
Convergence Properties of the

Likelihood of Computed Dynamic Models∗

Jesús Fernández-Villaverde

University of Pennsylvania

Juan F. Rubio-Ramírez

Federal Reserve Bank of Atlanta

Manuel Santos

Arizona State University

August 23, 2004

Abstract
This paper studies the econometrics of computed dynamic models. Since these

models generally lack a closed-form solution, economists approximate the policy
functions of the agents in the model with numerical methods. But this implies
that, instead of the exact likelihood function, the researcher can only evaluate an
approximated likelihood associated to the approximated policy function. What
are the consequences for inference of the use of approximated likelihoods? First,
we show that, as the approximated policy function converges to the exact policy,
the approximated likelihood also converges to the exact likelihood. Second, we
prove that the approximated likelihood converges at the same rate as the ap-
proximated policy function. Third, we find that the error in the approximated
likelihood gets compounded with the size of the sample. Fourth, we discuss con-
vergence of Bayesian and classical estimates. We complete the paper with three
applications to document the quantitative importance of our results.
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1. Introduction

This paper studies the following problem. Most dynamic models do not have a closed-form

solution. Instead, the economist needs to approximate the solution using a numerical method.

This approximation implies that, when the researcher builds the likelihood function of the

model given some data, she is not evaluating the exact likelihood, but only an approximated

likelihood given her numerically approximated solution to the model. What are the effects

on statistical inference of using an approximated likelihood instead of the exact likelihood

function?

Over the last twenty years, there has been considerable progress in the field of dynamic

models in economics, both at micro and at macro level. The popularity of this class of

models has raised an interest in their estimation using a likelihood-based approach. There

are several reasons for that interest. First, likelihood inference offers flexibility to handle a

large class of assumptions regarding preferences, technology and information sets. Second,

likelihood inference allows for the estimation of the whole range of parameters required to

perform policy experiments. Third, the likelihood delivers good efficiency properties and

small sample behavior even under potential model misspecifications.

Without being exhaustive, we enumerate a few examples of the successful estimation of

dynamic models with a likelihood approach. In the area of discrete choice dynamic program-

ming models, likelihood inference has been applied to a wide range of questions in industrial

organization, labor economics, development, health economics, demography and public fi-

nance. Among many others, we can cite Flinn and Heckman (1982), Miller (1984), Wolpin

(1984), Pakes (1986), Rust (1987), Rosenzweig and Wolpin (1993), Daula and Moffitt (1995),

Ferrall (1997), Keane andWolpin (1997), Rust and Phelan (1997), Gilleskie (1998) and Keane

and Moffitt (1998). In macroeconomics, examples of how to estimate dynamic general equilib-

rium economies using the likelihood function include Sargent (1989), McGrattan, Rogerson,

andWright (1997), Landon-Lane (1999), DeJong, Ingram, andWhiteman (2000), Schorfheide

(2000), Dib (2001), Otrok (2001), Ireland (2002), Fernández-Villaverde and Rubio-Ramírez

(2003a), Lubik and Schorfheide (2003), Rabanal and Rubio-Ramírez (2003), and Smets and

Wouters (2003).

All these applications face a similar problem: how to evaluate the likelihood function of

the model. A key difficulty in that evaluation is that dynamic models imply policy rules

for the agents for which we do not have closed-form solutions except in a few cases. In

real practice, researchers circumvent that problem by approximating the policy rules using

numerical methods and building the likelihood associated to those approximated policy rules.
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But this approach implies that, when we perform inference, the economist does not use

the likelihood of the exact model under consideration but an approximated likelihood. Con-

sequently, it is important to asses how the likelihood generated by numerically approximated

policy functions relate to the exact likelihood. We need to ask ourselves questions like: How

different are the approximated and the exact likelihood function? Does the approximated

likelihood function converge to the exact likelihood as the approximated policy function con-

verges to the exact policy function? If it does, at what speed? What are the effect of the

approximation on the parameter estimates? And on hypothesis testing?

These questions are not only important theoretically but also from an applied perspective.

Let us think about the following case. Numerical methods allow the user to control the error

in the approximation. For example, we can add more points to the grid in the dynamic

programming algorithm. However, the reduction in the error that we get with the additional

points is achieved at the cost of a speed penalty. Given this trade-off between speed and

accuracy, how many points are enough? Can we relate the error created by the grid to the

error in the likelihood? Do we need to make our choice of grid dependent on the size of the

sample?

Unfortunately, not much is known about the convergence properties of the likelihood of

computed dynamic models. To fill this gap, we build on the recent work by Santos and

Peralta-Alva (2003) and Santos (2003), who have derived some pioneering results on the con-

vergence of the moments generated by a numerically approximated model when the computed

policy functions converge to the exact ones. Santos and Peralta-Alva have shown that any

moment computed using the numerically approximated policy converge to their exact values

as the approximation errors of the computed solution go to zero. We extend this research

to the study of the convergence properties of the approximated likelihood functions. This

extension raises a whole new range of issues not previously explored, as far as we know, either

in economics or statistics.

Our most important result is that, for given parameter values, as the approximated policy

function converges to the exact policy function in the sup norm, the approximated likelihood

function also converges to the exact likelihood. This is a basic consistency result because it

ensures convergence of likelihood ratios and of the marginal likelihoods.

We also show that the approximated likelihood function converges at the same rate as the

approximated policy function. However, the error in the approximated likelihood function

gets compounded with the size of the sample. The intuition is as follows. Period by period,

small errors in the policy function accumulate at the same rate as the sample size grows.

This means that, as the sample size goes to infinity, a linear approximation will deliver an
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approximation of the likelihood that will fail to converge. This finding suggests that solution

methods were the reduction of the error is not possible, like linear approximations, may face

difficulties with large samples.

Our third result regards the convergence of estimates. We show that the convergence of

Bayesian estimators comes directly from our first result, the convergence of the likelihood.

The case of maximum likelihood estimates is more involved. Pointwise convergence of the

likelihood does not allow to swap the argmax and lim operators. However, we can impose

mildly stringent conditions to prove the uniform converge of the approximated likelihood

function to the exact likelihood. Uniform convergence implies the convergence of maximum

likelihood point estimates.

We complete the paper with three economic applications, where we progressively docu-

ment how our results work in action. The applications illustrate how our findings are useful

for practitioners and how the issues related with the use of approximated likelihood functions

are quantitatively important.

A related, but different, issue to the focus of this paper is how to evaluate the likelihood

when that function is intractable given some policy rules. This evaluation is usually performed

by simulation methods (see Gouriéroux andMonfort, 1996). Pakes and Pollard (1989) provide

results regarding the convergence and asymptotics of simulation estimators. Of course both

problems can exist at the same time: we may need to approximate the decision rule of the

agents and, even with that approximation, resort to simulation methods to evaluate the

likelihood. This would be the case, for example, if we want to estimate the neoclassical

growth model when the solution method is nonlinear.

The rest of the paper is organized as follows. Section 2 presents our setting to discuss

the convergence of the likelihood. Section 3 shows our main result concerning convergence.

Section 4 discusses the speed of convergence and its relation with the sample size. Section

5 presents our findings regarding the convergence of maximum likelihood point estimates.

Section 6 studies three examples to see how the results of the paper hold in practice. Section

7 concludes. An appendix includes all the proofs of the results in the paper.

4



2. The Setting

In this section we present the environment in which we will work to investigate the convergence

properties of the likelihood of computed dynamic models.

The equilibrium law of motion of a large class of dynamic economies can be specified as

a stochastic dynamic system of the form (see Stokey, Lucas and Prescott, 1989, for details):

St = ϕ (St−1,Wt; γ) (1)

Yt = g (St, Vt; γ) . (2)

Here St is a vector of state variables that characterize the evolution of the system. The state

variables can be partitioned between a vector of endogenous state variables, Kt, and a vector

of exogenous state variables Zt. The vector of state variables St = (Kt, Zt) belongs to the

compact set S = K × Z ⊂ Rl × Rm. Often, we will use the measurable space (S,S)where
S is the Borel σ − field. The variables Wt and Vt are i.i.d. shocks with compact supports

in subsets of the Euclidean space, with bounded and continuous densities. Wt and Vt are

independent of each other. More involved stochastic structures can be accommodated by

increasing appropriately the dimensionality of the state space. The observables in each period

are stacked in a vector Yt. If we have T periods of observations, we define Y T ≡ (Y 01 , ..., Y 0T )0
with Y 0 = {∅}. We assume that Y T is distributed according to the probability density
function pT0 (·). Finally, γ, that belongs to the compact set Υ ⊂ Rs, is the vector of structural
parameters, i.e. those describing the preferences, technology and information sets of the

economy.

It is also the case that dim (Wt) + dim (Vt) ≥ dim (Yt) . This assumption ensures that the
model is not stochastically singular. We do not impose any restrictions on how those degrees

of stochasticity are achieved. Fernández-Villaverde and Rubio-Ramírez (2003a) discuss the

issue in detail. Finally, let us partition {Wt} into two sequences {W1,t} and {W2,t}, such that
Wt = (W1,t,W2,t) and dim (W2,t) + dim (Vt) = dim (Yt).

This partition is not restrictive. It accommodates the case where {W2,t} is a zero-
dimensional sequence immediately. We could also allow {W1,t} to be a zero-dimensional
sequence at the cost of heavier notation throughout the paper. At the same time, the par-

tition is useful to increase the class of models that can be studied, since it let us deal with

cases where dim (Vt) < dim (Yt) but dim (W2,t) > 0.

The equation (1) is known as the transition equation since it governs the evolution of states

over time. The equation (2) is called the measurement equation because it relates states and
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observables. Note that, abusing notation, we allow the possibility that the dimensionality of

the shocks could be zero and that the states might be part of the observables without noise

(for example if g is the identity function along some dimension).

Before continuing with our analysis, we make the following assumptions:

Assumption 1. ϕ (·, ·; γ) and g (·, ·; γ) are continuously differentiable, with bounded partial
derivatives, for all γ.

Assumption 1 arises naturally in a number of economic models. For example, the conti-

nuity of ϕ (·, ·; γ) often follows from results like Theorem 4.8 in Stokey, Lucas and Prescott

(1989) that ensure the continuity and single-valuedness of the policy functions of agents.

Now we make some definitions that will be useful in the rest of the paper. First, let

W t
i = {Wi,m}tm=1 and let wti be a realization of the random variable W t

i for i = 1, 2 and

∀t. Let V t = {Vm}tm=1 and let vt be a realization of the random variable V t for ∀t. Let
St = {Sm}tm=0 and st be a realization of the random variable St for ∀t. Let Y t = {Ym}tm=1
and yt be a realization of the random variable Y t for ∀t. We also define W 0

i = {∅} and
y0 = {∅}.
We introduce some additional constructs. Let C (S) be the space of all continuous,

S−measurable, real-valued function on S. Similarly, let V (S) be the space of all bounded,
S−measurable, real-valued function on S. We endowC (S)with the norm kfk = sups∈S |f (s)|
and induce a Banach space. For a vector-valued function f = (. . . , f i, . . .) we define kfk =
max1≤i≤l+m kf ik. Convergence of a sequence of functions {fj} should be understood in the
metric induced by this norm.

We define the operator Ψ from the space of probability measures on S into itself as:

(Ψµ) (A; γ) =

Z
P (s, A; γ)µ (ds; γ) for all A ∈ S (3)

where P (·, ·; γ) is a transition kernel on (S,S) generated by the transition equation (1)
evaluated at parameter values γ. Standard arguments show that there exist a fixed point of

the operator Ψ for all γ. We will call this fixed point µ∗ (S; γ) , the invariant distribution

for S on S of the dynamic model. Note that an invariant distribution for S also implies an
invariant distribution for yt through the measurement equation (2).

With the invariant measure, we can define the likelihood of the data as follows. If yT is

a realization of the random variable Y T = {Yt}Tt=1, its likelihood conditional on parameter
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values γ is given by:

L
¡
yT ; γ

¢
=

TY
t=1

p
¡
yt|yt−1; γ

¢
=

TY
t=1

Z
p
¡
yt|yt−1,W t

1, S0; γ
¢
p
¡
W t
1, S0|yt−1; γ

¢
dW t

1dS0, (4)

where

p
¡
W t
1, S0|yt−1; γ

¢
= p (W1,t; γ) p

¡
W t−1
1 , S0|yt−1; γ

¢
, (5)

and

p
¡
W t−1
1 , S0|yt−1; γ

¢
=
p
¡
yt−1|yt−2,W t−1

1 , S0; γ
¢
p
¡
W t−1
1 , S0|yt−2; γ

¢
p (yt−1|yt−2; γ) , (6)

for all t and γ. Finally, we set p (W 0
1 , S0|y0; γ) dS0 = µ∗ (dS0; γ). Note that this equality im-

plies that the Radom-Nykodim derivative of µ∗ (dS0; γ) with respect to the Lebesgue measure

exists. Since this assumption is not necessary, we do not state it explicitly, but it simplifies

the notation.

Pasting together (5) and (6) we can see that p (W t
1, S0|yt−1; γ) has the following recursive

structure:

p
¡
W t
1, S0|yt−1; γ

¢
= p (W1,t; γ)

p
¡
yt−1|yt−2,W t−1

1 , S0; γ
¢
p
¡
W t−1
1 , S0|yt−2; γ

¢
p (yt−1|yt−2; γ) ,

for all t, S0 and γ.

Define the pseudo-maximum likelihood point estimate (PMLE) as

bγ ¡yT¢ ≡ argmax
γ∈Υ

p
¡
yT ; γ

¢
.

Note that we do not assume that there exists a value γ∗ such that p
¡
yT ; γ∗

¢
= pT0

¡
yT
¢

(hence the term pseudo). Statistically this means that the model may be misspecified. Far

more importantly, from an economic perspective, this is a direct consequence of the fact that

dynamic models are false by construction.

Now we make a basic and rather weak assumption about our ability to use the model to

think about the data.

Assumption 2. We can evaluate the conditional densities p (yt|W t
1, y

t−1, S0; γ) for all t, S0,

W t
1, and γ.

Assumption 2 implies that, for any realizations s0, wt1 and y
t of the random variables

S0, W
t
1 and Y

t, we can evaluate the probability of the model described by (1) and (2) of
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generating the observables. In other words, assumption 2 implies that for any s0, wt1 and y
t,

the following system of equations

S1 = ϕ (s0, (w1,1,W2,1) ; γ)

ym = g (Sm, Vm; γ) for m = 1, 2, ...t

Sm = ϕ (Sm−1, (w1,m,W2,m) ; γ) for m = 2, 3, ...t

has a unique solution (vt (s0, wt1, y
t; γ) , st (s0, w

t
1, y

t; γ) , wt2 (s0, w
t
1, y

t; γ)) , and that we can

evaluate the probabilities p (vt (s0, wt1, y
t; γ) ; γ) and p (wt2 (s0, w

t
1, y

t; γ) ; γ).

To simplify the notation we are going to write (vt, st, wt2) instead of the more cumbersome

(vt (s0, w
t
1, y

t; γ) , st (s0, w
t
1, y

t; γ) , wt2 (s0, w
t
1, y

t; γ)). Then, we have

p
¡
yt|W t

1, y
t−1, S0; γ

¢
= p (vt; γ) p (w2,t; γ) |dy (vt, w2,t; γ)|

for all W t
1, S0, and γ, and all t, where |dy (vt, w2,t; γ)| stands for the determinant of the

Jacobian of yt with respect to Vt and W2,t evaluated at vt and w2,t. Note that assumption

2 only requires the ability to evaluate the density, not of having a closed form for it. As a

consequence, we allow numerical or simulation methods for this evaluation.

To avoid trivial problems, we assume that the model assigns positive probability to the

data, yT , for any initial S0. This is formally reflected in the following assumption:

Assumption 3. For all S0, W t
1, and γ the model gives some positive probability to the data

yT , i.e.

p
¡
yt|yt−1,W t

1, S0; γ
¢
> ξ ≥ 0,

for all t.

Assumption 3 and repeated applications of equation (6) lead us to write the likelihood

function, (4), in the following recursive way:

L
¡
yT ; γ

¢
=

TY
t=1

p
¡
yt|yt−1; γ

¢
=

Z ÃZ TY
t=1

p (W1,t; γ) p
¡
yt|yt−1,W t

1, S0; γ
¢
dW t

1

!
µ∗ (dS0; γ) .

(7)

This structure will turn useful in order to prove the theorems in the next section.
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3. Convergence of the Likelihood

If the researcher knows the transition and measurement equations, ϕ (·, ·; γ) and g (·, ·; γ), the
evaluation of the likelihood function (7) is conceptually a simple task, although potentially

cumbersome to implement. However, in most real life applications, the economist only has

access to numerical approximations to the transition and measurement equations, ϕj (·, ·; γ)
and gj (·, ·; γ). We index the approximations by j to emphasize that, frequently, the solution
method that we use to approximate the unknown transition and measurement equations

admits refinements that will imply that ϕj (·, ·; γ), and gj (·, ·; γ) converge to their exact
values as j goes to infinity. For example, the dynamic programming algorithm allows for an

increase in the number of points on the grid, perturbation approaches for a higher order of

the expansion, and projection methods for more basis functions.

But the use of ϕj (·, ·; γ), and gj (·, ·; γ) raises a fundamental issue. The researcher cannot
evaluate the exact likelihood function, L

¡
yT ; γ

¢
implied by the exact ϕ (·, ·; γ), and g (·, ·; γ)

because she does not have access to those two last functions. The researcher can only evaluate

the approximated likelihood Lj
¡
yT ; γ

¢
implied by the approximated ϕj (·, ·; γ), and gj (·, ·; γ).

What are the effects for inference of employing Lj
¡
yT ; γ

¢
instead of L

¡
yT ; γ

¢
? Does Lj

¡
yT ; γ

¢
converge to L

¡
yT ; γ

¢
? If so, at what speed? And what about the point estimates?

The objective of this section is to show that, for any given value of the structural para-

meters, γ, the approximated likelihood function, Lj
¡
yT ; γ

¢
, converges to the exact likelihood

function L
¡
yT ; γ

¢
, as the approximated transition and measurement equations ϕj (·, ·; γ) and

gj (·, ·; γ) converge to the exact functions. Formally, we prove that, for any given γ, the

following limit holds:

Lj
¡
yT ; γ

¢
=

TY
t=1

pj
¡
yt|yt−1; γ

¢→ TY
t=1

p
¡
yt|yt−1; γ

¢
= L

¡
yT ; γ

¢
,

as ϕj (·, ·; γ) → ϕ (·, ·; γ) and gj (·, ·; γ) → g (·, ·; γ). We argue below that this convergence,
beyond providing a sound foundation to empirical procedures, has several important conse-

quences for estimation.

We organize the section as follows. First, lemma 1 replicates Theorem 3.2 in Santos

and Peralta-Alva (2003). This theorem asserts the bilinear convergence of Ψjµ∗j to Ψµ∗,

for any given γ, where Ψj is the equivalent operator to (3) for the approximated transition

equation, and µ∗j is the fixed point of Ψj. Then, lemmas 2, and 3 show that, for any given

γ, p (yt|yt−1,W t
1, S0; γ) and p (yt|yt−1,W t

1, S0; γ) are continuous as a function of S0. These

lemmas are then used to show the main result of the section, the convergence of the likelihood,
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in proposition 5. Finally, we discuss the effects of this result on several aspects of inference.

3.1. Convergence of the Invariant Distribution

Let µ∗j (S; γ) be the invariant distribution of S on S associated with the approximated func-
tions ϕj (·, ·; γ) and gj (·, ·; γ):

µ∗j (S; γ) =
¡
Ψjµ

∗
j

¢
(A; γ) =

Z
Pj (s,A; γ)µ

∗
j (ds; γ) for all A ∈ S

where Pj (·, ·; γ) is a transition kernel on (S,S) induced by the approximated transition equa-
tion.

Under assumption 1, as the approximated functions converge to the exact functions, the

invariant distributions generated by the approximations to the measurement and transition

equations will converge to the invariant distributions created by exact measurement and

transition functions. This result is formally stated in Theorem 3.2 in Santos and Peralta-

Alva (2003), that we reproduce here.

Lemma 1. Let γ ∈ Υ, and ϕj (·, ·; γ) → ϕ (·, ·; γ), and gj (·, ·; γ) → g (·, ·; γ). Then, under
assumption 1, every weak limit point µ∗ (S; γ) of

©
µ∗j (S; γ)

ª
is an invariant distribution

associated with ϕ (·, ·; γ) and g (·, ·; γ).
In other words: this lemma tells us that the invariant distribution correspondence is

upper semicontinuous. As discussed by Santos and Peralta-Alva (2003), the theorem asserts

the bilinear convergence of Ψjµ
∗
j to Ψµ

∗.

3.2. Continuity of Conditional Probabilities

We now proceed to show how the conditional probability p (yt|yt−1,W t
1, S0; γ) is a continuous,

real-valued function of S0.

Lemma 2. Let γ ∈ Υ. Under assumptions 1 and 2, p (yt|yt−1,W t
1, S0; γ) ∈ C (S0) for all t.

The proof of the lemma, as the proof of the other results in the paper, is technical and it

can be found in the appendix. From this lemma we can also derive that L
¡
yT ; γ

¢
is bounded

since p (yt|yt−1,W t
1, S0; γ) is continuous with bounded support. This point will be useful

below.

We now need to prove that the conditional probability pj (yt|yt−1,W t
1, S0; γ) associated

with the approximated transition and measurement equations is also a continuous, real-valued

function of S0. In order to do so, we assume that:
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Assumption 4. ϕj (·, ·; γ) and gj (·, ·; γ) are continuous for all γ, and all j. ϕj (·, ·; γ) and
gj (·, ·; γ) are continuously differentiable at all points except in a finite number of points for
all γ and all j. If they exist, partial derivatives are bounded, and the bounds are independent

of j.

Assumption 4 assures continuity of ϕj (·, ·; γ) and gj (·, ·; γ) at all points, while both func-
tions could be no differentiable at a finite number of points. This lack of differentiability

allows us to consider solution methods that, by construction, have kinks at a finite number of

points. Those include, for example, the commonly used Value Function Iteration with linear

interpolation or the Finite Elements Method as described in McGrattan (1999).

We also have the equivalent of assumption 2 for approximated functions:

Assumption 5. We can evaluate the conditional densities pj (yt|yt−1, ·, ·; γ) at all points
except in a finite number of points for all t, all γ, and all j.

As in the previous section, assumption 5 implies that for any s0, wt1, and y
t, the following

system of equations:

S1 = ϕj (s0, (w1,1,W2,1) ; γ)

ym = gj (Sm, Vm; γ) for m = 1, 2, ...t

Sm = ϕj (Sm−1, (w1,m,W2,m) ; γ) for m = 2, 3, ...t

has a unique solution
¡
vtj (s0, w

t
1, y

t; γ) , stj (s0, w
t
1, y

t; γ) , wtj,2 (s0, w
t
1, y

t; γ)
¢
, and that we can

evaluate the probabilities p
¡
vtj (s0, w

t
1, y

t; γ) ; γ
¢
and p

¡
wtj,2 (s0, w

t
1, y

t; γ) ; γ
¢
.

As we did before and to simplify the notation, we write
¡
vtj, s

t
j, w

t
j,2

¢
instead of the much

more complicated
¡
vtj (s0, w

t
1, y

t; γ) , stj (s0, w
t
1, y

t; γ) , wtj,2 (s0, w
t
1, y

t; γ)
¢
. Since assumption 4

implies that dyj (vj,t, wj,2,t; γ) exists for all but for a finite set of s0, and wt1, we have that:

pj
¡
yt|yt−1, ·, ·; γ

¢
= p (vj,t; γ) p (wj,2,t; γ) |dyj (vj,t, wj,2,t; γ)|

for all but for a finite number of points for all t, all γ, and all j. Notice that the Jacobian of

yt with respect to Vt and W2,t in the approximated solution, dyj (·, ·; γ), is now a function of
j, because of its dependency on ϕj (·, ·; γ) and gj (·, ·; γ).
We also define the pseudo-maximum likelihood point estimate (PMLE) of the approxi-

mated model as bγj ¡yT¢ ≡ argmaxγ∈Υ pj ¡yT ; γ¢, and require that the approximated model
can explain the data even if it does so with arbitrarily low probability:

11



Assumption 6. The model gives some positive probability to the data yT , i.e.

pj
¡
yt|yt−1, ·, ·; γ

¢ ≥ ξ > 0.

at all points except in a finite number of points for all t, all γ, and all j.

Now we can prove the equivalent to lemma 2 for the approximated functions.

Lemma 3. Let γ ∈ Υ. Under assumptions 4 and 5, then pj (yt|yt−1,W t
1, S0; γ) ∈ C (S0) at

all except in a finite number of points for all t and all j.

As before in the case of the exact probability, this lemma ensures that Lj
¡
yT ; γ

¢
is

bounded.

3.3. Main Result: Convergence of the Likelihood Function

In order to prove convergence of the likelihood function, and since the densities pj (yt|yt−1; γ)
and p (yt|yt−1; γ) depend on the Jacobians of ϕj (·, ·; γ), gj (·, ·; γ), ϕ (·, ·; γ) , and g (·, ·; γ),
we need to consider the convergence of such Jacobians as an intermediate step. To show

that dϕj (·, ·; γ) → dϕ (·, ·; γ) and dgj (·, ·; γ) → dg (·, ·; γ), as ϕj (·, ·; γ) → ϕ (·, ·; γ) and
gj (·, ·; γ)→ g (·, ·; γ), we first need to assume that:

Assumption 7. ϕj (·, ·; γ) and gj (·, ·; γ) have bounded second partial derivatives at all ex-
cept in a finite number of points for all γ and all j. The bounds are independent of j.

This assumption is satisfied naturally by most solution methods for dynamic models, since

a common strategy is to find an approximation to the unknown functions using some well

behaved basis, like polynomials. Our previous examples of the Value function iteration and

the Finite Elements method fit into this category. Other popular procedures as linearization

and perturbation methods do as well (see Judd, 1998).

Our next lemma shows how assumption 7 assures that, wherever the transition and mea-

surement equations are differentiable, dϕj (·, ·; γ) → dϕ (·, ·; γ) and dgj (·, ·; γ) → dg (·, ·; γ),
as ϕj (·, ·; γ)→ ϕ (·, ·; γ) and gj (·, ·; γ)→ g (·, ·; γ).

Lemma 4. Let γ ∈ Υ. Under assumption 7, if ϕj (·, ·; γ) → ϕ (·, ·; γ) and gj (·, ·; γ) →
g (·, ·; γ), then dϕj (·, ·; γ)→ dϕ (·, ·; γ) and dgj (·, ·; γ)→ dg (·, ·; γ).
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Now, we are ready to use lemmas 1, 2, 3, and 4 to prove the main result of this section,

the convergence of the likelihood function. Formally:

Proposition 5. Let γ ∈ Υ. Under assumptions 1 to 7, if ϕj (·, ·; γ) → ϕ (·, ·; γ) and
gj (·, ·; γ)→ g (·, ·; γ), then:

TY
t=1

pj
¡
yt|yt−1; γ

¢→ TY
t=1

p
¡
yt|yt−1; γ

¢
.

for all t.

The result is key for applied work: it states that, for any given γ, as we get better and

better approximations of the policy function in our dynamic model, the likelihood computed

also converges to the exact likelihood. This finding provides a foundation to the empirical

estimates based on the approximation of policy functions since it guaranties, at least as-

ymptotically, that we are finding the right object of interest, the likelihood function of the

model. It is important to notice that proposition 5 only shows pointwise convergence of the

likelihood function. Section 5 analyzes the additional assumptions needed to prove uniform

convergence.

3.4. Applications of the Result

The result in proposition 5 has a number of implications. Here we will highlight two of them.

First, pointwise convergence implies that, for any given γ and γ0, the ratio of likelihood

functions converges.

Corollary 6. Let γ, γ0 ∈ Υ. Under assumptions 1 to 7, if ϕj (·, ·; γ)→ ϕ (·, ·; γ), gj (·, ·; γ)→
g (·, ·; γ), ϕj (·, ·; γ0)→ ϕ (·, ·; γ0) , and gj (·, ·; γ0)→ g (·, ·; γ0) , then:

Lj
¡
yT ; γ0

¢
Lj (yT ; γ)

→ L
¡
yT ; γ0

¢
L (yT ; γ)

.

This result is useful in all the contexts in which likelihood ratios are built, like in clas-

sical hypothesis testing or comparison of models (Voung, 1989), or when implementing the

Metropolis-Hasting algorithm.

The second implication of the result comes from its direct effects for Bayesian inference.

There are two main objects of interest in the Bayesian paradigm: the marginal likelihood of

the model, p (yt) , and the posterior distribution of the parameters, p (γ|yt).
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The marginal likelihood of the exact model is defined as p (yt) =
R
Υ
L
¡
yT ; γ

¢
π (γ) dγ,

while the marginal likelihood of the approximated model is pj (yt) =
R
Υ
Lj
¡
yT ; γ

¢
π (γ) dγ.

Marginal likelihoods are important as measures of fit of the model and to build Bayes ratios,

a key step in the Bayesian comparison of models (see Geweke, 1998, for details).

Given that L
¡
yT ; γ

¢
, and Lj

¡
yT ; γ

¢
are bounded, an application of the Arzelà’s Theorem

shows the convergence of the marginal likelihood when the approximated likelihood converge

pointwise.

Corollary 7. Under assumptions 1 to 7, if ϕj (·, ·; γ) → ϕ (·, ·; γ) and gj (·, ·; γ) → g (·, ·; γ)
for all γ, then pj (yt)→ p (yt) .

The second object of interest for Bayesians is the posterior distribution of the parameters.

Given some prior distribution of the parameters, π (γ), the posterior is given by:

p
¡
γ|yt¢ ∝ L ¡yT ; γ¢π (γ)

if we have the exact likelihood, and

pj
¡
γ|yt¢ ∝ Lj ¡yT ; γ¢π (γ)

if we have the approximated likelihood. Thus, proposition 5 implies that we also have con-

vergence of the posterior as stated by next corollary.

Corollary 8. Let γ ∈ Υ. Under assumptions 1 to 7, if ϕj (·, ·; γ)→ ϕ (·, ·; γ) and gj (·, ·; γ)→
g (·, ·; γ), then pj (γ|yt)→ p (γ|yt) .

The posterior distribution of the parameters of the model, beyond its intrinsic interest

as our conditional belief, is also useful to evaluate expectations of the form E (h (γ) |yt) in
which h (γ) is a function of interest. Examples of functions of interest include loss functions for

point estimation and point prediction, indicator functions for percentile statements, moment

conditions, predictive intervals or turning point probabilities.

If we develop the expectation:

E
¡
h (γ) |yt¢ = 1

p (yT )

Z
Υ

h (γ)L
¡
yT ; γ

¢
π (γ) dγ

Analogously, for the approximated likelihood, we have:

Ej
¡
h (γ) |yt¢ = 1

pj (yT )

Z
Υ

h (γ)Lj
¡
yT ; γ

¢
π (γ) dγ.
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Then, we can prove the following corollary:

Corollary 9. Under assumptions 1 to 7, if ϕj (·, ·; γ) → ϕ (·, ·; γ), gj (·, ·; γ) → g (·, ·; γ)
for all γ, and h (γ)Lj

¡
yT ; γ

¢
π (γ) and h (γ)L

¡
yT ; γ

¢
π (γ) are Riemann-integrable, then

Ej (h (γ) |yt)→ E (h (γ) |yt) .

These three corollaries illustrate how most work within the Bayesian framework is covered

by simple extensions of the converge of the likelihood result.

3.5. Limitations of the Result

We have briefly discussed several applications of the main result of the section, the con-

vergence of the likelihood function. However, important as it is, the result is also limited.

Proposition 5 shows pointwise convergence of the likelihood function for any given γ. Unfor-

tunately, pointwise convergence does not implies converge on the PMLE estimate of γ since

for that result we need uniform convergence of the likelihood. In section 5 we show the addi-

tional assumptions needed for uniform convergence. More problematic will be the attempts

to show convergence of the estimates of standard errors, since they require statements about

the convergence of the derivative of the likelihood.

4. Speed of Convergence of the Likelihood

The objective of this section is to analyze, for any given value of γ, the speed of converge of

the approximated likelihood function, Lj
¡
yT ; γ

¢
, to the exact likelihood function, L

¡
yT ; γ

¢
.

Given a bound for the difference between the approximated and exact transition and measure-

ment equations,
°°ϕj (·, ·; γ)− ϕ (·, ·; γ)°° ≤ δ and kgj (·, ·; γ)− g (·, ·; γ)k ≤ δ, we will obtain a

bound for the difference between the approximated and exact likelihood functions:¯̄̄̄
¯
TY
t=1

pj
¡
yt|yt−1; γ

¢− TY
t=1

p
¡
yt|yt−1; γ

¢¯̄̄̄¯ .
We organize the section as follows. First, we prove in lemma 10 that p (yt|yt−1,W t

1, S0; γ)

is Lipschitz with respect to S0 . Second, we use this result in lemma 12 to bound the difference

between ¯̄
pj
¡
yt|yt−1,W t

1, S0; γ
¢− p ¡yt|yt−1,W t

1, S0; γ
¢¯̄
.

Finally, we employ lemmas 10 and 12 to bound the difference between the approximated and

exact likelihood functions in proposition 13.
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Let us introduce some additional assumptions that we need in the section:

Assumption 8. The densities of Wt and Vt are differentiable, with bounded partial deriva-

tive, for all γ.

Assumption 9. ϕ (·, ·; γ) and g (·, ·; γ) are twice continuously differentiable, with bounded
second partial derivative, for all γ.

Now we can prove that:

Lemma 10. Let γ ∈ Υ. Under assumptions 1, 2, 8, and 9, p (yt|yt−1,W t
1, S0; γ) is continu-

ously differentiable, with bounded partial derivatives, with respect to S0 for all t.

Furthermore, we also have that:

Corollary 11. Let γ ∈ Υ. Under assumptions 1, 2, 8, and 9, p (yt|yt−1,W t
1, S0; γ) is Lipschitz

with respect to S0 for all t, with Lipschitz constant Lp.

Once we have the continuity of p (yt|yt−1,W t
1, S0; γ), the next step is to bound the differ-

ence between: ¯̄
pj
¡
yt|yt−1,W t

1, S0; γ
¢− p ¡yt|yt−1,W t

1, S0; γ
¢¯̄
,

because this difference will be a key component when we evaluate the differences between

likelihoods.

In order to do so, we parametrize both ϕj (·, ·; γ), and gj (·, ·; γ) in the following way;
ϕj (·, ·; γ) = ϕ (·, ·; γ, θj), and gj (·, ·; γ) = g (·, ·; γ, θj), where θj ∈ Φ, ∀j, where Φ is compact
subset of RM . The restrictions that this parametrization implies on the family of policy

functions we can study are stated formally in the following assumption.

Assumption 10. ϕj (·, ·; γ) (= ϕ (·, ·; γ, θj)), and gj (·, ·; γ) (= g (·, ·; γ, θj)) have bounded par-
tial derivatives with respect to θ, as a function of S,W, and V . The bounds are independent

of j.

Lemma 12. Let γ ∈ Υ. Under assumptions 1 to 10, if
°°ϕj (·, ·; γ)− ϕ (·, ·; γ)°° ≤ δ and

kgj (·, ·; γ)− g (·, ·; γ)k ≤ δ, then:

¯̄
pj
¡
yt|yt−1, ·, ·; γ

¢− p ¡yt|yt−1, ·, ·; γ¢¯̄ ≤ χδ,

for all but a finite number of points, for some finite χ, and all t.
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In the next proposition we apply Theorem 3.7 of Santos and Peralta-Alva (2003). Before

doing so we impose a contractivity condition on ϕ. This restriction is equivalent to Condition

C in Santos and Peralta-Alva (2003).

Condition 1. There exists some constant 0 < α < 1 such thatZ
kϕ (S,W ; γ)− ϕ (S0,W ; γ)k dQ (W ; γ) ≤ α kS − S0k

for all S, S0, and γ.

Condition C arises naturally in a large class of applications in economics. For example, it

appears in the stochastic neoclassical growth model (Schenk-Hoppé and Schmalfuss, 2001), in

concave dynamic programs (Foley and Hellwig, 1975, and Santos and Vigo, 1998), in learning

models (Schmalensee, 1975, and Ellison and Fudenberg, 1993) and in some stochastic games

(Sanghvi and Sobel, 1976). Also, it is a common condition in the literature on Markov Chains

(Stenflo, 2001).

Now we are ready to prove the main result of the section. Given a bound for the difference

between the approximated and exact transition and measurement equations, we can bound

the difference between the approximated and exact likelihood functions. Formally:

Proposition 13. Let γ ∈ Υ, and let condition 1 hold. Under assumptions 1 to 10, if°°ϕj (·, ·; γ)− ϕ (·, ·; γ)°° ≤ δ, and kgj (·, ·; γ)− g (·, ·; γ)k ≤ δ, then¯̄̄̄
¯
TY
t=1

pj
¡
yt|yt−1; γ

¢− TY
t=1

p
¡
yt|yt−1; γ

¢¯̄̄̄¯ <
µ
TBχ+

L

1− α

¶
δ.

for some finite B and L.

Proposition 13 states that the difference between the likelihoods is bounded by a linear

function of the length of the sample of observations, T , and the bound on the error in

the transition and measurement equation δ. This results means that in order to guaranty

convergence in the estimation of dynamic models, the error in the policy function must depend

on the length of the sample: the longer the sample, the smaller the policy function error.

Otherwise, the bound in the difference between the approximated and the exact likelihood

goes to infinity.

The intuition is as follows. Small errors in the policy function accumulate at the same

rate than the sample size grows. This problem is not very relevant if, for example, we are
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calibrating the model à la Kydland-Prescott and computing simulated moments since the

policy errors can cancel each other when finding a mean or a variance (we are just stating

that a generalized law of large numbers holds as shown by Santos and Peralta-Alva, 2003).

However, the errors in the policy function do not cancel out in the likelihood since the

likelihood records their magnitude regardless of their sign.

What are the practical implications of proposition 13? We highlight three. First, that

there is an inherent limitation in the use of linearization methods to estimate dynamic equilib-

rium models. After Sargent (1989), a large literature has followed the strategy of linearizing

a dynamic model and estimate it with the Kalman filter. Examples include Ireland (2002),

Landon-Lane (1999), McGrattan, Rogerson, and Wright (1997), Rabanal and Rubio-Ramírez

(2003), Schorfheide (2000), and Smets and Wouters (2003), among many others.

However, proposition 13 shows that this linear approach to estimation of nonlinear models

is due to fail as the sample size grows. The reason is that linearization (either in levels or in

logs) fixes the policy function error and this error cannot be improved upon without losing the

linearity of the state space representation required by the Kalman filter.1 As a consequence,

as the sample size grows, the divergence between the exact and approximated likelihood also

grows to infinity.

Even if the bias introduced in small samples by the linearization is difficult to gauge in

general, our examples in the next section suggest that the error may be quite important for

the sample sizes commonly used in macroeconomics (quarterly, postwar U.S. data, around

200 observations). The proposition 13 and the numerical evidence should be interpreted, at

least, as word of caution regarding the indiscriminate use of linearization. Also, it suggests

that justifying linearization methods based on small errors in the policy function may be

misleading for estimation purposes.

A second implication of proposition 13 is that, when we use nonlinear methods to solve

and estimate a dynamic model, we may want to make the accuracy of the solution a function

of the sample size. Larger samples are, of course, more informative than smaller ones, but

to squeeze the extra information we need to avoid the accumulation of policy function errors

over the sample.

The third implication is that, when we build likelihood ratios between a model for which

we can compute the exact likelihood (for example a VAR) and a model for which we need to

1Tricks like bias correction in the linearization (i.e. linearizing around a point that is not the determin-
istic steady state to get a more accurate solution as in Collard and Juillard, 2001) or changes of variables
(Fernández-Villaverde and Rubio-Ramírez, 2003b), are not a solution to this problem, because they only
make δ smaller but not dependent on the size of the sample.
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approximate the likelihood (like a dynamic general equilibrium model), the accumulation of

errors in the likelihood of latter model may lead to a likelihood ratio test (or analogously to

a Bayes factor) to an incorrect conclusion.

Proposition 13 also suffers from limitations. First, as all bounds, it not clear whether

or not it is tight and consequently, informative for practitioners. Second, it does not offer a

constructive way to evaluate the different constants in the bound. Finally, the bound depends

on δ, in general an unknown constant, because to find it we will need to use the exact policy

function that, by the nature of our exercise, is unknown.

To partially address the first two limitations, we will offer some numerical evidence in

section 6 that indicates that the bound is informative and that we can estimate the constants

for certain examples. With respect to the third limitation, we can relate δ, that is unknown,

to the size of the Euler equation residuals, which are easily computed. Santos (2000) shows

that, for a large class of dynamic optimization problems, the approximation error of the policy

function is of the same order of magnitude than the size of the Euler equation residual. As

a consequence we could substitute δ for an Euler error estimate and obtain a bound of the

same order of magnitude.

5. Convergence of the Maximum Likelihood Estimates

In section 3 we showed the convergence of the approximated likelihood function and the

convergence of Bayesian estimates. However, we mentioned that we could not guaranty

the convergence of the PMLE. The reason was that, since our convergence was pointwise,

we could not in general swap the lim and the argmax operators. To fill this gap in our

analysis, this section provides some conditions under which the PMLE of the approximated

likelihood function, bγj ¡yT¢, will converge to PMLE of the exact likelihood function, bγ ¡yT¢.
In particular, we show that if the policy functions converge uniformly in the parameter space,

i.e. for any δ, there is a N such that ∀j ≥ N,
°°ϕj (·, ·; ·)− ϕ (·, ·; ·)°° ≤ δ and kgj (·, ·; ·)− g (·, ·; ·)k ≤ δ

for all S,W, V , and γ, then the likelihood function also converge uniformly implying the

convergence of the PMLE.

Our first step is to show that if the policy functions converge uniformly in the parameter

space, then pj (yt|yt−1,W t
1, S0; γ) converges uniformly to p (yt|yt−1,W t

1, S0; γ). To accomplish

this goal, we restrict the way in which γ can enter the densities of Wt and Vt:
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Assumption 11. The densities of Wt and Vt are continuous with respect to γ.

Analogously, we modify assumptions 1, 4, 8, and 9:

Assumption 12. The bounds in assumptions 1, 4, 8, and 9 are independent of γ.

And, finally, we substitute 10 by the following new assumption:

Assumption 13. ϕj (·, ·; ·) (= ϕ (·, ·; ·, θj)) and gj (·, ·; ·) (= g (·, ·; ·, θj)) have bounded partial
derivatives with respect to θ, as a function of S,W, V, and γ. The bounds are independent

of j.

These new three assumptions assume that all the bounds are uniform on γ. Armed with

our stronger assumptions, we can modify lemma 12 to get:

Lemma 14. Under assumptions 1 to 9, and assumptions 11 to 13, if the policy functions

converge uniformly in the parameter space, then there is a N such that ∀j ≥ N :
¯̄
pj
¡
yt|yt−1, ·, ·; γ

¢− p ¡yt|yt−1, ·, ·; γ¢¯̄ ≤ χδ,

for all but in a finite number of points, for some finite χ, all t, and all γ.

We can also modify proposition 13 to get:

Proposition 15. Let condition 1 hold. Under assumptions 1 to 9, and assumptions 11 to

13, if the policy functions converge uniformly in the parameter space, then there is a N such

that ∀j ≥ N : ¯̄̄̄
¯
TY
t=1

pj
¡
yt|yt−1; γ

¢− TY
t=1

p
¡
yt|yt−1; γ

¢¯̄̄̄¯ <
µ
TBχ+

L

1− α

¶
δ.

for some finite B and L, and all γ.

Proposition 15 implies, that if the policy functions converge uniformly in the parameter

space, then the approximated likelihood function also converges uniformly to the exact like-

lihood function. Uniform convergence of the likelihood function implies convergence of the

maximum, and therefore of the PMLE. Formally:
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Corollary 16. Let condition 1 hold. Under assumptions 1 to 9, and assumption 13, if the

policy functions converge uniformly in the parameter space, then:

bγj ¡yT ¢→ bγ ¡yT¢ .
Finally, note that even under the more restrictive assumptions of this section, we cannot

deliver the convergence of the partial derivatives of the approximated likelihood function.

This problems limits our ability to interpret the standard errors and confidence intervals

built using classical methods.

6. Three Applications

In this section we present three examples, ordered in terms of complexity, to illustrate how

our results hold in real life applications. First, we study the case where the exact optimal

policy function follows a simple autoregressive process. The approximated policy function is

also an autoregressive process but with slightly different parameters. This example gives us

a feeling for how the results work in a stylized environment without the need to be explicit

about the underlaying economic theory. Then, we study a linearized neoclassical growth

model. We look at a case where, instead of the exact linear policy function, we employ an

also linear policy rule, but with slightly different coefficients. Finally, we analyze a nonlinear

neoclassical growth model. Thanks to a carefully chosen calibration, this model has a close-

form solution that allows us to evaluate the likelihood. We compare the exact likelihood with

the one that we would evaluate if we computed an approximated optimal decision function

using value function iteration on a grid.

6.1. An AR(1) Optimal Policy Function Example

As mentioned before, we study first a stylized environment. This simple example, however,

is already rich enough to highlight most of the theoretical results in the paper.

Let yT = (y0, ..., yT ) be some given data, where yt ∈ R for all 0 ≤ t ≤ T . Let us assume
that there is an unspecified dynamic economic model that implies the following optimal policy

function for the agent:

yt = ρyt−1 + σεt, (8)

where εt ∼ iid N (0, 1). We will call this policy function the exact model.
Note that we can write model (8) in the state space form of equations (1) and (2), making

(1) equal to equation (8) and (2) equal to the identity function.
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The likelihood for this model given data yT is equal to:

L
¡
yT ; ρ,σ

¢
=

1q
2πσ2

1−ρ2
exp

µ
−1
2

1− ρ2

σ2
y0

¶ TY
t=1

1√
2πσ2

exp

Ã
−(yt − ρyt−1)

2

2σ2

!
.

Now, let us imagine that, instead of the exact model (8), for some reason, the economist

can only compute the approximated policy function:

yt = ρ∗yt−1 + σ∗εt. (9)

We will call (9) the approximated model.

In this approximated model, the autoregressive component ρ∗ and the scaling factor σ∗

are computed by some solution method that delivers ρ∗ 6= ρ and/or σ 6= σ∗. Given our data

yT , the likelihood of the model (9) is:

L
¡
yT ; ρ∗,σ∗

¢
=

1q
2πσ∗2
1−ρ∗2

exp

µ
−1
2

1− ρ∗2

σ∗2
y0

¶ TY
t=1

1√
2πσ∗2

exp

Ã
−(yt − ρ∗yt−1)

2

2σ∗2

!
.

In order to apply the results of section 3, we need to fix ρ, σ, and the approximated

ρ∗ and σ∗. For convenience, we choose ρ = 0.9, σ = 1, ρ∗ = ρ − υ, and σ∗ = σ + υ,

where υ is a parameter that we will play with. In the terminology of section 4, we write

δ = max (|ρ− ρ∗| , |σ − σ∗|). Clearly δ = υ and hereon we will refer directly to δ. The data

yt will be a sample of 1000 observations generated randomly from process (8).2

Figure 6.1.1 plots the absolute value difference between the likelihoods of the exact and the

approximated model,
¯̄
L
¡
yT ; ρ,σ

¢− L ¡yT ; ρ∗,σ∗¢¯̄ , as a function of δ for a range between
0 and 0.3. We can see how, as δ goes to zero, the absolute value difference between the

likelihoods also goes to zero. This result matches the theoretical predictions reported in

proposition 5 of section 3.

We illustrate next the results from section 4. Proposition 13 states that, for a fixed sample

size, the absolute value difference between the likelihoods of the exact and the approximated

model is proportional to δ. Therefore, if we reduce δ in half, the absolute value difference

2For simplicity of exposition, in the three applications, we are omitting the issue of the support of the
innovations to the model. Our theorems require bounded support of their densities, while our assumption of
normality of εt implies that its support is the whole real line. We can fix this problem assuming that the
normal distribution is truncated above and below by a number bigger than any number that the floating point
arithmetic of the computer can evaluate. Analogously, we forget about the restriction that, in the computer,
we can only use the computable reals instead of the real line.
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between the likelihoods should also be approximately reduced in half. This result is confirmed

by the simulation. Table 6.1.1 reports the absolute value difference between the likelihoods

for different values of δ.

Table 6.1.1: Absolute Value Difference between the Likelihoods as a Function of δ

δ
¯̄
L
¡
yT ; ρ,σ

¢− L ¡yT ; ρ∗,σ∗¢¯̄
0.3000 48.884

0.1500 22.162

0.0750 10.163

0.0375 4.8075

0.0188 2.3298

A second implication of proposition 13 is that, for a fixed δ, as the sample size increases,

the absolute value difference between the likelihoods increases linearly with the sample size.

In addition, the slope of the increase is proportional to δ. Figure 6.1.2 shows the absolute

value difference between the likelihoods for different δ as a function of the sample size. As

expected, the larger the sample size, the larger the difference for any value of δ. Figure 6.1.2

also shows, to better emphasize the slope, a fitted line to the likelihood. As expected, the

slopes are proportional to δ.

These two results, the linearity of the difference of the likelihoods on δ and the sample

size, emphasize the usefulness for practitioners of the bound in proposition 13.

We checked that all the result above hold for different sequences of δ, for changes of only

one of the two parameters, for different values of ρ and σ, for different data yt, and for different

sample sizes. In that sense, our reported numbers are to interpreted as a representative sample

of our findings.

6.2. A Linear Neoclassical Growth Model Example

Now we study an example more explicitly motivated by economic theory. We pick the sto-

chastic neoclassical growth model with leisure, linearize it around the steady state and ask

what we will happen if we incur in an error in the coefficients of the optimal linear policy

function.

Let yT = (y0, ..., yT ) be some given data, where yt ∈ R3 for all 0 ≤ t ≤ T . The components
of yt are output, hours worked, and gross investment. Let us assume we want to calculate

the likelihood of data yT implied by the neoclassical growth model where, in addition, we

observe yT with measurement error Vt.
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In this model there is a representative household, whose preferences over consumption ct
and leisure 1− lt are represented by the utility function

U = E0

∞X
t=1

βt−1

³
cξt (1− lt)1−ξ

´1−τ
1− τ

where β ∈ (0, 1) is the discount factor, τ controls the elasticity of intertemporal substitution,
ξ pins down labor supply, and E0 is the conditional expectation operator.

The only good in this economy is produced according to the production function eztλkαt l
1−α
t

where kt is the aggregate capital stock, lt is the aggregate labor input, λ is a scale parameter

and zt is the technology level. zt follows an AR(1) zt = ρzt−1+²t with ²t ∼ N (0,σ²). We con-
sider the stationary case (i.e., |ρ| < 1). The law of motion for capital is kt+1 = it + (1− η)kt

where it is investment and η is the depreciation factor. Finally, the economy satisfies the

resource constraint ct + it = eztλkαt l
1−α
t .

A competitive equilibrium can be defined in a standard way. Since both welfare theorems

hold, we can solve the equivalent and simpler social planner’s problem. We can think about

this problem as finding policy functions for consumption c (·, ·), labor l (·, ·) , and next period’s
capital k0 (·, ·) that deliver the optimal choices as functions of the two state variables, capital
and the technology level.

A way to solve the model is to linearize its first order conditions and resource constraint

around its deterministic steady state. Such procedure delivers an optimal linear policy func-

tion. Then, the state-space representation has the following form:

St = G (γ) +A (γ)St−1 +B (γ)Wt, (10)

and

Yt = F (γ) + C (γ)St +D (γ)Vt, (11)

where A (γ), B (γ), C (γ), D (γ), G (γ), and F (γ) are matrices with the required dimensions

which depend on the parameters of the model collected in vector γ. Note how this represen-

tation is nothing more than a particular case of (1) and (2), where Wt = ²t, and Vt are three

measurement errors. Let L (yt; γ) be the likelihood function associated with (10) and (11).

With a bit of abuse of the language, we will call this state-space representation the exact

model. This is the sense in which we name this example a linear neoclassical growth model.

Let us now assume that we cannot evaluate (10) and (11), but only approximated versions
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of them of the form:

St = G
∗ (γ) +A∗ (γ)St−1 +B∗ (γ)Wt, (12)

and

Yt = F
∗ (γ) + C∗ (γ)St +D∗ (γ)Vt, (13)

where again, Wt = ²t, and Vt are three independent measurement errors with mean zero and

variances σ1, σ2, and σ3. Then we have

δ1 = max (kG∗ (γ)−G (γ)k , kA∗ (γ)−A (γ)k , kB∗ (γ)−B (γ)k) ,
δ2 = max (kF ∗ (γ)− F (γ)k , kC∗ (γ)− C (γ)k , kD∗ (γ)−D (γ)k) ,

and δ = max (δ1, δ2). Finally, let L∗ (yt; γ) be the likelihood function associated with (12)

and (13).

We generate a sample size of 200 observation, roughly the size of postwar U.S. macro

data, to give a feeling for the behavior of the likelihood in realistic applications. For the

same reason, we set the parameters at standard values: α = 0.4, β = 0.989, ρ = 0.96,

ξ = 0.356, η = 0.02, λ = 1, σ = 0.007, σ1 = 0.016, σ2 = 0.011 and σ2 = 0.087. To perturb

our matrices, A (γ), B (γ), C (γ), D (γ), G (γ), and F (γ), we add to each of their elements

a normal random number. This perturbation, plus the use of the sup norm, implies that δ is

equal to the biggest of these random numbers. By controlling the standard deviation of the

normal random number, we can play with the size of δ.3

Figure 6.2.1 plots the absolute value difference between the likelihoods of the exact and

the approximated model
¯̄
L
¡
yT ; γ

¢− L∗ ¡yT ; γ¢¯̄ as a function of δ for our sample. As before,
as δ goes to zero, the absolute value difference between the likelihoods also goes to zero.

Table 6.2.1 reports the absolute value difference between the likelihoods for different values

of δ and for a fixed sample size. These numbers replicate the results of proposition 13, i.e.

the absolute value difference between the likelihoods is roughly proportional to δ, showing

once more the informativeness of the bound.

3In real life applications of the linear models, economists, in fact, incur in a trivially small δ because we
use floating point arithmetic.
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Table 6.2.1: Absolute Value Difference between the Likelihoods as a Function of δ

δ
¯̄
L
¡
yT ; γ

¢− L∗ ¡yT ; γ¢¯̄
2.36e− 006 1225.8

1.61e− 006 788.37

1.21e− 006 620.19

1.10e− 006 542.6

1.00e− 006 401.72

Figure 6.2.2 shows the absolute value difference between the loglikelihoods for different δ’s

as a function of the sample size. We plot the log differences because the size of the likelihood

in levels will make the plot difficult to read. We need to remember that, in this case, a linear

growth in time will be plotted as a parabola. Figure 6.2.2. reveals again how, as the sample

size grows, the larger the difference between the likelihoods for any value of δ and that the

difference grows at a linear rate.

6.3. A Nonlinear Neoclassical Growth Model Example

In the previous exercise we assumed that both the exact model and the approximated model

were linear dynamic systems. This assumption allowed us to evaluate the exact and approx-

imated likelihood with the Kalman filter. However, we did not motivate why we were using

an approximated model or how the perturbations came about. In this exercise, we address

these issues.

We will propose a version of the neoclassical growth model for which we know the like-

lihood because the model has a close-form solution in logs suitable to evaluation with the

Kalman filter. We will study what happens when the researcher does not know this exact

close-form solution and, instead, she solves for the optimal policy functions using value func-

tion iteration. Since the solution from the value function iteration is not linear, the state

space representation is also nonlinear. As a consequence, we cannot apply the Kalman filter.

Instead, we use a Sequential Monte Carlo method. Fernández-Villaverde and Rubio-Ramírez

(2004a) show how to implement that technique in a model similar to this one. This implies

that we will have two approximation errors: one in the computation of the optimal policy

function and a second one in the Sequential Monte Carlo. We discuss how we address this

problem below.
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We take the neoclassical growth model in the previous section:

U = E0

∞X
t=1

βt−1

³
cξt (1− lt)1−ξ

´1−τ
1− τ

,

s.t. ct + it = e
ztλkαt l

1−α
t ,

kt+1 = it + (1− η)kt,

and

zt = ρzt−1 + ²t.

We set τ = 1 and, unrealistically but rather useful for our point, η = 1. In this case, the

income and the substitution effect of a productivity shock in labor supply exactly cancel each

other. Consequently, lt is constant over time.

Exploiting this feature of labor supply, we can use the method of undetermined coefficients

to find the exact policy function for labor

lt = l =
(1− α) ξ

(1− α) ξ + (1− ξ) (1− αβ)

and for capital kt+1 = αβeztλkαt l
1−α.

Since this policy function is linear in logs, we have the transition equation for the model: 1

log kt+1

zt

 =

 1 0 0

logαβλl1−α α ρ

0 0 ρ


 1

log kt

zt−1

+
 0

1

1

 ²t.
As observables, we assume that we have data on log output (log outputt) and log investment

(log it) subject to a linearly additive measurement error:

Ã
log outputt

log it

!
=

Ã
− logαβλl1−α 1 0

0 1 0

! 1

log kt+1

zt

+
Ã
v1t

v2t

!
.

We drop labor from the observables because it is constant over time and any movement in

it will be trivially attributed to measurement error. We can apply the Kalman filter to the

transition and measurement equations above and evaluate the likelihood of the model.

Now, let us suppose that we have a researcher that does not know the exact solution for
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the optimal policy function for capital (although, to simplify, we assume that the researcher

realizes that labor is constant). Instead, the researcher solves the social planner’s problem

using value function iteration over a grid of points of capital and productivity, and linear

interpolation. This solution method implies a policy function for capital kt+1 = gj (zt, kt)

where j denotes that this policy function is an approximation. We select value function

iteration because is one of the most commonly used nonlinear solution methods, because it

satisfies our assumption regarding the approximated transition and measurement equations,

and because it is a method for which we have plenty of convergence theorems (see Santos and

Vigo, 1998). In particular, we know that as more points are introduced in the grid, we have:

gj (ρzt−1 + ²t, kt)→ αβeztλkαt l
1−α. (14)

The approximated likelihood function to evaluate is implied by the state space form:

kt+1 = gj (ρzt−1 + ²t, kt)

zt = ρzt−1 + ²t

and Ã
log outputt

log it

!
=

Ã
− logαβλl1−α

0

!
+

Ã
1 0

1 0

!Ã
log kt+1

zt

!
+

Ã
v1t

v2t

!
where v1t ∼ N (0,σ1) and v2t ∼ N (0,σ2). The nonlinearity of this state space form asks for

a Sequential Monte Carlo algorithm to evaluate the likelihood function of the approximated

model.

How different are the likelihoods of the approximated and the exact model? To answer

this question, we generate a sample size of 200 observation with the calibration: α = 0.4,

β = 0.989, η = 1, ρ = 0.95, ξ = 0.356, σ = 0.007, σ1 = 0.001 and σ2 = 0.002.4 Then, we

solve the model using three different grids, a coarse one with 10 points in the capital axis, an

intermediate grid with 100 points, and fine grid with 1000 points. Along the technology axis

we have 40 points in the grid and we evaluate the corresponding integral using quadrature,

so the support of the technology shock is continuous. We keep fixed the number of points

along the technology axis to illustrate more sharply how a refinement of the policy function

along one particular dimension improves the likelihood.

Given this parametrization, the δ’s are as follows:

4We set the scale factor λ to get λl1−αt = 1.

28



Table 6.3.1: δ as a Function of the Capital Grid

Capital Grid Points δ

10 0.008545

100 0.000674

1000 0.000076

To interpret this number is useful to think about its welfare implications. Even with only

10 points in the capital grid, this problem is sufficiently well behaved than the welfare loss

around the deterministic steady state from using the approximated policy rule instead of the

exact one is less than one tenth of a percent in terms of consumption.

Figure 6.3.1 plots the absolute value difference between the approximated and the exact

loglikelihoods as a function of the sample size for three different capital grids. To minimize

the impact of the error coming from the Sequential Monte Carlo, we created a swarm of

100.000 particles, well beyond the 20.000 required to achieve stability of the estimation of the

likelihoods (see Fernández-Villaverde and Rubio-Ramírez, 2004a, for details on this issue).

In that way, we computed that the difference in the likelihood attributable to the simulation

is, with more than a 99 percent probability, several orders of magnitude smaller than the

reported total differences in likelihoods.

As in the previous two examples, we see how the larger the sample size, the larger the

difference between the likelihoods for any value of δ and how that the difference grows at a

decreasing rate, implying a linear rate in levels. The surprising lesson of this figure is how bad

the approximation of the likelihood is with the capital grid of 10 points even if a naive welfare

comparison criterion would have suggested that the approximation was already acceptable.

In contrast, when we use 1000 points, the approximated likelihood stays very close to the

exact one even at the end of the sample. This exercise emphasizes that a control of the

accuracy of the solution of the policy function as a function of the sample size is important

to guaranty a good behavior of the likelihood.

Because of space considerations we do not offer a full study of the implications of the

differences in the likelihood for point estimates. We refer the interesting reader to Fernández-

Villaverde and Rubio-Ramírez (2004b) where a thorough analysis of the impact on estimation

of using different approximations to the optimal policy functions is presented. Suffice it to

say that Fernández-Villaverde and Rubio-Ramírez (2004b) document important differences

in point estimates, and that they show that those differences have a relevant impact on the

empirical predictions of the model.
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7. Conclusions

We have studied in this paper the consequences of using approximated likelihood functions

instead of the exact likelihoods when we estimate computed dynamic models. We have offered

a positive result, the convergence of the approximated likelihood to the exact likelihood as

the approximated policy functions converge to the exact policy functions. But we have also

shown that the errors in the approximated likelihood function accumulate as the sample size

grows and that, to guaranty convergence of our estimates, we need to reduce the size of the

error in the approximated policy function as we obtain more data. Our three applications

have documented the quantitative importance of our findings.

There are several additional issues that we have not considered and that we leave for

future analysis. First, it would be important to eliminate the assumption of continuity of

the transition and measurement equations. A large class of models in economics, specially

in micro applications, imply choices with jumps and discontinuities. Second, we could relax

some of the assumptions required to deliver uniform convergence of the likelihood function

and the consequent convergence of the maximum likelihood estimates. Related with this,

establishing results concerning the convergence of standard error estimates will complete the

findings regarding classical estimation. Finally, it would be useful to extend the framework of

this paper to cover game theoretic settings that may conduct, among other characteristics, to

multiplicity of equilibria. The econometric advances in Jofre-Bonet and Pesendorfer (2003),

Aguirregabiria and Mira (2004), Bajari, Hong and Ryan (2004), and Pakes, Ostrovsky and

Berry (2004), among others, open an important field of research in empirical applications

where some aspects of the dynamic model are approximated. Results in this area will help

to fine tune the performance of the developed estimators.
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8. Appendix

We include in this appendix the proofs of the results in the paper.

Proof of Lemma 2. Let γ ∈ Υ. Assumption 2 implies that:

p
¡
yt|yt−1,W t

1, S0; γ
¢
= p (vt; γ) p (w2,t; γ) |dy (vt, w2,t; γ)|

but we know from assumption 1 that vt and w2,t are continuous functions of S0 and that

|dy (vt, w2,t; γ)| is a continuous function of vt and w2,t. Therefore, since Vt and W2,t have

continuous densities, it is the case that p (yt|yt−1,W t
1, S0; γ) ∈ C (S0).

Proof of Lemma 3. As in the proof of the previous lemma, but substituting the

jacobian |dy (vt, w2,t; γ)| by the approximated one |dyj (vt, w2,t; γ)|. Since assumption 4 assures
that |dyj (vt, w2,t; γ)| is continuous at all but in a finite number of points, we have that
p (yt|yt−1,W t

1, S0; γ) ∈ C (S0), except in a finite number of points.
In the proof of Lemma 4 we use the following well known theorems (see Dieudonné for

their proofs, 1960):

Theorem 17. Assume {an} is an infinite sequence in a metric space (X, d). Then an → a

if and only if every infinite subsequence {a0n} ⊂ {an} has a convergence subsequence {a00n} ⊂
{a0n} such that a00n → a.

Theorem 18. If fn → f in the sup norm, and f 0n → g in the sup norm then g = f 0.

Proof of Lemma 4. Assumption 7 implies that
©
ϕj (·, ·; γ)

ª
, and {gj (·, ·; γ)} have

uniformly bounded second derivatives, then
©
dϕj (·, ·; γ)

ª
and {dgj (·, ·; γ)} is a family of

equicontinuous functions. Therefore, the Arzelà-Ascoli theorem implies that every subse-

quence of
©
ϕj (·, ·; γ)

ª
and {gj (·, ·; γ)} have a convergence subsequence in the C1 topol-

ogy.5 Since
©
ϕj (·, ·; γ)

ª
and {gj (·, ·; γ)} converge to ϕ (·, ·; γ) and g (·, ·; γ) respectively,

every subsequence of
©
ϕj (·, ·; γ)

ª
and {gj (·, ·; γ)} have a convergence subsequence in the

sup norm to ϕ (·, ·; γ) and g (·, ·; γ). Therefore, theorem 18 implies that every subsequence of©
dϕj (·, ·; γ)

ª
and {dgj (·, ·; γ)} have a convergence subsequence in the sup norm to dϕ (·, ·; γ)

and dg (·, ·; γ). Hence, this last result and theorem 17 imply that dϕj (·, ·; γ) → dϕ (·, ·; γ)
and dgj (·, ·; γ)→ dg (·, ·; γ).

5The C1 topology is defined as follows: kfkC1 = kfk+ kf 0k, where k·k is the sup norm.
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Proof of Proposition 5. Let γ ∈ Υ. The proof is divided in two steps. First, we show

that

pj
¡
yt|yt−1,W t

1, S0; γ
¢→ p

¡
yt|yt−1,W t

1, S0; γ
¢

for all t, except in a finite number of points. This is a technical result that we will use in step

two. Second, we prove that

TY
t=1

pj
¡
yt|yt−1; γ

¢→ TY
t=1

p
¡
yt|yt−1; γ

¢
.

Step 1. We show convergence of pj (yt|yt−1,W t
1, S0; γ). Assumption 2 allow us to write:

p
¡
yt|yt−1,W t

1, S0; γ
¢
= p (vt; γ) p (w2,t; γ) |dy (vt, w2,t; γ)| ,

while by assumption 5 we have:

pj
¡
yt|yt−1,W t

1, S0; γ
¢
= p (vt; γ) p (w2,t; γ) |dyj (vt, w2,t; γ)| ,

except in a finite number of points.

First, remember that assumption 1 implies that ϕ (·, ·; γ) , g (·, ·; γ) , and their partial
derivatives are continuous. Second, note that assumption 4 states that ϕj (·, ·; γ) and gj (·, ·; γ)
are continuous, while their partial derivatives are continuous at all but in a finite number of

points. Third, recall that the densities of Vt and W2,t are continuous. Finally, we have also

assumed that ϕj (·, ·; γ) → ϕ (·, ·; γ) and gj (·, ·; γ) → g (·, ·; γ). Thus, by assumption 7, we
have that |dyj (·, ·; γ)|→ |dy (·, ·; γ)| at all but in a finite number of points, and we can assert
that:

pj
¡
yt|yt−1,W t

1, S0; γ
¢→ p

¡
yt|yt−1,W t

1, S0; γ
¢
,

except in a finite number of points.

Step 2. Assumptions 3 and 6 allow us to write:

TY
t=1

p
¡
yt|yt−1; γ

¢
=

Z ÃZ TY
t=1

p (W1,t; γ) p
¡
yt|yt−1,W t

1, S0; γ
¢
dW t

1

!
µ∗ (dS0; γ) ,

TY
t=1

epj ¡yt|yt−1; γ¢ = Z ÃZ TY
t=1

p (W1,t; γ) p
¡
yt|yt−1,W t

1, S0; γ
¢
dW t

1

!
µ∗j (dS0; γ) ,
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and

TY
t=1

pj
¡
yt|yt−1; γ

¢
=

Z ÃZ TY
t=1

p (W1,t; γ) pj
¡
yt|yt−1,W t

1, S0; γ
¢
dW t

1

!
µ∗j (dS0; γ) .

Define

fT (S0; γ) =

Z TY
t=1

p (W1,t; γ) p
¡
yt|yt−1,W t

1, S0; γ
¢
dW t

1,

therefore:
TY
t=1

p
¡
yt|yt−1; γ

¢
=

Z
fT (S0; γ)µ

∗ (dS0; γ) ,

and
TY
t=1

epj ¡yt|yt−1; γ¢ = Z fT (S0; γ)µ
∗
j (dS0; γ) .

By lemma 2, fT (S0; γ) is continuous. Therefore, we can apply corollary 3.3 of Santos and

Peralta-Alva (2003) to show that:

TY
t=1

epj ¡yt|yt−1; γ¢→ TY
t=1

p
¡
yt|yt−1; γ

¢
. (15)

If we define

fj,T (S0; γ) =

Z TY
t=1

p (W1,t; γ) pj
¡
yt|yt−1,W t

1, S0; γ
¢
dW t

1,

we get:
TY
t=1

pj
¡
yt|yt−1; γ

¢
=

Z
fj,T (S0; γ)µ

∗
j (dS0; γ) .

Note that W1,t has bounded support and bounded density. Also, lemma 3 shows that

pj (yt|yt−1,W t
1, S0; γ) is continuous, except in a finite number of points, with bounded support,

and hence it is bounded. Therefore fj,T (S0; γ) is bounded. In addition, step 1 shows

pj
¡
yt|yt−1,W t

1, S0; γ
¢→ p

¡
yt|yt−1,W t

1, S0; γ
¢
,

except in a finite number of points. Hence, fj,T (S0; γ) → fT (S0; γ), but in a finite number

of points.

Therefore, for every ε > 0, ∃N such that if j > N ,

|fj,T (S0; γ)− fT (S0; γ)| < ε,
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except in a finite number of points. Thus,¯̄̄̄
¯
TY
t=1

pj
¡
yt|yt−1; γ

¢− TY
t=1

epj ¡yt|yt−1; γ¢
¯̄̄̄
¯ ≤

≤
Z
|fj,T (S0; γ)− fT (S0; γ)|µ∗j (dS0; γ) < ε (16)

and we can conclude that:

TY
t=1

pj
¡
yt|yt−1; γ

¢→ TY
t=1

epj ¡yt|yt−1; γ¢ . (17)

To close the proof, we put together the convergence results (15) and (17).

Proof of Corollary 6. Let γ, γ0 ∈ Υ. Proposition 5 shows that

Lj
¡
yT ; γ

¢→ L
¡
yT ; γ

¢
and

Lj
¡
yT ; γ0

¢→ L
¡
yT ; γ0

¢
.

Therefore, since assumption 3 implies that L
¡
yT ; γ

¢ ≥ ξ > 0, and assumption 6 states that

Lj
¡
yT ; γ

¢ ≥ ξ > 0 for all j, we have:

Lj
¡
yT ; γ0

¢
Lj (yT ; γ)

→ L
¡
yT ; γ0

¢
L (yT ; γ)

.

Proof of Corollary 7. Let γ ∈ Υ. Proposition 5 shows that

Lj
¡
yT ; γ

¢→ L
¡
yT ; γ

¢
.

Since the approximated likelihoods Lj
¡
yT ; γ

¢
and L

¡
yT ; γ

¢
are bounded and Riemann-

integrable (because they are densities), we can apply Arzelà’s Theorem (see Apostol, 1974,

Theorem 9.12) to get: Z
Υ

Lj
¡
yT ; γ

¢
π (γ) dγ →

Z
Υ

L
¡
yT ; γ

¢
π (γ) dγ.
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Proof of Corollary 8. Let γ ∈ Υ. Proposition 5 shows that

Lj
¡
yT ; γ

¢→ L
¡
yT ; γ

¢
.

Then,

Lj
¡
yT ; γ

¢
π (γ)→ L

¡
yT ; γ

¢
π (γ)

and the result follows.

Proof of Corollary 9. Let γ ∈ Υ. Proposition 5 shows that

Lj
¡
yT ; γ

¢→ L
¡
yT ; γ

¢
.

and the corollary 7 that pj
¡
yT ; γ

¢→ p
¡
yT
¢
. The result follows from an application of Arzelà’s

Theorem.

Proof of Lemma 10. Let γ ∈ Υ. In order to prove that p (yt|yt−1,W t
1, S0; γ) is

continuously differentiable with respect to S0, we need to show that

∂p (yt|yt−1,W t
1, S0; γ)

∂S0,i

exists and is continuous for all i.

Assumption 2 allow us to write

p
¡
yt|yt−1,W t

1, S0; γ
¢
= p (vt; γ) p (w2,t; γ) |dy (vt, w2,t; γ)| ,

for all t. Since in addition Vt and W2,t have bounded densities, assumptions 1, 8 and 9 imply

that
∂p(yt|yt−1,W t

1 ,S0;γ)
∂S0,i

exists and it is bounded for all t and all i.

Proof of Lemma 12. Let γ ∈ Υ. Let s0 and wt1 be a realization of the random variables

S0 and W t
1. Let (v

t, st, wt2) be the unique solution the following system of equations:

S1 = ϕ (s0, (w1,1,W2,1) ; γ) ,

ym = g (Sm, Vm; γ) for m = 1, 2, ...t,

and

Sm = ϕ (Sm−1, (w1,m,W2,m) ; γ) for m = 2, 3, ...t,

35



and let
¡
vtj, s

t
j, w

t
j,2

¢
be the unique solution the approximated system of equations6

S1 = ϕj (s0, (w1,1,W2,1) ; γ) ,

ym = gj (Sm, Vm; γ) for m = 1, 2, ...t,

and

Sm = ϕj (Sm−1, (w1,m,W2,m) ; γ) for m = 2, 3, ...t.

Assumption 1 implies that ϕ and g are differentiable. In addition, assumption 3 implies that

|dy (vt, w2,t; γ)| 6= 0 for all t. Since
°°ϕj (·, ·; γ)− ϕ (·, ·; γ)°° ≤ δ and kgj (·, ·; γ)− g (·, ·; γ)k ≤

δ, the implicit function theorem of Schwartz (see theorem G.2.3, page 32, Mas-Colell, 1985)

implies that exists a λ (s0, w
t
1) such that°°¡vtj, stj, wtj,2¢− ¡vt, st, wt2¢°° ≤ λ

¡
s0, w

t
1

¢
δ. (18)

Since we are using the sup norm, equation (18) holds for all t.

Notice that λ (s0, w
t
1) depends on the the derivatives of ϕj (·, ·; γ) and gj (·, ·; γ) with

respect to θj. These derivatives are bounded independently of j by assumption 10. Therefore

∃λ such that °°¡vtj, stj, wtj,2¢− ¡vt, st, wt2¢°° ≤ λδ,

for all s0 and wt1.

Since Vt and Wt have continuous densities, assumption 8 implies that those densities are

absolutely continuous. Then, ∃ε such that

|p (vj,t; γ) p (wj,2,t; γ)− p (vt; γ) p (w2,t; γ)| ≤ εδ, (19)

for all s0 and wt1. As before, since we are using the sup norm, equation (19) also holds for all

t.

Assumption 9 delivers that the determinant of the Jacobian of yt with respect to Vt,W2,t,

|dy (·, ·; γ)| is Lipschitz. Let Ly be the Lipschitz constant. Then:

||dy (vj,t, wj,2,t; γ)|− |dy (vt, w2,t; γ)|| ≤ Lyλδ, (20)

for all s0 and wt1.

6Both
¡
vtj , s

t
j , w

t
j,2

¢
and (vt, st, wt2) depend on s0, and w

t
1, but to simplify notation, we do not make this

relationship explicit.

36



Assumption 7 and the fact that
°°ϕj (·, ·; γ)− ϕ (·, ·; γ)°° ≤ δ and kgj (·, ·; γ)− g (·, ·; γ)k ≤

δ imply that
°°dϕj (·, ·; γ)− dϕ (·, ·; γ)°° ≤ δ and kdgj (·, ·; γ)− dg (·, ·; γ)k ≤ δ, except in a

finite number of points. Then, by assumptions 1 and 4, we know that ∃Ψ1 such that

|dyj (vj,t, wj,2,t; γ) [r, s]− dy (vj,t, wj,2,t; γ) [r, s]| < Ψ1δ (21)

for all r and s, and for all s0 and wt1, except in a finite number of points. Here A[r, s] stands

for the row r and column s of matrix A.

Note that if A and B are to n × n matrices such that |A[i, j]−B[i, j]| < Ψ1δ and

|A[i, j]|, |B[i, j]| < Ψ2, then ||A|− |B|| < n!nΨn−1
2 Ψ1δ. In addition, assumptions 1 and 4

also imply that ϕj, ϕ, gj, and g are Lipschitz. Therefore ∃Ψ2 such that:

||dyj (vj,t, wj,2,t; γ)|− |dy (vj,t, wj,2,t; γ)|| ≤ n!nΨn−12 Ψ1δ, (22)

for all s0 and wt1, except in a finite number of points.

Using equations (20) and (22) we get:

||dyj (vj,t, wj,2,t; γ)|− |dy (vt, w2,t; γ)|| ≤
¡
n!nΨn−1

2 Ψ1 + Lyλ
¢
δ, (23)

for all s0 and wt1.

Now let Ψ3 =
¡
n!nΨn−12 Ψ1 + Lyλ

¢
. Since

pj
¡
yt|yt−1,W t

1, S0; γ
¢
= p (vj,t; γ) p (wj,2,t; γ) |dyj (vj,t, wj,2,t; γ)|

except in a finite number of points and

p
¡
yt|yt−1,W t

1, S0; γ
¢
= p (vt; γ) p (w2,t; γ) |dy (v, w2,t; γ)| ,

we can put together equations (19) and (23) to find:

|p (vj,t; γ) p (wj,2,t; γ) |dyj (vj,t, wj,2,t; γ)|− p (vt; γ) p (w2,t; γ) |dy (v, w2,t; γ)|| ≤
≤ |p (vj,t; γ) p (wj,2,t; γ)| εδ + |dy (vt, w2,t; γ)|Ψ3δ,

for all s0 and wt1, except in a finite number of points.

Note that p (v; γ) and p (w2; γ) are bounded functions. Assumption 1 implies that |dy (v, w2; γ)|
is also a bounded function. LetB1 andB2 be the bounds to p (v; γ), p (w2; γ) and |dy (v, w2; γ)|
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respectively. Define B = max {B1, B2}. Then

|p (vj,t; γ) p (wj,2,t; γ) |dyj (vj,t, wj,2,t; γ)|− p (vt; γ) p (w2,t; γ) |dy (v, w2,t; γ)|| ≤ Bδ (ε+Ψ3)

for all s0 and wt1, but in a finite number of points. If we let χ = B (ε+Ψ3), the lemma is

proved.

Proof of Proposition 13. Let γ ∈ Υ. Define fT (S0; γ) as in the proof of proposition

5 and note that:

∂fT (S0; γ)

∂S0,i
=

Z TY
t=1

p (W1,t; γ)
TX
t=1

∂p (yt|W t
1, y

t−1, S0; γ)
∂S0,i

TY
s=1,s6=r

p
¡
ys|W s

1 , y
s−1, S0; γ

¢
dW t

1,

is bounded because corollary 11 bounds
∂p(yt|,yt−1,W t

1 ,S0;γ)
∂S0,i

for all t and i, and lemma 2 bounds

p (ys|ys−1,W s
1 , S0; γ) for all s. Therefore, fT (S0; γ) is Lipschitz for all twith Lipschitz constant

L (the Lipschitz constant will be different for each t, but since t is finite we can set a global

L).

Therefore, since condition 1 holds, we can apply Theorem 3.7 of Santos and Peralta-Alva

(2003) to fT (S0; γ) to get that:¯̄̄̄
¯
TY
s=1

p
¡
yt|yt−1; γ

¢− TY
s=1

epj ¡yt|yt−1; γ¢
¯̄̄̄
¯ = Lδ

1− α
. (24)

Note now that using the values for the likelihoods in the proof of proposition 5, we have that:¯̄̄̄
¯
TY
s=1

pj
¡
yt|yt−1; γ

¢− TY
s=1

epj ¡yt|yt−1; γ¢
¯̄̄̄
¯ =

=

Z ÃZ TY
t=1

p (W1,t; γ)
¡
pj
¡
yt|yt−1,W t

1, S0; γ
¢− p ¡yt|yt−1,W t

1, S0; γ
¢¢
dW t

1

!
µ∗j (dS0; γ) .

(25)

Lemmas 2 and 3 show that p (yt|yt−1,W t
1, S0; γ) and pj (yt|yt−1,W t

1, S0; γ) are bounded for all

t and j. Thus, we can define a constant B such that:

Z ÃZ TY
t=1

p (W1,t; γ)B
TX
t=1

¯̄
pj
¡
yt|yt−1,W t

1, S0; γ
¢− p ¡yt|yt−1,W t

1, S0; γ
¢¯̄
dW t

1

!
µ∗j (dS0; γ)

(26)

is an upper bound to (25).
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Lemma 12 shows that

¯̄
pj
¡
yt|yt−1,W t

1, S0; γ
¢− p ¡yt|yt−1,W t

1, S0; γ
¢¯̄ ≤ χδ

for all t, and for all W t
1, and S0 but for a finite number of points. Therefore,¯̄̄̄
¯
TY
s=1

pj
¡
yt|yt−1; γ

¢− TY
s=1

epj ¡yt|yt−1; γ¢
¯̄̄̄
¯ ≤ TBχδ, (27)

Putting together (24) and (27), we have:¯̄̄̄
¯
TY
t=1

pj
¡
yt|yt−1; γ

¢− TY
t=1

p
¡
yt|yt−1; γ

¢¯̄̄̄¯ <
µ
TBχ+

L

1− α

¶
δ.

Proof of Lemma 14. The proof is a modification of the proof of lemma 12. The

argument is the same except in the following points:

1. We use assumption 13 to state that
°°¡vtj, stj, wtj,2¢− (vt, st, wt2)°° ≤ λδ for all γ, s0 and

wt1.

2. We need assumptions 8, 11, and 12 to show that the densities of Vt andWt are absolutely

continuous.

3. We need assumptions 9 and 12 to see that the determinant of the Jacobian of yt with

respect to Vt,W2,t, |dy (·, ·; ·)|, is Lipschitz. Also, by assumption 12, the Lipschitz

constant Ly is independent of γ.

4. We need assumptions 1, 4, and 12 to show existence of a constant Ψ1, independent of

γ, such that:

|dyj (vj,t, wj,2,t; γ) [r, s]− dy (vj,t, wj,2,t; γ) [r, s]| < Ψ1δ

for all r and s, and for all γ, s0 and wt1, except in a finite number of points.

5. We need assumptions 1, 4, and 12 to prove existence of a constant Ψ2, independent of

γ, such that:

||dyj (vj,t, wj,2,t; γ)|− |dy (vj,t, wj,2,t; γ)|| ≤ n!nΨn−1
2 Ψ1δ, (28)
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for all γ, s0 and wt1, but in a finite number of points.

6. Since V, W , and γ have compact support, assumption 11 is important to guaranty that

p (v; γ), p (w2; γ) are bounded functions of γ, s0 and wt1. Assumptions 1 and 12 imply

that |dy (v, w2; γ)| is also a bounded function of γ, s0 and wt1.

Proof of Proposition 15. The proof is a modification of the proof of proposition 13.

The argument is the same except that:

1. We use assumptions 11 and 12 to make the bounds ∂fT (S0;γ)
∂S0,i

independent of γ. Then

fT (S0; γ) is Lipschitz for all t with a Lipschitz constant L independent of γ, and the

difference ¯̄̄̄
¯
TY
s=1

p
¡
yt|yt−1; γ

¢− TY
s=1

epj ¡yt|yt−1; γ¢
¯̄̄̄
¯ = Lδ

1− α
, (29)

holds for all γ.

2. Assumption 12 makes the bounds on p (yt|yt−1,W t
1, S0; γ) and pj (yt|yt−1,W t

1, S0; γ) in-

dependent of γ. Therefore, the bound B, and all the expressions where it appears is

independent of γ.
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Figure 6.1.1: Absolute Value Difference between the Likelihoods as a Function of δ
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Figure 6.1.2: Absolute Value Difference between the Likelihoods as a Function of the Sample Size
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