and V
00
kg).

Solving this system gives expressions for Vk and Vkg in terms of the policy and decision rules only,
12 In doing so, we make use of the fact that in equilibrium, H(k, kg,Ψ(k, kg)) = H(k, kg) and g(k, kg,Ψ(k, kg)) =

KG(k, kg).
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which we can then update one period and substitute back into the first-order condition (A1) to

obtain the GEE that determines Ψ. Details of the actual derivations follow, in a slightly different

order, in order to arrive more directly at the GEE.

We can use the necessary condition (A1) to obtain

V 0k = −
Rτ + βV 0kggτ

βHτ
. (A4)

Replacing (A1) into equation (A2), and rearranging gives

Vk = Rk −Rτ
Hk
Hτ

+ βV 0kgBk. (A5)

where Bk = gk−gτ HkHτ
. Replacing (A1) once more into equation (A3), and defining Bkg analogously,

we get

Vkg = Rkg −Rτ
Hkg
Hτ

+ βV 0kgBkg . (A6)

We can now rearrange equation (A5) to get

V 0kg =

∙
Vk −Rk +Rτ

Hk
Hτ

¸
1

βBk
,

Substituting this last expression into (A6) gives

Vkg = Rkg −Rτ
Hkg
Hτ

+
Bkg
Bk

∙
Vk −Rk +Rτ

Hk
Hτ

¸
, (A7)

which we can update to get an expression for V 0kg as a function of V
0
k,

V 0kg = R
0
kg −R

0
τ

H 0
kg

H 0
τ

+
B0kg
B0k

∙
V 0k −R0k +R0τ

H 0
k

H 0
τ

¸
. (A8)

As explained above, so we now update (A6) a second time in order to introduce additional equations

that help us solve for the unknown derivatives of the value functions,

V 00kg = R
00
kg −R

00
τ

H 00
kg

H 00
τ

+
B00kg
B00k

∙
V 00k −R00k +R00τ

H 00
k

H 00
τ

¸
. (A9)

By updating the first-order condition (A1), we obtain another expression involving V 00k as a function

of V 00kg ,

V 00k = −
R0τ + βV 00kgg

0
τ

βH 0
τ

. (A10)

Replacing (A10) into (A9) then yields an expression for V 00kg that only depends on equilibrium

decision rules (and not on the derivatives of the value function).

V 00kg =

Ã
R00kg −R

00
k

B00kg
B00k

+R00τλ
00 −

B00kg
B00k

R0τ
βH 0

τ

!
H 0

τ

H 0
τ + g

0
τ

B00kg
B00k

, (A11)
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where λ00 =
H00
k g

00
kg
−H00

kg
g00k

H00
τ g

00
k−H00

k g
00
τ
. By updating equation (A6) and substituting (A11) into it, one obtains

an expression for V 0kg . Following the same steps with equation (A5), one arrives at an analogous

expression for V 0k. These last two equations can then be substituted back into the first-order

condition (A1) to obtain the GEE. After cumbersome algebra, this GEE can be simplified to

Rτ + β
h
R0kHτ +R

0
kggτ +R

0
τA

0
τ

i
+ β2

h
R00kH̃

0
τ +R

00
kg g̃

0
τ +R

00
τA

00
τ

i
= 0, (GEE)

where

Ri = uc [Ck0Hi + Ci] i = τ , k, kg,

A0τ = −
B00k

³
H 0
kHτ +H

0
kg
gτ

´
+B00kg

³
g0kHτ + g

0
kg
gτ

´
B00kH

0
τ +B

00
kg
g0τ

,

H̃ 0
τ = ξB00kg , g̃

0
τ = −ξB00k , and

A00τ = ξ
³
H 00
kgB

00
k −H 00

kB
00
kg

´
,

with Bi = gi − gτ HiHτ
i = k, kg and ξ = −Hτ

B0kHτ+B0kggτ

B00kH
0
τ+B

00
kg
g0τ
. In general, Hτ < 0, and Hk,Hkg > 0.

Since k0g = g(k, kg, τ) = τF (k, kg), then gi > 0 for i = k, kg, τ .

To obtain the expression in proposition 1, substitute the definition of Ri, i = k, kg, τ , in equation

(GEE) to obtain

uc[−gτ −Hτ ] + βu0c

n
[f 0k + 1− δk − g0k −H 0

k]Hτ + [f
0
kg + 1− δkg − g0kg −H

0
kg ]gτ + [−g

0
τ −H 0

τ ]A
0
τ

o
+β2u00c

n
[f 00k + 1− δk − g00k −H 00

k ]H̃
0
τ + [f

00
kg + 1− δkg − g00kg −H

00
kg ]A

00
kg + [−g

00
τ −H 00

τ ]A
00
τ

o
= 0.

Using the definition of the wedges provided in proposition 1, we can collect terms and write

this equation as

Hτ∆k + gτ∆kg + β
n
H̃ 0

τ∆
0
k + g̃

0
τ∆

0
kg−

βu00c

h
(g00kg +H

00
kg)g̃

0
τ + (g

00
k +H

00
k )H̃

0
τ + (g

00
τ +H

00
τ )A

00
τ

io
= 0.

It can be shown, after straightforward algebraic manipulations, that the last row of this last

equation is identically zero. Therefore, the GEE is simply

Hτ∆k + gτ∆kg + β
n
H̃ 0

τ∆
0
k + g̃

0
τ∆

0
kg

o
= 0.

B The Perturbation Method

In this appendix, we describe the Perturbation approximation algorithm used to solve for the

Markov perfect equilibrium in Section 5. As in appendix A, we make use of the fact that in

equilibrium, H(k, kg,Ψ(k, kg)) = H(k, kg) and g(k, kg,Ψ(k, kg)) = KG(k, kg).
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As shown in the main text, the functional equation that determines the policy rule Ψ is given

by the GEE,

Hτ∆k + gτ∆kg + β
n
H̃ 0

τ∆
0
k + g̃

0
τ∆

0
kg

o
= 0,

where H̃ 0
τ and g̃

0
τ are defined in proposition 1. To obtain expressions for Hi, i = k, kg, τ , we apply

the implicit function theorem to the household Euler equation (EE), since this functional equation

determines H(k, kg, τ) ∀ k, kg, τ .13 The EE is given by

−uc
£
C(k, kg, τ , k0)

¤
+ βuc[C(k0, k0g,Ψ(k0, k0g), k00)] ·

©
F 0k(1−Ψ(k0, k0g)) + 1− δ

ª
= 0,

where k0g = τf(k, kg) + (1 − δkg)kg, k
00 = H(k0, k0g,Ψ(k

0, k0g)), and which we can summarize as an

implicit function Φ,

Φ
¡
k, kg, τ , k

0, k0g,Ψ(k
0, k0g),H(k

0, k0g,Ψ(k
0, k0g))

¢
= 0. (B1)

Since the Euler equation depends on the policy rule Ψ(k, kg), calculations of the derivatives Hi
i = k, kg, τ , involve derivatives of the policy function, Ψk and Ψkg . Consequently, the GEE will

also depend on these derivatives. Letting the vector x summarize our state space, x = (k, kg), we

can then write the GEE as the function Ω,

Ω(x, τ ,x0,x00,Ψ0,Ψ00,Hτ ,H
0
τ ,H

00
τ ,
©
H 0
i,H

00
i ,Ψ

0
i,Ψ

00
i

ª
i∈x) = 0. (B2)

In the steady state, k = k0 = k00 = k, kg = k0g = k
00
g = kg, and Ψ(k, kg) = τ . Hence, equations

(B1) and (B2) reduce to

Φ(k, kg, τ) = 0, (B3)

Ω(k, kg, τ ,Hτ ,
©
Hi,Ψi

ª
i∈x) = 0, (B4)

while the government budget constraint becomes

δkg = τf(k, kg). (B5)

It is evident from these equations that, in order to find the levels k, kg, and τ = Ψ(k, kg) in the

steady state, one must also solve for the derivatives Hτ and
©
Hi,Ψi

ª
i∈x . This implies that the

system of three equations (B3) through (B5) are not sufficient to uniquely determine the steady

state.

To address this problem, Krusell, Kuruscu, and Smith (2002) propose to use a ‘perturbation’

method based on Judd’s (1998). The method consists in approximating each of the rules (in this

case H and Ψ) by an n-th order polynomial. Given these polynomial approximations, calculating

their derivatives is straightforward. This method, therefore, recasts the problem of finding the
13Note that the derivatives of the unknown functions in the GEE also depend on the derivatives of the function g

that pin down the evolution of public capital. The derivatives of g in turn can be easily obtained by differentiating

the government budget constraint.
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decision rules into one where we simply solve for the parameters of two polynomials. The system

of equations needed to solve for these parameters consists of the EE, the GEE, the government

budget constraint, and a set of derivatives of the EE and GEE with respect to their arguments,

all evaluated at the steady state. The higher the order of the polynomials describing the decision

rules, the more derivatives of the EE and GEE need to be taken into account. An algorithm for

methods PL and PQ in the text follows:

Step 1:

Under method PL, H(k, kg, τ) = φk0 + φk1k + φk2kg + φk3τ , and Ψ(k, kg) = φτ0 + φτ1k + φτ2kg.

Hence, all derivatives of order 2 and above are zero. Under this approximation of the policy rules,

we have 9 unknowns {k, τ ,φk0,φk1,φk2,φk3,φτ0,φτ1,φτ2}, so that 9 equations are necessary to complete
the system. Three of these equations are given by equations (B3) through (B5). Furthermore, since

the EE must hold for all k, kg, τ , we can differentiate it with respect these arguments (Φk, Φkg and

Φτ ), which delivers three more equations. Two more equations are given by the derivatives of the

GEE with respect to k and kg (Ωk, Ωkg). Finally, the last equation is given by the approximation

of H evaluated at the steady state, k = φk0 + φk1k + φk2kg + φk3τ .

Step 2:

Under method PQ, H is quadratic in its arguments while we keep Ψ as a linear functions of the

states. The number of unknown parameters increases to 15. The set of equations needed to solve

the system are the 9 equations obtained from step 1, as well as the equations resulting from differen-

tiating the EE a second time with respect to its three arguments (Φkk,Φττ ,Φkgkg ,Φkkg ,Φτk,Φτkg),

which gives the remaining 6 equations.

Step 3:

In principal, this procedure can be continued, while increasing the degree of the polynomials

for H and Ψ, until changes in k, kg, and τ become negligible.

C The LQ Approximation Method

This appendix describes a simple Linear Quadratic approximation algorithm used to solve for the

Markov perfect equilibrium in Section 4.14

Substituting for consumption using the household budget constraint, we can write momentary

utility as

u(1, k, kg, | i | τ) =
£
(1− τ)kαl1−αkθg − i

¤1−σ − 1
1− σ

,

14Versions of this algorithm applied to envionments with asymmetric information between agents and policymakers

are used in Svensson and Woodford (2001), as well as Dotsey and Hornstein (2003).
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where u = log c when σ = 1. We distinguish between a 3×1 vector of state variables, s = {1, k, kg},
a 1×1 vector of flow variables, f = {i}, and a 1× 1 vector of policy variables R = {τ}. We include
a constant in s so as to allow the algorithm to deliver both the policy functions and the levels of the

variables simultaneously. In general, period utility can be expressed as u(Z), where Z = (s, f,R) is

a vector of size (1 + np+ nf + nτ)×1, where np, nf , and nτ denote the number of predetermined,
flow, and policy variables respectively. With this notation, we can write the value function in (PM)

as

V (s) = max
s0, f, R

{u(Z) + β∗V (s0)}

We can also express the accumulation equations in (2) and (9) as

s0 = Cs(s, f,R), (C1)

and the Euler equation constraint as

Cf1[s
0, f 0, R0] = Cf0[s, f,R]. (C2)

Let R = Ψ(s) and f = G(s) denote the policy functions associated with the dynamic program

(PM).

The solution essentially involves one main iterative procedure. We guess a solution for the

policy variable in the steady state, bR, which allows us to compute all steady state allocations, as
well as an LQ approximation of the dynamic program around that steady state. We show below

that the solution to this LQ approximation involves 3 algebraic equation in 3 unknowns, namely the

linear approximations of Ψ, G, and V . Given the resulting Ψ, we then check whether the implied

policy in the steady state, R, coincides with the assumed guess bR. If not, we update bR and repeat
the process until bR and R have converged. Below is the algorithm in more detail.

Step 1:

Suppose that policy in the steady state is given by bR. We can then use the accumulation
equations, the household’s resource constraint, and the Euler equation to solve for the steady state

values of state and flow variables, bs and bf .
Step 2:

Now, derive a linear approximation of (C1) and (C2),

s0 = Asss+Asff +Bss,

and

Cf1ss
0 + Cf1ff

0 + Cf1RR
0 = Cy0Z, (C3)

respectively, as well as a quadratic approximation of period utility, ZTUZ, where U is a square

symmetric matrix of size (1 + np+ nf + nτ)× (1 + np+ nf + nτ).
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Step 3:

Guess the policy decision matrices Ψj for R and Gj for f , as well as the value function matrix

Vj to get sTVjs. Substituting these guesses into the linearized constraints, equation (C3) becomes

Cf1ff
0 = Cy0Z − Cf1ss0 − Cf1RR0

= Cy0Z − Cf1s[Ass, Asf , Bs]Z − Cf1RΨj [Ass, Asf , Bs]Z,

or

f 0 = C−1f1f {Cy0 − [Cf1s +Cf1RΨj ] [Ass, Asf , As]}Z.

Write this last expression as

f 0 = [Afs(Ψj), Aff (Ψj), Bf (Ψj)]Z,

and use the guess Gj to get

Gj [Asss+Asff +BsR] = Afs(Ψj)s+Aff (Ψj)f +Bf (Ψj)R.

If Aff −GAsf is invertible, then we have

[−GjAsf +Aff (Ψj)] f = [GjAss −Afs(Ψj)]s+ [GjBs −Bf (Ψj)]R,

or

f = [Aff (Ψj)−GjAsf ]−1[GjAss −Afs(Ψj)]| {z }eA(Gj ,Ψj)
s+ [Aff (Ψj)−GjAsf ]−1[GjBs −Bf (Ψj)]| {z }eB(Gj ,Ψj)

R,

where eA and eB are shown to depend explicitly on the solution guesses Gj and Ψj . To save on

notation, we write eA(Gj ,Ψj) and eB(Gj ,Ψj) as eAj and eBj respectively. It now follows that
s0 = Asss+Asf [ eAjs+ eBjR] +BsR

= [Ass +Asf eA]| {z }
A∗(Gj ,Ψj)

s+ [Bs +Asf eB]| {z }
B∗(Gj ,Ψj)

R.

Our dynamic program becomes

sTVj+1s = max
©
ZTUZ + β∗s0TVjs

0ª
subject to

s0 = A∗js+B
∗
jR.

Substituting for f in Z, we write the problem as

sTVj+1s =
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max
R, s0

(£
sT , RT

¤ " Qss QsR

QRs QRR

#"
s

R

#
+ β∗

£
A∗js+B

∗
jR
¤T
Vj
£
A∗js+B

∗
jR
¤)
, (C4)

where

Qss =
h
Is, eATj i

"
Uss Usf

Ufs Uff

#"
IseAj
#
,

QsR =
h
Is, eATj i

("
UsR

UfR

#
+

"
Uss Usf

Ufs Uff

#"
0eBj
#)

,

and

QRR = URR +
h
0, eBTj i

"
Uss Usf

Ufs URR

#"
0eBj
#
+
h
0, eBTj i

"
UsR

UfR

#
+ [URs, URf ]

"
0eBj
#
.

Observe that (C4) is a standard discounted linear regulator problem (Sargent and Lungquist 2000,

Chapter 4). The first-order conditions for the optimal choice of the policy instrument, therefore,

yields

Ψj+1 = −
£
QRR + β∗B∗Tj VjB

∗
j

¤−1 £
QRs + β∗B∗Tj VjA

∗
j

¤
. (C5)

Since f = Gs, and f = eAjs+ eBjR above, it follows that
Gj+1 = eAj + eBjΨj+1. (C6)

Furthermore, by substituting for R in (C4), we have that

Vj+1 =
£
I, ΨTj+1

¤(
Q+ β∗

"
A∗Tj
B∗Tj

#
Vj
£
A∗j , B

∗
j

¤)" I

Ψj+1

#
. (C7)

Iterating on (C5), (C6), and (C7) above then delivers solutions for Ψ, G, and V .

Step 4:

Now, recall that the solution to equations (C5), (C6), and (C7) obtains for a linear quadratic

approximation of (PM) conditional on a guess for policy in the steady state, bR, in step 1. We need
to check, therefore, whether the policy implied by the solution to these equations, R, coincides withbR (recall that s contains a constant). If not, we update our guess for bR and repeat steps 1 through
4 until bR = R.
D Proof of Proposition 3

Under our benchmark economy, the Ramsey Problem now reads as

max
{τ t,kt+1,kgt+1}∞t=0

∞X
t=0

βt ln((1− τ t)yt − kt+1)
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subject to

kt+1 = αβyt(1− τ t), (D1)

and

kgt+1 = τ tyt, (D2)

where we have used the closed-form solution for households’ savings found in section (3.2), and

yt = kαt k
θ
gt. Let λt and µt denote the Lagrange multipliers associated with constraints (D1) and

(D2) respectively.

The Ramsey planner’s optimality conditions are

λt =

µ
µt +

1

ct

¶
1

αβ
,

λt −
1

ct
− αβyt+1

kt+1

∙
λt+1αβ(1− τ t+1) + µt+1τ t+1 −

(1− τ t+1)

ct+1

¸
= 0,

µt +
θβyt+1
kgt+1

∙
(1− τ t+1)

ct+1
− λt+1αβ(1− τ t+1)− µt+1τ t+1

¸
= 0.

Straightforward algebra allows us to dispose of the multipliers and obtain,

1

αβ(1− τ t)
+

θ

αβ(ατ t − θ(1− τ t))
− θ

(1− τ t)(ατ t+1 − θ(1− τ t+1))
= 0.

It is then easy to see that τ t = τ t+1 = βθ satisfies the above equation. Since the government faces

the same first order conditions at t = 0 and t > 0, this Ramsey solution is time consistent.
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Figure 1: Evolution of allocations under the three methods (k0 = 0.9kss and kg0 = 0.9kgss)
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Figure 2: Public capital accumulation -g(k, kg)- and tax rule -Ψ(k, kg)- as functions of the states
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Figure 3: Private Capital Accumulation - H(k, kg) - as a function of the states
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Figure 4: Dynamics of Consumption, Taxes, and Welfare, k0 = 0.95kss and kg0 = 0.95kgss
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