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Abstract

This paper presents a framework to undertake likelihood-based inference in
nonlinear dynamic equilibrium economies. We develop a Sequential Monte Carlo
algorithm that delivers an estimate of the likelihood function of the model using
simulation methods. This likelihood can be used for parameter estimation and
for model comparison. The algorithm can deal both with nonlinearities of the
economy and with the presence of non-normal shocks. We show consistency of
the estimate and its good performance in finite simulations. This new algorithm
is important because the existing empirical literature that wanted to follow a
likelihood approach was limited to the estimation of linear models with Gaussian
innovations. We apply our procedure to estimate the structural parameters of the
neoclassical growth model.
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1. Introduction

This paper presents a method to undertake likelihood-based inference in nonlinear and/or

non-normal dynamic equilibrium models. We show how we can use Sequential Monte Carlo

methods to estimate the structural parameters of the model, those describing preferences and

technology, and to compare different economies. Both tasks can be implemented from either

a Bayesian perspective or a classical one.

Economists now routinely use dynamic general equilibrium economies to answer quanti-

tative questions. To estimate these economies, the empirical literature has been forced to use

either limited-information moment methods (in any of their different versions) or likelihood

techniques on linearized versions of the model. This situation is unsatisfactory. Moment

methods may suffer strong biases resulting from using small samples and may not use effi-

ciently all the existing information. Linearization techniques depend crucially on the linear

relation’s accurate approximation of the true policy function’s shape as well on the presence

of normal shocks.

The main obstacle to a more standard likelihood-based inference is the difficulty in evalu-

ating the likelihood function implied by a nonlinear and/or non-normal dynamic equilibrium

economy. Beyond a few particular cases,1 it is not possible to evaluate this function. Moment

methods avoid the problem by moving away from full information approaches to inference.

Linearization renounces evaluating the true likelihood function of the model and concentrates

instead on the likelihood of a more tractable linear approximation to the economy.

We propose a Sequential Monte Carlo method to solve this problem. We describe how the

technique can be applied to evaluate the likelihood function implied by the nonlinear solution

of a dynamic equilibrium economy even if the driving shocks of the model are non-normal

(although the algorithm is general enough to handle linear models with or without normal

shocks).

To do so we borrow from a growing body of literature on nonlinear filtering (see the

seminal paper by Gordon, Salmond and Smith, 1993 and the review in Doucet, de Freitas

and Gordon, 2001). We adapt this know-how to deal with the likelihood functions of dynamic

equilibrium models and we show how we get accurate and stable evaluations of the likelihood

function. With these evaluations available, the door for likelihood-based inference opens,

either by searching for a maximum of the function (quasi-maximum likelihood estimation) or

by simulating the posterior distribution of the parameters using a Markov chain Monte Carlo

algorithm (Bayesian estimation).

1Some of these cases are, however, important. For example there exist a popular literature on the es-
timation of dynamic discrete choice models that uses maximum likelihood methods. See Rust (1994) for a
survey.
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The general idea of the procedure follows. First, for a given set of parameter values, we

compute the equilibrium policy functions of the model. Since we want to conduct inference in

the nonlinear model, we rely on a nonlinear solution method to find the policy functions. With

the policy functions we construct the state space representation of the model. Under certain

mild conditions, we use this state space form and a Sequential Monte Carlo scheme to evaluate

the likelihood function. Plugging this likelihood evaluation algorithm into an optimization

or a Markov chain Monte Carlo routine we search the parameter space to perform likelihood-

based inference, by either maximizing the likelihood function or, after specifying some priors

on the parameters, finding posterior distributions. Finally, if we apply the algorithm to several

models, we can compare models using the output of the model by building either likelihood

ratios (Voung, 1989) or Bayes factors (Geweke, 1998), even if the models are misspecified and

nonnested.

To illustrate our method we compute and estimate the benchmark dynamic equilibrium

economy, the stochastic neoclassical growth model. After we solve the model nonlinearly, we

estimate it using both Bayesian and maximum likelihood methods and we perform Monte

Carlo analysis to evaluate the efficiency of our procedure.

Being able to perform likelihood-based inference is important for several reasons. From a

theoretical perspective, the likelihood principle states that all the empirical evidence obtained

from the data is contained in the likelihood function (Berger and Wolpert, 1988). From

an applied position, likelihood-based inference is a simple way to deal with misspecified

models (Monfort, 1996). Dynamic equilibrium economies are false by construction, and

likelihood-based inference has both attractive asymptotic properties and good small-sample

behavior even when models are misspecified (White, 1994 for quasi-maximum likelihood and

Fernández-Villaverde and Rubio-Ramírez, 2003a, for Bayesian procedures). Finally, and for

us the most compelling reason, likelihood inference allows us to compare models. Of course

we do not want to imply that a likelihood approach is always preferable. For example we

may only care about accounting for one particular dimension of the data, a task for which a

moment method can be more suitable. We simply maintain that in numerous contexts, the

likelihood function is an informative tool.

Our paper builds on the existing literature dealing with inference on dynamic equilibrium

economies. Hansen’s (1982) pioneered the use of moments methods, now widely applied.2

Sargent (1989) uses the Kalman filter to evaluate the likelihood function of linear or lin-

earized dynamic equilibrium economies with normal shocks. Altuğ (1989), also in a linear

2Variations include the Simulated Method of Moments (Lee and Ingramm 1991), the Efficient Method
of Moments (Gallant and Tauchen, 1996), Indirect Inference (Gourieroux, Monfort and Renault, 1993 and
Smith, 1993) and several information-based approaches (Kitamura and Stutzer, 1997 and Imbens, Spady and
Johnson, 1998). We refer the reader to the special issue of the Journal of Business and Economic Statistics
on the Generalized Method of Moments (Ghysels and Hall, 2002) for an overview of the literature.

3



framework, proposed to estimate the likelihood in the frequency domain. This spectral ap-

proach has been followed by Diebold, Ohanian and Berkowitz (1998) for estimation and by

Watson (1993) to compare models with data. Christiano, Eichenbaum and Evans (2001) esti-

mate dynamic equilibrium economies using the information in impulse-response functions of

linearized solutions. Miranda and Rui (1997) exploit the structure of an asset pricing model

to find the nonlinear likelihood function. Their method, however, involves the computation

of the Jacobian of a transformation of variables and it is difficult to generalize. From a

Bayesian perspective, DeJong, Ingram and Whiteman (2000) pioneered the Bayesian estima-

tion of Real Business Cycles models using importance sampling. Landon-Lane (1999) and

Otrok (2001) first applied the Markov chain Monte Carlo methods. Schorfheide (2000) formu-

lates the impulse-response approach in the Bayesian framework. All those papers, though,

stay within the linear framework. We also build on the contributions of the literature on

nonlinear filtering. We discussion that literature in section 2.3.

The rest of the paper is organized as follows. In the next section we describe our framework

to evaluate the likelihood function of the dynamic general equilibrium model for a given set of

parameter values. Section 3 presents the stochastic neoclassical growth model and discusses

how we can apply our Sequential Monte Carlo to it. Section 4 proposes estimation algorithms

and section 5 reports findings both with simulated and with real data. Section 6 concludes.

An appendix discusses computational details.

2. A Framework for Evaluating the Likelihood

In this section we develop a general framework to estimate and compare a large class of

nonlinear dynamic equilibrium models using a likelihood approach. Examples of economies

in this class are the stochastic neoclassical growth model (Cooley and Prescott, 1995), sticky

prices models (Chari, Kehoe and McGrattan, 2000, Rotemberg and Woodford, 1997 and

Woodford, 2003), asset pricing models (Mehra and Prescott, 1985), macro public finance

models (Chari, Christiano and Kehoe, 1994) and regime switching models (Quadrini and

Jermann, 2003), among many others.

All of these economies imply a different joint probability distribution function for ob-

servables given the model’s structural parameters which describe preferences and technology.

We refer to this density the likelihood function of the economy. The likelihood function is

useful for two purposes. First, if we want to perform estimation, we can use an optimization

routine to find the parameter values that maximize it or, if we specify a prior for the struc-

tural parameters, a Markov chain Monte Carlo to draw from the posterior. Second, if we are

comparing several models, we can do so by building either likelihood ratios (Voung, 1989) or

Bayes factors (Geweke, 1998).
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The literature shows how to write the likelihood function of a dynamic equilibrium econ-

omy only in a few special cases. For example, we can evaluate the likelihood of a linear model

with normal innovations using the Kalman filter. Unfortunately there is no general procedure

for writing an analytic expression for this likelihood. As we discussed in the introduction,

this problem has been a stumbling block to the application of likelihood-based methods to

perform inference in dynamic equilibrium economies.

This section presents a Sequential Monte Carlo method to address the problem of eval-

uating the likelihood function of a nonlinear dynamic equilibrium economy. The rest of the

section is organized as follows. First, we define the likelihood function of a dynamic equilib-

rium economy. Second, we present a simulation filter to evaluate that likelihood. We finish

by comparing our approach with some alternatives.

2.1. The Likelihood Function of a Dynamic Equilibrium Economy

A large set of dynamic equilibrium models can be written in the following state space form.

First the equilibrium of economy is characterized by some states St that change over time

according to the following transition equation:

St = f (St−1,Wt; γ) , (1)

where {Wt} is a sequence of exogenous independent random variables and γ ∈ Υ is the vector

of structural parameters of the model.

Second the observables yt are a realization of the random variable Yt governed by the

measurement equation:

Yt = g (St, Vt; γ) , (2)

where {Vt} is a sequence of exogenous independent random variables. The sequences {Wt}
and {Vt} are independent of each other.3 Along some dimension the function g can be the
identity mapping if a state is directly observed without noise.

To summarize our notation: St are the states of the economy, Wt are the exogenous

shocks that affect the states’ law of motion, Yt are the observables, and Vt are the exogenous

perturbations that affect the observables but not the states.

The functions f and g come from the equations that describe the equilibrium of the

model: policy functions, laws of motion for variables, resource and budget constraints, and

so on. Dynamic equilibrium economies do not generally admit closed-form solutions for those

functions. Our algorithm only requires a numerical procedure to approximate them.

3Assuming independence of {Wt} and {Vt} is only for notational convenience. Generalization to more
involved structures for those stochastic processes is achieved by increasing the dimension of the state space.
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To fix ideas, we now map {St}, {Wt}, {Yt}, {Vt}, f and g into some examples of dynamic
equilibrium economies. Consider first the example of the stochastic neoclassical growth model

with leisure choice. The states of this economy are capital and the productivity level. Assume

that our observables are output and labor supply but that labor supply is measured with some

noise. Then St will be capital and productivity, Wt the shock to productivity, Yt output and

observed labor supply, Vt the measurement error of labor, f the policy function for capital

and the law of motion for technology and g the production function plus the policy function

for labor augmented by the measurement error. Consider also an economy with nominal

rigidities in the form of overlapping contracts. This economy experiences both productivity

and money growth shocks, and we observe output and inflation. Now the states St are the

distribution of prices, capital, money and the productivity level, Wt includes the shocks to

technology and money growth, Yt is output and inflation, Vt is a degenerate distribution

with mass at zero, f collects the policy functions for capital and prices as well as the laws

of motion for technology and money growth and g is the aggregate supply function and the

Phillips curve. Many more examples of dynamic economies can be fitted into this state space

formulation.

To continue our analysis we make the following assumptions.

Assumption 1: dim (Wt) + dim (Vt) ≥ dim (Yt) .
This assumption ensures that the model is not stochastically singular. We do not impose

any restrictions on how those degrees of stochasticity are achieved.4

Assumption 2: We can partition {Wt} into two sequences {W1,t} and {W2,t}, such
that Wt = (W1,t,W2,t) and dim (W2,t) + dim (Vt) = dim (Yt). If dim (Vt) = dim (Yt) we set

W1,t =Wt ∀t, i.e. {W2,t} is a zero-dimensional sequence.5

Note that assumption 2 is in some sense implied by assumption 1 because with a slight

abuse of notation we allow the dimension of any of the sequences {W1,t}, {W2,t} and (Vt) to
be zero.

4This paper does not contribute to the literature on how to solve the problem of stochastic singularity
of dynamic equilibrium economies. Two routes are commonly used to fix this problem. One is to reduce
the observables accounted for to the number of stochastic shocks present. This likelihood can be studied to
evaluate the model (Landon-Lane, 1999) or to find posteriors for parameters or impulse response functions
(Schorfheide, 2000). The second route, increasingly popular, is to fully specify a model rich in stochastic
dynamics (for example, Smets and Wouters, 2003a and 2003b). This alternative is attractive to address
practical policy questions like those of interest for Central Banks.

5Alternatively we could consider this more general alternative Assumption 2a: We can partition {Wt}
into two sequences {W1,t} and {W2,t}, such that Wt = (W1,t,W2,t) and dim (W2,t) + dim (Vt) ≥ dim (Yt). If
dim (Vt) ≥ dim (Yt) we set W1,t =Wt ∀t, i.e. {W2,t} is a zero-dimensional sequence.
The main structure of the algorithm would not change but notation will be heavier.
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Assumption 3: We set W2,t = Wt ∀t, i.e. {W1,t} is a zero-dimensional sequence only if
dim (Wt) + dim (Vt) = dim (Yt).

Assumption 3 is not really necessary, but it makes the implementation of the algorithm

easier. As in the case of assumption 2 we can dispense with it at the price of heavier notation.

Now we make some definitions that will be useful in the rest of the paper. First, let

W t
i = {Wi,m}tm=1, and let wti be a realization of the random variable W t

i for i = 1, 2 and ∀t.
Let V t = {Vm}tm=1, and let vt be a realization of the random variable V t for ∀t. Let St =
{Sm}tm=0 , and let st be a realization of the random variable St for ∀t. Let Y t = {Ym}tm=1 ,
and let yt be a realization of the random variable Y t for ∀t. We also define W 0

i = {∅} and
y0 = {∅}.
Our goal is to evaluate the likelihood function of the a sequence of realizations of the

observable yT at a particular parameter value γ:

L
¡
yT ; γ

¢
= p

¡
yT ; γ

¢
. (3)

Our first step is to factor the likelihood function as:

p
¡
yT ; γ

¢
=

TY
t=1

p
¡
yt|yt−1; γ

¢
=

Z Ã
TY
t=1

Z
p
¡
yt|W t

1, y
t−1, S0; γ

¢
p
¡
W t
1|yt−1, S0; γ

¢
dW t

1

!
p (S0; γ) dS0, (4)

where S0 is the initial state of the model, W t
1 is the history up to date t of W1,t, and the

p’s represent the relevant densities.6 To save on notation we assume herein that all the

relevant Radon-Nykodim derivatives exist. Extending the exposition to the more general

case is straightforward but cumbersome.

In general the factorized likelihood function (4) cannot be computed analytically. The

Sequential Monte Carlo algorithm that we propose in the next subsection allows us to use

simulation methods to estimate it. The basic idea of the our approach is as follows. First,

we present a Sequential Monte Carlo algorithm to draw from p (W t
1|yt−1, S0; γ). Second, we

use those draws to estimate (4) by Monte Carlo integration.

Before introducing the algorithm we need to make two additional technical assumptions.

Assumption 4: For any γ ∈ Υ and any yt, we can evaluate the conditional densities

p (yt|W t
1, y

t−1, S0; γ) for ∀t.
6Where we understand that in the trivial case that {W1t} has zero dimensionsR
p
¡
yt|W t

1 , y
t−1, S1; γ

¢
p
¡
W t
1 |yt−1, S1; γ

¢
dW t

1 = p
¡
yt|yt−1, S1; γ

¢
, for all t.
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Assumption 4 implies that for any realizations s0, wt1 and y
t of the random variables S0,W t

1

and Y t, we can evaluate the probability of the model described by (1) and (2) generating the

observables. In other words, assumption 4 implies that for any s0, wt1 and y
t the following

system of equations

S1 = f (s0, (w1,1,W2,1) ; γ)

ym = g (Sm, Vm; γ) for m = 1, 2, ...t

Sm = f (Sm−1, (w1,m,W2,m) ; γ) for m = 2, 3, ...t

has a unique solution (vt, st, wt2) and that we can evaluate the probabilities p (v
t) and p (wt2),

where p (yt|W t
1, y

t−1, S0; γ) = p (vt) p (w2,t) ∀t.
Assumption 4 rules out the possibilities of sunspots or indeterminacy of equilibrium. To

deal with sunspots and indeterminacy we could extend the results of Lubick and Schorfheide

(2003) which indexed the multiple solutions that appear under indeterminacy through addi-

tional parameters.

Define the set Ω (S0) = {wt1 : ∃wt2, vt s.t. p (yt|wt1, yt−1, S0) > 0 for all t}. Given some

initial state S0, this set defines the realizations, wt1, of the random variable W
t
1 for which the

model assigns positive probability to the data. To deal with an interesting problem we now

make the assumption that this set is not empty.

Assumption 5: ∃ some initial state S0 for which Ω (S0) 6= {∅}. If dim (W1,t) = 0 the

assumption holds if p (yt|yt−1, S0; γ) > 0.
Therefore, if the five aforementioned assumptions hold and conditional on having N draws

of {si0}Ni=1 from the density p (S0; γ) and N draws
½n
w
t|t−1,i
1

oN
i=1

¾T
t=1

from the corresponding

sequence of densities {p (W t
1|yt−1, S0; γ)}Tt=1, the likelihood function (4) can be approximated

by:

p
¡
yT ; γ

¢ ' 1

N

Ã
TY
t=1

1

N

NX
i=1

p
³
yt|wt|t−1,i1 , yt−1, si0; γ

´!
,

because of a law of large numbers.

This shows that the problem of evaluating the likelihood of a dynamic equilibrium econ-

omy is equivalent to the problem of drawing from {p (W t
1|yt−1, S0; γ)}Tt=1. We now propose a

Sequential Monte Carlo algorithm to accomplish this objective.
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2.2. A Sequential Monte Carlo Filter

We first fix some further notation. Let
©
wt−1,i1

ªN
i=1

be a sequence of N i.i.d. draws from

p
¡
W t−1
1 |yt−1, S0; γ

¢
. Let

n
w
t|t−1,i
1

oN
i=1
be a sequence of N i.i.d. draws from p (W t

1|yt−1, S0; γ).
We call each drawW t,i

1 a particle and the sequence
©
wt−1,i1

ªN
i=1
a swarm of particles. Let also

h (St) be any measurable functions for which the expectation

Ep(W t
1 |yt,S0;γ)

¡
h
¡
W t
1

¢¢
=

Z
h
¡
W t
1

¢
p
¡
W t
1|yt, S0; γ

¢
dW t

1

exists and is finite.

We now present a proposition that is close to previous results in importance sampling.

Proposition 1. Let
n
w
t|t−1,i
1

oN
i=1

be a draw from p (W t
1|yt−1, S0; γ) and the weights:

qit =
p
³
yt|wt|t−1,i1 , yt−1, S0; γ

´
PN

i=1 p
³
yt|wt|t−1,i1 , yt−1, S0; γ

´ .
Then:

Ep(W t
1 |yt,S0;γ)

¡
h
¡
W t
1

¢¢ ' NX
i=1

qith
³
w
t|t−1,i
1

´
.

Proof. By Bayes theorem:

p
¡
W t
1|yt, S0; γ

¢ ∝ p ¡W t
1|yt−1, S0; γ

¢
p
¡
yt|W t

1, y
t−1, S0; γ

¢
Therefore if we use p (W t

1|yt−1, S0; γ) as a important sampling function to draw from the

density p (W t
1|yt, S0; γ), the result is a direct consequence of the law of large numbers (e.g.

Geweke, 1989, Theorem 1).

Proposition 1 shows how we can use p (W t
1|yt−1, S0; γ) as an important sampling density

to draw from p (W t
1|yt, S0; γ) in the following way:

Corollary 2. Let
n
w
t|t−1,i
1

oN
i=1

be a draw from p (W t
1|yt−1, S0; γ). Let the sequence {ewi}Ni=1

be a draw with replacement from
n
w
t|t−1,i
1

oN
i=1

where qit is the probability of w
t|t−1,i
1 being

drawn ∀i .Then {ewi}Ni=1 is a draw from p (W t
1|yt, S0; γ).

Corollary 2 shows how a draw
n
w
t|t−1,i
1

oN
i=1

from p (W t
1|yt−1, S0; γ) can be used to get

a draw
©
wt,i1
ªN
i=1

form p (W t
1|yt, S0; γ). This corollary is key in the following Sequential
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Monte Carlo algorithm that generates draws
½n
w
t|t−1,i
1

oN
i=1

¾T
t=1

from the sequence of densi-

ties {p (W t
1|yt−1, S0; γ)}Tt=1:

Step 0, Initialization: Set tÃ 1 and generate N i.i.d. initial states {si0}Ni=1
from p (S0; γ) such that Ω (si0) 6= {∅}. Initialize p

¡
W t−1
1 |yt−1, S0; γ

¢
= 1.

Step 1, Prediction: Sample N values
n
w
t|t−1,i
1

oN
i=1

from the conditional density

p (W t
1|yt−1, S0; γ) = p (W1,t; γ) p

¡
W t−1
1 |yt−1, S0; γ

¢
.

Step 2, Filtering: Assign to each draw wt|t−1,i1 the weight qit as defined above

in proposition 1.

Step 3, Sampling: Sample N times with replacement from the set
n
w
t|t−1,i
1

oN
i=1

with probabilities {qit}Ni=1. Call each draw wt,i1 . If t < T set t Ã t + 1 and go

to step 1. Otherwise stop.

The intuition of the algorithm is as follows. Given a swarm of particles up to period t−1,©
wt−1,i1

ªN
i=1
, distributed according to p

¡
W t−1
1 |yt−1, S0; γ

¢
, step 1 generates draws

n
w
t|t−1,i
1

oN
i=1

from p (W t
1|yt−1, S0; γ). Then step 3 takes advantage of corollary 2 and resamples fromn

w
t|t−1,i
1

oN
i=1

using the weights {qit}Ni=1 to draw a new swarm of particles up to period t,©
wt,i1
ªN
i=1
distributed according to p (W t

1|yt, S0; γ). Notice that we use the output of the algo-
rithm {si0}Ni=1 and

½n
w
t|t−1,i
1

oN
i=1

¾T
t=2

to compute the likelihood

p
¡
yT ; γ

¢ ' 1

N

Ã
TY
t=1

1

N

NX
i=1

p
³
yt|wt|t−1,i1 , yt−1, si0; γ

´!
.

We emphasize that in the case where the dim (W1,t) = 0, the algorithm collapses to iterating

step 2.

This algorithm derives from (but is not equal to) Sequential Monte Carlo algorithms for

nonlinear filtering (see Fearhead, 1998 for an elegant review of the relevant literature). We

modify existing procedures to deal with more general classes of state space representations

than the ones addressed in the literature. In particular we can handle those cases, common

in economics, where dim (Vt) < dim (Yt). We consider this more general applicability of our

procedure an important advance.
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Step 3 is the heart of the algorithm. A naive extension of basic Monte Carlo techniques

without this step will diverge as T grows. All the sequences will wander away from the true

(unobserved) shocks. To avoid this problem we do not carry over to the next period all the

particles generated. We draw with replacement from them, giving a higher probability to

those particles that are more likely. The fitting criterion is critical to the convergence of the

procedure and very similar to the intuition behind why genetic algorithms work: we allow

randomness to generate new simulations but we favor the survival of the particles that are

more informative.7

Figure 2.1 may help to explain this point. Here we represent six different particles over

six periods. We initialize all six particles at different values in period 1 and we move them to

period 2. In the second period some of them are sampled (those represented by a green circle)

while some are not (those that end with a red circle). As we just explained the sampling favors

those draws that are “closer” in probability to the data. In the next period, the particles

sampled (like particle 1) give birth to a number of continuations equal to the number of times

they have been sampled. We iterate this procedure until the end of our observation sample.

Finally note that the algorithm does not require any assumption on the distribution

of the shocks except the ability to evaluate p
¡
W t−1
1 |yt−1, S0; γ

¢
, either analytically or by

simulation. This opens the door to dealing with models with a rich specification of non-

normal innovations.

2.3. Comparison with Alternative Schemes

The algorithm outlined above is not the only procedure to numerically evaluate the likelihood

of the data implied by nonlinear models. Our previous discussion highlighted how computing

the likelihood amounts to solve a nonlinear filtering problem, i.e., to generate estimates of

the values of W1,t so that the integral in (4) can be evaluated. Since this task is of interest

in different fields, several alternative schemes have been proposed to handle this problem.

A first line of research has been in deterministic filtering. Historically the first procedure

in this line was the Extended Kalman Filter (Jazwinski, 1973) which linearizes the transition

and measurement equations and uses the Kalman Filter to estimate for the states and the

shocks to the system. This approach suffers from the approximation error incurred by the

linearization and by the inaccuracy incurred by the fact that the posterior estimates of the

states are not Gaussian. As the sample size grows those problems accumulate and the filter

diverges. Even refinements as the Iterated Extended Kalman Filter or the quadratic Kalman

Filter cannot solve these problems.

7More sophisticated resampling schemes are available for variance reduction. See Doucet, De Freitas and
Gordon (2001) and Pitt and Shephard (1999) for reviews of these alternatives.
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A second approach in deterministic filtering is the Gaussian Sum approximations (Alspach

and Sorenson, 1972) which approximates the different densities required to compute the

likelihood with a mixture of normals. Under regularity conditions, as the number of normals

increases, we will approximate the densities arbitrarily well. However, the approach suffers

from an exponential growth in the number of components in the mixture and from the fact

that we still need to use the Extended Kalman Filter to approximate the evolution of those

different components.

A third alternative in deterministic filtering is the use of grid-based filters, based on

deterministic numerical integration as proposed by Bucy and Senne (1974), to compute the

different integrals. Their use is limited as grid-based filters turn out to be very difficult to

implement, requiring a constant readjustment to small changes in the model or its parameter

values, and they are too computationally expensive to be of any practical use beyond very

low dimensions.8

Tanizaki (1996) investigates the performance of all those deterministic filters (Extended

Kalman Filter, Gaussian Sum approximations and grid-based filters). He uses Monte Carlo

evidence to document that all those approximations delivered a very poor performance when

applied to real economic applications.

A second strategy is to think of the functions f and g as a change of variables of the

innovations to the model and use the Jacobian of the transformation to evaluate the likelihood

of the observables (Miranda and Rui, 1997). In general this approach is cumbersome and

also difficult to implement since we need to approximate the derivatives in the (unknown)

Jacobian. These approximations are costly and not very robust. Furthermore, technical

conditions limit its applicability.

A third line of research is the use of Monte Carlo techniques. This approach was inaugurate

by Kitagawa (1987). One of the first lessons from this literature was that importing basic

simulation techniques is not straightforward because of convergence problems. For instance,

a recursive extension of the Importance Sampling scheme is bound to fail as the number of

observations grows (Robert and Casella, 1999).

The key innovation was proposed by Gordon, Salmond and Smith (1993). They pointed

out that resampling from the simulated data could be performed using properly chosen

weights. With these resampling it is feasible to solve efficiently and consistently the fil-

tering problem. Our algorithm is a descendant of the original proposal by Gordon, Salmond

and Smith (1993) and the following literature and includes theirs as a particular case when

{W1,t} = {Wt}.
8Another shortcoming of grid-based filters is that the grid points are fixed ex ante and the results are very

dependent on that choice. In comparison we can think about our simulation filter as a grid-based filter where
the grid points are chosen endogenously over time based on their ability to account for the data.
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Other simulation algorithms includeMariano and Tanizaki (1995) and Geweke and Tanizaki

(1999). Mariano and Tanizaki (1995) propose a version of rejection sampling. This method is

difficult however because it depends on finding an appropriate density for the rejection test.

This search is a time-consuming task that requires substantial work for each particular model.

Geweke and Tanizaki (1999) use the whole joint likelihood and draw from the distribution of

the whole set of states over the sample using a Metropolis-Hastings algorithm. This approach

increases notably the dimensionality of the problem, especially for relatively long samples,

and also requires good proposal densities and a good initialization of the chain.

3. An Application: The Stochastic Neoclassical Growth Model

In this section we present an application of our procedure to a dynamic equilibrium economy.

We find it natural to use the stochastic neoclassical growth model for that purpose. First, it

is a canonical example of a dynamic equilibrium model and it has been used, either directly

or with small variations, to address a large number of questions in macroeconomics. Second,

it is a relatively simple model, a fact that facilitates the illustration of the different parts of

our procedure. In this paper we are more interested in showing the potential of our approach

than in the empirical findings per se, and the growth model is the perfect laboratory for that

purpose.

We are also aware that, since this a model that is nearly linear for a standard calibration,

our procedure may be a bit of overkill. For example, a simpler procedure such as using the

Kalman filter after linearizing the equilibrium conditions may deliver estimates that are nearly

as good as those obtained while respecting the nonlinearities of the model. We actually see this

fact as an advantage since it may help the reader to notice the differences of our algorithm

from other alternatives and may allow to comparison of our results to the findings from

the Kalman Filter (see Fernández-Villaverde and Rubio-Ramírez, 2003b for more details).

Concurrent research applies our algorithm to models more explicitly nonlinear. For example,

we investigate, among other examples, models with asset pricing and economies with nominal

rigidities. We omit those results to keep this paper focused.

The rest of this section is divided into four parts. First, we present the stochastic neoclas-

sical growth model. Second, we briefly describe how we solve the model numerically. Third,

we explain how to evaluate the likelihood function. Finally, we explain how to introduce

our Sequential Monte Carlo algorithm in an estimation procedure. We do this from both

a Bayesian perspective and a classical one. Later in section 5 we report the results of our

estimation for “artificial”and real data.
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3.1. The Model

As just mentioned we work with the stochastic neoclassical growth model with leisure. This

model is well known (see the textbook exposition of Cooley and Prescott, 1995). Consequently

we only go through the minimum exposition required to fix notation.9

There is a representative agent in the economy, whose preferences over stochastic sequences

of consumption ct and leisure lt are representable by the utility function

U = E0

∞X
t=0

βt

³
cθt (1− lt)1−θ

´1−τ
1− τ

,

where β ∈ (0, 1) is the discount factor, τ determines the elasticity of intertemporal substitu-
tion, θ controls labor supply and E0 is the conditional expectation operator.

There is one good in the economy produced according to the production function eztkαt l
1−α
t ,

where kt is the aggregate capital stock, lt is the aggregate labor input and zt is a stochastic

process representing random technological progress. The stochastic process zt follows an

AR(1) process zt = ρzt−1 + ²t with ²t ∼ N (0,σ²). We restrict ourselves to cases where the
process is stationary (i.e. |ρ| < 1). Capital’s law of motion is kt+1 = it+ (1− δ)kt where it is

investment and the economy must satisfy the resource constrain ct + it = eztkαt l
1−α
t .

A competitive equilibrium can be defined in a standard way as a sequence of allocations

and prices such that both the representative household and the firm maximize and markets

clear. However since both welfare theorems hold in this economy, we can instead solve the

equivalent and simpler social planner’s problem that maximizes the utility of the representa-

tive household subject to the economy resource constraint, the law of motion for capital, the

stochastic process and some initial conditions k0 and z0.

The solution to this problem is fully characterized by the following two stochastic partial

differential equations, an Euler intertemporal condition³
cθt (1− lt)1−θ

´1−τ
ct

= βEt


³
cθt+1 (1− lt+1)1−θ

´1−τ
ct+1

¡
1 + αezt+1kα−1t+1 l

α
t − δ

¢ (5)

and a static optimality condition

1− θ

θ

ct
1− lt = (1− α) eztkαt l

−α
t , (6)

9We avoid the case of the model with full depreciation and no leisure choice. Even if in this case the model
has a closed-form solution, this form is loglinear and consequently is suited for estimation using the Kalman
Filter. We want to deal with an explicitly nonlinear case to illustrate the generality of our procedure.
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plus the stochastic process for productivity, the law of motion for capital, the economy re-

source constraint and the boundary condition c(0, zt; θ) = 0.

We can think about this problem as finding policy functions for consumption c (·, ·), labor
l (·, ·) and next period’s capital k0 (·, ·) , which deliver the optimal choices as functions of the
two state variables, capital and the technology level. In practice, however, the problem is

simpler because we only search for the solution l (·, ·) and find c (·, ·) using the static optimality
condition and k0 (·, ·) using the resource constraint of the economy.

3.2. Solving the Model

The previous system of equations does not have a known analytical solution and we need

to use a numerical method to solve it. In a recent paper, Aruoba, Fernández-Villaverde and

Rubio-Ramírez (2003) have documented that the Finite Element Method delivers a highly

accurate, fast and numerically stable solution for a wide range of parameter values in a model

exactly like the one considered here. In addition theoretical results ensure the convergence of

the approximation to the true (but unknown) nonlinear solution of the economy. Details of

how to implement the Finite Element Method in our application are provided in the appendix.

We emphasize, however, that nothing in the Sequential Monte Carlo filter stops us from

using any other nonlinear solution method for the system of equations as perturbations (Guu

and Judd, 1997), Chebyshev polynomials (Judd, 1992) or value function iteration. The

appropriate choice of solution method should be dictated by the details of the particular

model to be estimated.

3.3. The Likelihood Function

We assume that we have observed the following time series yT ∈ ×Tt=1R3, where, for each t, the
first component is output, gdpt, the second is hours, hourst and the third is investment, invt.

We make this assumption out of pure convenience. On the one hand we want to capture

some of the main empirical predictions of the model. On the other hand, and again only

for illustration purposes, we want to keep the dimensionality of the problem low. However

the empirical analysis can be performed with very different combinations of data. Our choice

should be understood just as an example of how to evaluate the likelihood function associated

with a vector of observations.

Let γ1 ≡ (θ, ρ, τ ,α, δ,β,σ²) ∈ Υ1 ⊂ R7 be the structural parameters that describe the
preferences and technology of the model. Also, as described in the appendix, our imple-

mentation of the Finite Element Method requires shocks bounded between −1 and 1. To
achieve that goal we transform the productivity shock in the following way: λt = tanh(zt).

Let St = (kt,λt) be the states of the model and set Wt = ²t. Let also Sss = (kss, tanh(0)),

15



the value of the states’ variables in the steady state of the model.

Define Vt ∼ N (0,Σ) as a vector of measurement errors for our three observables. To
economize on parameters we assume that Σ is diagonal with diagonal elements σ21, σ

2
2 and σ23.

Define γ2 = (σ21,σ
2
2,σ

2
3) ∈ Υ2 ⊂ R3+ and γ = (γ1, γ2) ∈ Υ. Finally call the approximated labor

policy function lfem (·, ·; γ) , where we make the dependence from the structural parameter

values explicit.

The transition equation for this model is:

kt = f1(St−1,Wt; γ) = e
tanh−1(λt−1)kαt−1lfem

¡
kt−1, tanh−1(λt−1); γ

¢1−α ∗
∗
Ã
1− θ

1− θ
(1− α)

¡
1− lfem

¡
kt−1, tanh−1(λt−1); γ

¢¢
lfem

¡
kt−1, tanh−1(λt−1); γ

¢ !
+ (1− δ) kt−1

λt = f2(St−1,Wt; γ) = tanh(ρ tanh
−1(λt−1) + ²t),

and the measurement equation is:

gdpt = g1(St, Vt; γ) = e
tanh−1(λt)kαt lfem

¡
kt, tanh

−1(λt); γ
¢1−α

+ V1,t

hourst = g2(St, Vt; γ) = lfem
¡
kt, tanh

−1(λt); γ
¢
+ V2,t

invt = g3(St, Vt; γ) = e
tanh−1(λt)kαt lfem

¡
kt, tanh

−1(λt); γ
¢1−α ∗

∗
Ã
1− θ

1− θ
(1− α)

¡
1− lfem

¡
kt, tanh

−1(λt); γ
¢¢

lfem
¡
kt, tanh

−1(λt); γ
¢ !

+ V3,t.

It would be useful below to define the vector x(St; γ) of predictions of the model regarding

observables. Those are equal to:

x1(St; γ) = etanh
−1(λt)kαt lfem

¡
kt, tanh

−1(λt); γ
¢1−α

x3(St; γ) = lfem
¡
kt, tanh

−1(λt); γ
¢

x3(St; γ) = etanh
−1(λt)kαt lfem

¡
kt, tanh

−1(λt); γ
¢1−α

∗
Ã
1− θ

1− θ
(1− α)

¡
1− lfem

¡
kt, tanh

−1(λt); γ
¢¢

lfem
¡
kt, tanh

−1(λt); γ
¢ !

.

We introduce measurement errors as the easiest way to avoid stochastic singularity (re-

member assumption 1). Nothing in our procedure depends on the presence of measurement

errors. We could for example write a version of the model where in addition to shocks to

technology we would have shocks both to preferences and to depreciation. This alternative

might be more empirically relevant, but it would make the solution of the model much more

involved. As we have reiterated several times, since our goal here is merely to illustrate how

to use our Sequential Monte Carlo filter to evaluate the likelihood of the model in an example
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as simple as possible, we prefer the “trick” of using measurement errors. We feel, however,

that in a large number of empirical application, more structured alternatives to measurement

errors are required.

Given the fact that we have four sources of uncertainty, and dim (Vt) = dim (Yt), we follow

assumption 2 and set dim(W2,t) = 0 and W1,t = Wt = ²t. Let L
¡
yT ; γ

¢
be the likelihood

function of the data. Remember that the likelihood was given by:

L
¡
yT ; γ

¢
=

Z Ã
TY
t=1

Z
p
¡
yt|W t

1, y
t−1, S0; γ

¢
p
¡
W t
1|yt−1, S0; γ

¢
dW t

1

!
p (S0; γ) dS0. (7)

Since dim(W2,t) = 0, W1,t =Wt and St = g (St−1,Wt; γ) observe, first, that:

p
¡
yt|W t

1, y
t−1, S0; γ

¢
= p

¡
yt|W t, yt−1, S0; γ

¢
= p (yt|St; γ) ,

and second, that to draw from p (W t
1|yt−1, S0; γ) is equivalent to draw from p (St|yt−1, S0; γ).

This allow us to write the likelihood function (7) as:

L
¡
yT ; γ

¢
=

Z Ã
TY
t=1

Z
p (yt|St; γ) p

¡
St|yt−1, S0; γ

¢
dSt

!
p (S0; γ) dS0. (8)

But since our measurement equation implies that

p (yt|St; γ) = (2π)−
3
2 |Σ|−1

2 e−
ω(St;γ)

2

where we define the prediction errors to be ω(St; γ) = (yt − x(St; γ))0Σ−1 (yt − x(St; γ)) ∀t,
we can rewrite (8) as

L
¡
yT ; γ

¢
= (2π)−

3T
2 |Σ|−T2

Z Ã
TY
t=1

Z
e−

ω(St;γ)
2 p

¡
St|yt−1, S0; γ

¢
dSt

!
p (S0; γ) dS1. (9)

This last expression is simple to handle. Given particles
½n
w
t|t−1,i
1

oN
i=1

¾T
t=1

and {si0}Ni=1
coming from our Sequential Monte Carlo filter, we can build the states

n
{sit}Ni=1

oT
t=1
and the

prediction error
n
{ω(sit; γ)}Ni=1

oT
t=1

implied by them. We set si0 = Sss ∀i. Therefore, the
likelihood function is approximated by:

L
¡
yT ; γ

¢ ' (2π)−3T
2 |Σ|−T2

TY
t=1

1

N

NX
i=1

e−
ω(sit;γ)

2 . (10)
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Note that equation (10) is nearly identical to the likelihood function implied by the

Kalman Filter (see for example equation 3.4.5 in Harvey, 1989) when applied to a linear

model. The difference is that in the Kalman Filter the prediction errors ω(sit; γ) come di-

rectly from the output of the Riccati equation, while in our filter those come from the output

of the simulation.

4. Estimation Algorithms

We now explain how to use to the approximated likelihood function (10) to perform nonlinear

likelihood-based estimation from both a Bayesian perspective and a classical one. First we

will describe the Bayesian approach, then the classical.

In a Bayesian approach the main inference tool is the posterior distribution of the para-

meters given the data π
¡
γ|yT¢. Once the posterior distribution is obtained, we can define

a loss function and obtain a point estimate. The Bayes theorem tells us that the posterior

density is proportional to the likelihood times the prior. Therefore, we need both to specify

priors on the parameters, π (γ), and to evaluate the likelihood function. We specify our priors

in section 5.1, and the likelihood function of the model is approximated by (10). The next

step in Bayesian inference is to find the parameters’ posterior. In general the posterior does

not have a closed form. Therefore we use a Metropolis-Hasting algorithm to draw from it.10

The algorithm to draw a chain {γi}Mi=1 from π
¡
γ|yT¢ is as follows:

Step 0, Initialization: Set i Ã 0 and an initial γi. Solve the model for γi
and compute f (·, ·; γi) and g (·, ·; γi) . Evaluate π (γi) and L

¡
yT ; γi

¢
using (10). Set

iÃ i+ 1.

Step 1, Proposal draw: Get a proposal draw γ∗i = γi−1+εi, where εi ∼ N (0,σε).

Step 2, Solving the Model: Solve the model for γ∗i and compute f (·, ·; γ∗i ) and
g (·, ·; γ∗i ).
Step 3, Evaluating the proposal: Evaluate π (γ∗i ) and L

¡
yT ; γ∗i

¢
using (10).

Step 4, Accept/Reject: Draw χi ∼ U (0, 1). If χi ≤
L(yT ;γ∗i )π(γ∗i )

L(yT ;γi−1)π(γi−1)
set γi = γ∗i,

otherwise γi = γi−1. If i < M set iÃ i+ 1 and go to step 1. Otherwise stop.

Once {γi}Mi=1 is obtained through this algorithm, any moments of interest of the posterior
10In other examples we could exploit the structure of the problem and use another, more efficient Markov

chain Monte Carlo procedure.
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can be computed as well as the marginal likelihood of the model.

On the classical side the main inference tool is the likelihood function and its global max-

imum. Once the likelihood is obtained using (10), we can introduce it inside a maximization

loop suitable for the model being studied in the following way:

Step 0, Initialization: Set iÃ 0 and an initial γi. Set iÃ i+ 1

Step 1, Solving the Model: Solve the model for γi and compute f (·, ·; γi) and
g (·, ·; γi).
Step 2, Evaluating the Likelihood: Evaluate L

¡
yT ; γi

¢
using (10) and get γi+1

from a maximization routine.

Step 3, Stopping Rule: If
°°γi − γi+1

°° > ε, where ε > 0 is the accuracy level

goal, set iÃ i+ 1 and go to step 1. Otherwise stop.

The output of the algorithm, bγMLE = γi, is the maximum likelihood point estimate. We

can compute its asymptotic variance-covariance matrix as follows

var(bγMLE) = −
Ã
∂2L

¡
yT ;bγMLE¢
∂γ∂γ0

!−1
.

Since in general we cannot evaluate this second derivative directly, we will use a numerical

approximation using standard procedures.

Finally, although we do not use it in this paper, the value of the likelihood function at its

maximum is also useful to build likelihood ratios for model comparison purposes.

5. Findings

In this section we conduct likelihood-based inference on our model. We undertake two exer-

cises. In the first exercise we simulate “artificial” data from the model for a particular choice

of values of γ. Then with these data, we compute the likelihood and estimate the parameters

of the model using our Sequential Monte Carlo algorithm. This exercise documents how

our filter delivers good estimates of the “true” parameter values. In this way we address two

critical questions. First, since our procedure only produces an estimate of the likelihood func-

tion, we want to know if the numerical error incurred stops the filter from finding accurate

parameter estimates. Working with simulated data avoids the problem of estimates being

affected by model misspecification. Second, we can determine how many particles we need

to obtain an accurate estimation. The theoretical arguments presented above rely on asymp-
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totic arguments and they cast little light on the number of particles required in a particular

application.

The second exercise takes the model to real data. We estimate it using real output

per capita, average hours worked and real gross fixed investment per capita in the U.S.

from 1964:Q1 to 2003:Q1. This exercises proves how the filter can be brought to “real life”

applications and how it delivers sensible results.

We perform both exercises from a Bayesian perspective a from a classical one. For the

Bayesian approach, we specify prior distributions over the parameters, evaluate the likelihood

using our filter and draw from the posterior using a Metropolis-Hastings algorithm. However,

since we specify flat priors, the posterior mean can be interpreted as the maximum likelihood

estimate. In addition we perform a simulated annealing search to find “pure” maximum

likelihood estimates.

We divide our exposition in four parts. First, we specify the priors for the parameters.

Second, we present results from the “artificial” data experiment. Third, we present the

results of the estimation with real data. Finally, we analyze some convergence issues of the

Sequential Monte Carlo algorithm.

5.1. Specifying the Priors

The first step is to specify prior distributions for the different parameters of the model γ ≡
(θ, ρ, τ ,α, δ, β,σ²,σ1,σ2,σ3) ∈ Υ. We write π(γ) : Υ → R+ when we denote the product of

all the different priors.

We adopt flat priors for all ten parameters subject only to some boundary constraints to

make the priors proper and to rule out parameter values that are either incompatible with

the model (i.e. a negative value for a variance) or extremely implausible (the parameter

governing the elasticity of substitution being bigger than 100). The looseness of those last

constraints is shown by the fact that the simulations performed below never travel even close

to those bounds.

Our choice of flat priors is motivated by two reasons. First, since we are going to undertake

estimation on simulated data generated by some known parameter values, we do not want

to bias the results in favor of our procedure by a careful choice of priors. Second, with a flat

prior the posterior is proportional to the likelihood function.11 Consequently our Bayesian

results can be interpreted as a classical exercise where the mode of the likelihood function

is the maximum likelihood estimate. Also, a researcher who prefers to use more informative

11The exception is the small issue of the bounded support of the priors. If we think about those bounds as
frontiers of admissible parameter values in a classical perspective, the argument equating the posterior and
likelihood holds exactly. Otherwise, it holds nearly exactly because the likelihood puts an negligible mass
outside the support of the priors.
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priors can always reweight the draws from the posterior to accommodate his favorite priors

(see Geweke, 1998).12

Table 3.1: Priors for the Parameters of the Model

Parameters Distribution Hyperparameters

θ

ρ

τ

α

δ

β

σ²

σ1

σ2

σ3

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

0,1

0,1

0,100

0,1

0,0.05

0.75,1

0,0.1

0,0.1

0,0.1

0,0.1

We now describe the priors in more detail. The parameter governing labor supply, θ,

follows a uniform distribution between 0 and 1. That range captures all the possible values

for which leisure has positive marginal utility. The persistence of the technology shock, ρ,

follows a uniform distribution between 0 and 1. This region implies a stationary distribution of

the variables of the model13 with a lower bound on no persistence. The parameter governing

the elasticity of substitution, τ , follows a uniform between 0 (linear preferences) and 100.

That choice encompasses all range of empirical estimates of the parameter and only rules out

risk loving behavior and risk aversions that will predict differences in interest rates several

orders of magnitude higher than the observed ones.14 The prior for the technology parameter,

α, is uniform between 0 and 1, including all values for which the marginal productivity of

12Note that we do not argue that our flat priors are uninformative. After a reparametrization of the model,
a flat prior may become highly curved.
13This prior rules out almost surely the presence of a unit root in the output process. One attractive point

of Bayesian inference is that, in contrast with classical methods, it is not necessary to use special tools to
deal with unit roots (Sims and Uhlig, 1991). In the same way our filter can deal with these unit roots paying
the cost of a somehow lower efficiency. As a consequence our prior choice is not motivated by any technical
reason but out of our view of what is a reasonable characteristic of the data. We are using a version of the
neoclassical growth model without long-run technological progress. As described below, we filter our data
using a H-P filter before feeding them into the likelihood function. Since the H-P filter removes up to two
unit roots (King and Rebelo, 1993), we are only ruling out the presence of three unit roots in output, a highly
implausible hypothesis.
14As Lucas (1987) pointed out, in the steady state the product of τ and the rate of growth of output are equal

to a constant plus the interest rate since the deterministic Euler condition states that (1 + g)τ = β (1 + r)
and then τg = log β + r.
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capital and labor are positive. The prior on the depreciation rate ranges between 0 and 0.05,

covering all national accounts estimates of quarterly depreciation. The discount factor, β,

ranges between 0.75 and 1, implying steady state annual interest rates between 0 and 316 per

cent. The standard deviation of the innovation of productivity, σ², follows a uniform between

0 and 0.1, a bound 15 times higher than the usual estimates. We also pick this prior for

the three standard deviations of the measurement errors. Table 3.1 summarizes the previous

discussion.

5.2. Results with “Artificial” Data

As a first step to test our procedure we simulate observations from our model to use them as

“artificial” data for the estimation. We will generate data from two different calibrations.

First, we select the benchmark calibration values for the stochastic neoclassical growth

model according to the standard practice (Cooley and Prescott , 1995) to make our experiment

as relevant as possible. The discount factor β = 0.9896 matches an annual interest rate of

4.27 per cent (see McGrattan and Prescott, 2000 for a justification of this number based on

their measure of the return on capital and on the risk-free rate of inflation-protected U.S.

Treasury bonds). The risk aversion τ = 2 is a common choice in the literature. θ = 0.357

matches the microeconomic evidence of labor supply. We set α = 0.4 to match labor share

of national income. The depreciation rate δ = 0.02 fixes the investment/output ratio and

ρ = 0.95 and σ = 0.007 match the stochastic properties of the Solow residual of the U.S.

economy. With respect to the standard deviations of the measurement errors we set them

equal to a 0.01 per cent of the steady state value of output, 0.35 per cent of the steady state

value hours and 0.2 per cent of the steady state of investment based on our priors regarding

the relative importance of measurement errors in National and Income Product Accounts.

The chosen values are summarized in table 3.2.

Table 3.2: Calibrated Parameters

Parameter θ ρ τ α δ β σ² σ1 σ2 σ3

Value 0.357 0.95 2.0 0.4 0.02 0.99 0.007 1.58*10−4 0.0011 8.66*10−4

The second calibration keeps the same values for all the parameters except for τ and σ².

We increase τ to a value of 50 (implying a relative risk aversion of 24.5) and σ² to 0.035. The

interaction between high risk aversion and high variance introduces a strong nonlinearity in

the model that will help us to assess how the procedure does in a much more challenging

environment. Our value for risk aversion is an order of magnitude higher than the usual values

used in macroeconomics but not too far away from some numbers implied by practitioners

in finance (see Cochrane and Hansen, 1992). However, we do not justify our choice based on
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empirical relevance but on our desire to assess the performance of our algorithm under highly

nonlinear circumstances.

We solve the model using our finite element method with 140 elements and we draw a

sample of size 100 for each of the two calibrations.15 We use our priors and our likelihood

evaluation algorithm with 40,000 particles to get 50,000 draws from the posterior distribution

using the Metropolis-Hastings algorithm.

We begin discussing the results for the “standard calibration.” First, in figure 3.1, we

plot the likelihood function in logs of the model given our simulated data. Since we deal with

a high dimensional object, we plot in each panel the shape of the function for an interval

of ±20 per cent of the calibrated value of the structural parameter, keeping the rest of the
parameters fixed at their calibrated values. For illustration purposes, the “true” value for

the parameter corresponding to the direction being plotted is represented by the vertical red

line. We can think of these plots as transversal cuts of the likelihood function. Since for some

parameter values the likelihood function takes values less than -2,000 in log terms, roughly

zero probability, we do not plot them to enhance the readability of the figure.

We see how the likelihood is very informative for the parameter α, δ, θ and β: the data

clearly points out the most likely values for the parameters. Any estimation procedure, either

Bayesian or classical, will quickly lead us to the peak of the likelihood. The situation is more

complicated for the remaining three structural parameters, ρ, τ and σ², which present very

flat likelihoods. The finding for ρ is not very surprising. It is difficult to estimate precisely an

autoregressive component, especially with only 100 observations. The parameter governing

the elasticity of substitution τ is complicated to uncover because even relatively important

changes in it will have very small changes in the behavior of agents. In the growth model,

τ only enters in the policy function because of the presence of uncertainty (the steady state

values of the model variables do not depend on it). Since the variability of the productivity

shock in the standard calibration is low (and consequently the uncertainty in the data that

will allow us to identify this parameter is also small), it is nearly impossible to get a very

accurate estimate inside the region 1.8 and 2.2. Finally, σ² is confounded in the data with

the measurement errors. This may be interpreted as a cautionary lesson for an indiscriminate

use of measurement errors in empirical models.

We now present inference results. We graph our empirical posterior distributions in fig-

ure 3.2 (where the red line is again the calibrated value) and report the mean and standard

deviations of these distributions in table 3.3. Under a quadratic loss function, the mean of

the posterior distribution is the optimal point estimate of the parameter. Also, given our flat

priors, the modes in figure 3.2 will be our maximum likelihood point estimates.

15The results were robust when we used different simulated data from the same model. We omit details
because of space considerations.
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Table 3.3: Posterior Distributions Benchmark Calibration

Parameters Mean s.d.

θ

ρ

τ

α

δ

β

σ²

σ1

σ2

σ3

0.357

0.950

2.000

0.400

0.020

0.989

0.007

1.58×10−4
1.12×10−2
8.64×10−4

6.72×10−5
3.40×10−4
6.78×10−4
8.60×10−5
1.34×10−5
1.54×10−5
9.29×10−6
5.75×10−8
6.44×10−7
6.49×10−7

Table 3.3 reveals that our method does an excellent job of pinning down the values of the

parameters, especially considering the low number of iterations. All the structural parame-

ters except the standard deviation of the measurement error on output are estimated in an

unbiased and tight way. That should not be a big surprised after inspecting the likelihood

function in figure 3.1.

However, we mentioned before that for three parameters, ρ, τ and σ², the likelihood was

not that informative. How can we get such accurate answers? First, even for ρ and τ the

likelihood displays an informative shape (the log scale may be deceptive). The case of σ² is

more complicated because the likelihood is nearly flat. The result may be a consequence of

our initial values for the Metropolis-Hastings.

Since we initialize our simulation close to the true parameter values we may be biasing

the results in our favor. The problem of how to select the initial values for Markov chain

Monte Carlo is well known but in our case it is particularly relevant because, ironically, we

know the “true” parameter values and we can get very different answers with a careful choice

of starting values and length of the chain. A first (but weak) lesson from our results above

would be that our the procedure stays where it needs to stay when we begin at the right

point of the parameter space. But of course a second lesson is that we need to assess how

robust our findings are.

There are two possibilities to check the robustness of the estimates. One is to initiate

the chain at the mean of the priors. Since our priors are flat over a large range, this choice

implies initial values very far away from the true parameter values. The second alternative is

to begin at a middle distance from the “true” parameter values (for example, 20 per cent off).

We investigated both alternatives. We found that the algorithm quickly moves in the right
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direction searching for higher likelihoods. The drawback is that we need a long burn-in period

until the likelihood stabilizes. This observation is similar the teachings from the literature

in applied Markov chain Monte Carlo: a careful exploration of the parameters’ space for a

good initial value is key to achieve a good performance in reasonable time. To illustrate how

the algorithm searches for the right region, figure 3.3 plots the time series of the evolution of

values of parameters in the simulation and how they converge from the initial value (signaled

by an arrow) to the true value, represented by the red line.

Summarizing, we interpret the results from the different chains as follows. First, if we

begin around the true parameter values, we stay in that neighborhood. Second, if we begin

far away, after a long burn-in period, we converge to the right region.

An alternative to our Bayesian inference is to perform maximum likelihood. Given our

previous exposition, such a task is relatively simple. We only need to plug in our maximiza-

tion algorithm inside a maximization routine and let the procedure find a maximum of the

function. However, our simulation procedure makes difficult to use a simple Newton-Raphson

update scheme. Since we cannot compute derivatives analytically, we approximate them nu-

merically. The sampling error associated with the likelihood function evaluation makes these

numerical derivatives unstable16 and the procedure faces difficulties in converging. We find,

however, that using a simulated annealing scheme we get successful estimates of the parame-

ter value nearly identical to the ones reported above.17

Table 3.4: Maximum Likelihood Estimates Benchmark Calibration

Parameters MLE s.d.

θ

ρ

τ

α

δ

β

σ²

σ1

σ2

σ3

0.357

0.950

2.000

0.400

0.002

0.990

0.007

1.58×10−4
1.12×10−3
8.63×10−4

8.19×10−6
0.001

0.020

2.02×10−6
2.07×10−5
1.00×10−6
0.004

0.007

0.007

0.005

16Unless we use a large number of particles. This would make the process too slow. For the evaluation of
the standard deviations at the MLE we use 4,000,000 particles to assure convergence by brute force.
17That result is not surprising given the similarity in spirit of the Metropolis-Hastings and simulated

annealing and the shape of the likelihood function reported in figures 3.1 and 3.4.
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Table 3.4 presents the results from Maximum Likelihood. Direct inspection reveals that

the point estimates are very similar (not surprising given the shape of the likelihood), but

that the standard deviations are higher. Fernández-Villaverde and Rubio-Ramírez (2003a)

document similar findings in details and argue that the shape of the likelihood function

of dynamic equilibrium models (relatively flat close to the maximum) explains the higher

standard deviations.

The results of the second calibration are reported in figure 3.4 (the likelihood transversal

cuts), figure 3.5 (the posteriors), table 3.5 (mean and standard deviations of the posterior)

and in table 3.6 (maximum likelihood estimates).

Table 3.5: Posterior Distributions Extreme Calibration

Parameters Mean s.d.

θ

ρ

τ

α

δ

β

σ²

σ1

σ2

σ3

0.357

0.950

50.00

0.400

0.020

0.989

0.035

1.58×10−4
1.12×10−2
8.65×10−4

7.19×10−4
1.88×10−4
7.12×10−3
4.80×10−5
3.52×10−6
8.69×10−6
4.47×10−6
1.87×10−8
2.14×10−7
2.33×10−7

Table 3.6: Maximum Likelihood Estimates Extreme Calibration

Parameters MLE s.d.

θ

ρ

τ

α

δ

β

σ²

σ1

σ2

σ3

0.357

0.950

50.000

0.400

0.019

0.990

0.035

1.58×10−4
1.12×10−3
8.66×10−4

2.42×10−6
6.12×10−3
0.022

3.62×10−7
7.43×10−6
1.00×10−5
0.015

0.017

0.014

0.023
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Our results are very similar to the previous ones. The likelihood is still very informative

for the parameter α, δ, θ and β. Now, however, the data also tell us more about the other

three parameters, especially ρ. This better information is reflected in table 3.5, which shows

tighter and more consistent estimates in a highly nonlinear model than in table 3.3.

Finally let us mention that model comparison in this framework is straightforward. From

the output of the algorithm we can either find the maximum value of the likelihood (to

build likelihood ratios) or compute the marginal likelihood. This marginal likelihood de-

termines the probability that the model assigns to the observations and serves to compare

models. Geweke (1998) provides details regarding how to compute this marginal likelihood.

Fernández-Villaverde and Rubio-Ramírez (2003b) use the marginal likelihood ratio to suggest

that the data strongly favor a nonlinear version of the stochastic growth model over linearized

approximations of the same economy.

5.3. Results with U.S. Data

Now we apply our procedure to estimate the stochastic neoclassical growth model with U.S.

quarterly data. We use real output per capita, average hours worked and real gross fixed

investment per capita from 1964:Q1 to 2003:Q1. We first remove a trend from the data using

a H-P filter. In this way we do not need to model explicitly the presence of a trend and

possible changes to it.

Again we perform Bayesian and classical inferences. Table 3.7 presents the results from

the posterior distribution from 50,000 draws and figure 3.6 displays the posteriors. In this

case, to initialize the chain, we used the mean of the posterior computed from a linearized

version of the model and the Kalman filter after 400 million iterations.18

We briefly discuss some of our results. The discount factor, β, goes very close to 1, a com-

mon finding when dynamic equilibrium economies are estimated. The parameter controlling

the elasticity of substitution, τ , has a value of 1.825 and θ of 0.323. These two parameters

imply an elasticity of substitution of 1.27. The estimated depreciation factor is very low,

0.006 since the estimation tries to compensate for the high desire of accumulation of capital

implied by the very high discount factor. The parameter α is close to the canonical value of

0.4. Finally the autoregressive component, ρ, is estimated to be 0.969.

These numbers are close to the ones coming from a standard calibration exercise and to

those generally accepted as reasonable after the accumulation of empirical evidence over the

last two decades by very different empirical methods. Nearly as important, the standard

deviations of the posterior are very low, indicating tight estimates. We interpret this finding

18Such a large of draws allows for an “overkill” in terms of convergence of the Metropolis-Hastings and
thus for the elimination of the influence of initial guesses.
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as another strong endorsement of the ability of the procedure to uncover sensible values for

the structural parameters of dynamic equilibrium economies.

Table 3.7: Posterior Distributions Real Data

Parameters Mean s.d.

θ

ρ

τ

α

δ

β

σ²

σ1

σ2

σ3

0.323

0.969

1.825

0.388

0.006

0.997

0.023

0.039

0.018

0.034

7.976× 10−4
0.008

0.011

0.001

3.557× 10−5
9.221× 10−5
2.702× 10−4
5.346× 10−4
4.723× 10−4
6.300× 10−4

The estimation delivers numbers a bit more problematic regarding the standard deviation

of the productivity shock. In particular this shock seems to be much more variable than

the number estimated directly from the Solow residual. At the same time the values for the

standard deviations of the measurement errors seem high. The combination of these two

results may be an indication of the lack of identification of the stochastic growth model along

the dimension of the different shocks.

We conclude this section with table 3.8, which presents results using maximum likelihood.

As in the previous cases we observe that results are nearly identical.

Table 3.8: Maximum Likelihood Estimates Real Data

Parameters MLE s.d.

θ

ρ

τ

α

δ

β

σ²

σ1

σ2

σ3

0.390

0.987

1.781

0.324

0.006

0.997

0.023

0.038

0.016

0.035

0.044

0.708

1.398

0.019

0.160

8.67×10−3
0.224

0.060

0.061

0.076
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5.4. Convergence of the Sequential Monte Carlo

An important question to answer in practical applications is how many particles to use to

evaluate the likelihood function. The theory only provides us with a convergence result as

the number of particles goes to infinity but little guidance regarding finite behavior.

To explore this issue we compute 50 different times the likelihood of the model for different

numbers of particles (i.e., we compute 50 estimations of the likelihood with 10,000 particles,

50 with 20,000 and so on).

Tables 3.6 to 3.8 report the mean and the standard deviation of the estimated loglikelihood

at a particular parameter choice for the three different calibrations. For the benchmark

case we estimate the loglikelihood at the mean of the posterior, while we choose different

parameters values for the other two cases. We make this choice because of the different

behavior of the estimated loglikelihood at those points. While the standard deviation for

parameter choice that differs from the mean of the posterior is very low for any number

of particles, the standard deviation increases when the loglikelihood is estimated around it.

The reason for this increase in the variance is that at the mean of the posterior, the slope

of the loglikelihood goes from positive to negative very quickly, making this estimation more

difficult.

The robustness of the values of the loglikelihood in simulations with different parameter

values and different sets of data justifies our choice of N = 40, 000. Even in the worse case

the standard deviation is less than 0.2 per cent of the value of the loglikelihood. Sensitivity

analysis in our estimations also revealed that, after 20,000 particles, our posteriors and point

estimates are nearly identical. As mentioned above, efficiency could be improved if we deal

properly with the tails of the distribution but in the interest of simplicity we leave a careful

evaluation of these refinements for future research.

Table 3.6: Convergence Benchmark Calibration

N Mean s.d.

10000

20000

30000

40000

50000

60000

1459.163

1461.928

1462.078

1462.031

1462.636

1462.696

6.4107

2.8298

1.5415

0.9900

0.7168

0.6353
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Table 3.7: Convergence Extreme Calibration

N Mean s.d.

10000

20000

30000

40000

50000

60000

831.493

831.471

831.489

831.508

831.509

831.532

0.1954

0.1347

0.0971

0.0836

0.0882

0.0607

Table 3.8: Convergence Real Data

N Mean s.d.

10000

20000

30000

40000

50000

60000

1014.558

1014.600

1014.653

1014.666

1014.688

1014.664

0.3296

0.2595

0.1829

0.1604

0.1465

0.1347

We can also explore the response of the simulation to changes in the number of particles

with figures 3.7 to 3.9. These figures represent the C.D.F. for the weights qit as defined

in proposition 1 for a particular t and the three models. Figure 3.7 draws the C.D.F. for

the benchmark case, figure 3.8 for the extreme Calibration and figure 3.9 for the real data

case. The optimal behavior in terms of informational content of the different paths will be

qit = q
j
t for t, i and j. This case will imply a straight C.D.F. with slope

1
N
and equal weight

for all particles. The further away from this straight line the higher the weight on a small

set of particles (i.e. most particles carry very little information) and the higher the standard

deviation of the estimated loglikelihood. As we could have guessed from the previous tables,

the actual C.D.F. almost matches the straight line both for the extreme calibration and the

real data. In the benchmark calibration case, the actual C.D.F. is someway farther away

from the straight line.

6. Conclusions

We have presented a simple, general and efficient algorithm to perform likelihood-based in-

ference in nonlinear and/or non-normal dynamic equilibrium economies. We have shown how

parameter estimation and model comparison can be undertaken, either from a classical per-

spective or from a Bayesian one when we work with a nonlinear solution of the model. Also

we can perform this inference regardless of whether or not we have normal innovations to the
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model. The key result has been the development of an algorithm to evaluate the likelihood

function of the dynamic model. To achieve this goal we have worked on the tradition of non-

linear filtering theory to develop a Sequential Monte Carlo algorithm that can be applied to a

large class of economies. The intuition of the procedure is to simulate different paths for the

states of the model but to ensure convergence resampling from them using some appropriately

built weights.

Our simulation results and the application to real data of the stochastic neoclassical

growth model suggest that the procedure works superbly in delivering accurate and consis-

tent estimates. In a companion paper (Fernández-Villaverde and Rubio-Ramírez, 2003b) we

compare point estimates using linear and nonlinear approximations to the solution of the

model. We also use the marginal likelihood ratio to suggest that the data favor the nonlinear

version of the stochastic growth model over linearized approximations of the same economy.

Our current research applies the algorithm to fully nonlinear models of asset pricing, to the

study nominal rigidities, to the evaluation of the importance of non-normal innovations to

dynamic models (see Geweke 1994 for some suggestive evidence), to regime-switching models

and to economies with multiplicity of equilibria.
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7. Appendix

This appendix presents further details about this paper’s computations. First, it explains

our implementation of the Finite Element method. Second, it offers further details of the

Metropolis-Hastings algorithm used and its convergence. Finally, it discusses the computing

language and the software used.

7.1. The Finite Element Method

We provide a brief exposition of the finite elements method as applied in the paper. For

more detailed explanation the interested reader should consult the expositions in McGrattan

(1999) and Aruoba, Fernández-Villaverde and Rubio-Ramírez (2003).

The first step in the Finite Elements method is to note that we can rewrite the Euler

equation for consumption as

Uc(kt, zt) =
β√
2πσ

Z ∞

−∞

£
Uc(kt+1, zt+1)(1 + αezt+1kα−1t+1 l(kt+1, zt+1)

1−α − δ)
¤
exp(−²

2
t+1

2σ2
)d²t+1

(11)

where Uc(t) = Uc(kt, zt), kt+1 = ezt+1kαt l
1−α
t + (1− δ)kt − c(kt, zt) and zt+1 = ρzt + ²t+1.

The problem is to find two policy functions c(k, z) : R+ × [0,∞] → R+ and l(k, z) :

R+× [0,∞]→ [0, 1] that satisfy the model equilibrium conditions. Since the static first order

condition gives a relation between the two policy functions, we only need to solve for one of

them. For the rest of the exposition we will assume that we actually solve for l(k, z) and then

we find c (l(k, z)).

First we bound the domain of the state variables to partition it in nonintersecting elements.

To bound the productivity level of the economy we define λt = tanh(zt). Since λt ∈ [−1, 1]
we can write the stochastic process as λt = tanh(ρ tanh−1(zt−1) +

√
2σvt) where vt = ²t√

2σ
.

Now, since exp(tanh−1(zt−1)) =
√
1+λt+1√
1−λt+1

= bλt+1, we rewrite (11) as
Uc(t) =

β√
π

Z 1

−1

h
Uc(kt+1, zt+1)

³
1 + αbλt+1kα−1t+1 l(kt+1, zt+1)

1−α + δ
´i
exp(−v2t+1)dvt+1 (12)

where kt+1 = bλt+1kαt l (kt, zt)1−α + (1 − δ)kt − c (l(kt, zt)) and zt+1 = tanh(ρ tanh−1(zt) +√
2σvt+1). For convenience we use the same notation for l (·) in both (11) and (12) although

they are not the same function since their domain is different. To bound the capital we fix

an upper bound k, picked sufficiently high as a function of the steady state of the model that

it will only bind with an extremely low probability.

Then define Ω =
£
0, k
¤× [−1, 1] as the domain of lfe(k, z; θ) and divide Ω into nonoverlap-

ping rectangles [ki, ki+1]× [zj, zj+1], where ki is the ith grid point for capital and zj is jth grid
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point for the technology shock. Clearly Ω = ∪i,j [ki, ki+1] × [zj, zj+1]. These elements may
be of unequal size. In our computations we define fourteen unequal elements in the capital

dimension and ten on the λ axis. We have small elements in the areas of Ω where the economy

spends most of the time while just a few, large elements cover wide areas of the state space

infrequently visited (see figure A.1 for our partition). Note that we define the elements in

relation with the level of capital in the steady state of the model for each particular value of

the parameters being used in that precise moment of the estimation. Consequently our mesh

is endogenous to the estimation procedure, increasing efficiency and accuracy.

Next we set lfe
¡
k, z; θ

¢
=
P

i,j θijΨij (k, z) =
P

i,j θij
bΨi (k) eΨj (z) , where

bΨi (k) =


k−ki
ki+1−ki if k ∈ [ki−1, ki]
ki+1−k
ki+1−ki if k ∈ [ki, ki+1]

0 elsewhere

eΨj (z) =


z−zj

zj+1−zj if z ∈ [zj−1, zj]
zj+1−z
zj+1−zj if z ∈ [zj, zj+1]

0 elsewhere

.

Note that Ψij (k, z) = 0 if (k, z) /∈ [ki−1, ki]× [zj−1, zj]∪ [ki, ki+1]× [zj, zj+1] ∀i, j, i.e., the
function is 0 everywhere except inside two elements. Also lfe(ki, zj; θ) = θij ∀i, j, i.e., the
values of θ specify the values of cfe at the corners of each subinterval [ki, ki+1]× [zj, zj+1].
Let us define Uc(kt+1, zt+1)fe as the marginal utility of consumption evaluated at the

finite element approximation values of consumption and leisure. In this case, from the Euler

equation we have a residual equation:

R(kt, zt; θ) =
β√
π

Z 1

−1

·
Uc(kt+1, zt+1)fe
Uc(kt+1, zt+1)fe

³
1 + αbλt+1kα−1t+1 l

1−α
fe − δ

´¸
exp(−v2t+1)dvt+1 − 1 (13)

A Galerkin scheme implies that we weight the residual function by the basis functions and

solve the system of θ equationsZ
[0,k]×[−1,1]

Ψi,j (k, z)R(k, z; θ)dzdk = 0 ∀i, j (14)

on the θ unknowns.

Since Ψij (k, z) = 0 if (k, z) /∈ [ki−1, ki]× [zj−1, zj]∪ [ki, ki+1]× [zj, zj+1] ∀i, j we can rewrite
(14) as Z

[ki−1,ki]×[zj−1,zj ]∪[ki,ki+1]×[zj ,zj+1]
Ψi,j (k, z)R(k, z; θ)dzdk = 0 ∀i, j. (15)

We evaluate the integral in the residual equation with a Gauss-Hermite method and the

integrals in (15) with a Gauss-Legendre procedure. Finally we solve the associated system

of nonlinear equations with a quasi-Newton algorithm with a conservative update to avoid

numerical instabilities.
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7.2. The Metropolis-Hastings Algorithm

Given the prior and the likelihood function we need to find the posterior distribution, p(γ|yT ).
As described in the main body of the paper, since we do not have a closed-form solution for the

posterior, we draw a sample of size ofM , {γi}Mi=1, using a RandomWalk Metropolis-Hastings
algorithm.

The success of the algorithm depends on the fulfillment of a number of technical conditions.

In practice, it is extremely important to adjust the variance of the innovation of the proposal

density to get an appropriate acceptance rate.19 If the rate is small, the chain does not visit

the tails of the posterior. If the acceptance rate is high, the chain does not stay enough time

at the high probability regions. Gelman, Roberts and Gilks (1996) suggest that a 20 per cent

acceptance rate tends to give the best performance. We found that rates between 25 and 30

per cent outperformed different alternatives.

We monitored convergence using standard techniques. A complete guide to convergence

can be found in Mengersen, Robert and Guihenneuc-Jouyaux (1999).

7.3. Computational Details

All programs needed for the computation of the model were coded in Fortran 95 and compiled

in Compaq Visual Fortran 6.6 to run on Windows based machines. On a Pentium 4 at 3.00

GHz each draw from the posterior with 40,000 particles takes around 6.1 seconds. That

implies a total of around 88 hours for each simulation of 50,000 draws. To put this number in

perspective note that the linearized version of the model runs 400 million draws in 12 hours.

Versions paralellized with MPI directives to be run in the IBM-SP facilities at the Minnesota

Supercomputer Institute were also prepared but they were not used in the final computations

of the paper. All the code, both in serial and parallel versions, is available upon request from

the corresponding author.

19The acceptance rate is equal to the number of times when the chain changes position divided by the
number of iterations.
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Figure 2.1: Particles Evolving over Time



0.88 0.9 0.92 0.94 0.96 0.98
-2000

-1500

-1000

-500

0

500

1000

1500
ρ

1.85 1.9 1.95 2 2.05 2.1 2.15
-2000

-1500

-1000

-500

0

500

1000

1500
τ

0.37 0.38 0.39 0.4 0.41 0.42 0.43
-2000

-1500

-1000

-500

0

500

1000

1500
α

0.0185 0.019 0.0195 0.02 0.0205 0.021
-2000

-1500

-1000

-500

0

500

1000

1500
δ

jesusfv
Figure 3.1: Likelihood Benchmark Calibration
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Figure 3.2: Posteriors Benchmark Calibration
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Figure 3.3: Convergence of Estimates Benchmark Calibration
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Figure 3.4: Likelihood Extreme Calibration
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Figure 3.5: Posteriors Extreme Calibration
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Figure 3.6: Posteriors Real Data
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Figure 3.7: CDF Benchmark Calibration
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Figure 3.8: CDF Extreme Calibration
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Figure 3.9: CDF Real Data
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Figure A1: Finite Element Partition




