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Abstract

This paper compares twomethods for undertaking likelihood-based inference in

dynamic equilibrium economies: a Sequential Monte Carlo filter and the Kalman

filter. The Sequential Monte Carlo filter exploits the nonlinear structure of the

economy and evaluates the likelihood function of the model by simulation meth-

ods. The Kalman filter estimates a linearization of the economy around the steady

state. We report two main results. First, both for simulated and for real data,

the Sequential Monte Carlo filter delivers a substantially better fit of the model

to the data as measured by the marginal likelihood. This is true even for a nearly

linear case. Second, the differences in terms of point estimates, although relatively

small in absolute values, have important effects on the moments of the model. We

conclude that the nonlinear filter is a superior procedure for taking models to the

data.
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1. Introduction

Recently, a growing literature has focused on the formulation and estimation of dynamic

equilibrium models using a likelihood-based approach. Examples include the seminal paper

of Sargent (1989), and, more recently, Bouakez, Cardia, and Ruge-Murcia (2002), DeJong,

Ingram, and Whiteman (2000), Dib (2001), Fernández-Villaverde and Rubio-Ramírez (2003),

Hall (1996), Ireland (2002), Kim (2000), Landon-Lane (1999), Lubik and Schorfheide (2003),

McGrattan, Rogerson, and Wright (1997), Moran and Dolar (2002), Otrok (2001), Rabanal

and Rubio-Ramírez (2003), Schorfheide (2000), and Smets and Wouters (2003), to name just

a few. Most of these papers have used the Kalman filter to estimate a linear approximation

to the original model.

This paper studies the effects of estimating the nonlinear representation of a dynamic

equilibrium model instead of working with its linearized version. We document how the

estimation of the nonlinear solution of the economy substantially improves the empirical

fitting of the model. The marginal likelihood of the economy, i.e., the probability that the

model assigns to the data, increases by two orders of magnitude. This is true even for our

application, the neoclassical growth model, which is nearly linear. We also report that,

although the effect of linearization on point estimates is small, the impact on the moments

of the model is of first-order importance. This finding is key for applied economist because

quantitative models are widely judged by their ability to match data moments.

Dynamic equilibrium models have become a standard tool in quantitative economics (see

Cooley, 1995, for a summary of applications). These models can be described as a likelihood

function for observables, given the model’s structural parameters- those characterizing pref-

erences and technology. The advantage of thinking about models as a likelihood function is

that, once we can evaluate the likelihood, inference is a direct exercise. In a classical envi-

ronment we maximize this likelihood function to get point estimates and standard errors. A

Bayesian researcher can use the likelihood and her priors about the parameters to find the

posterior. The advent of Markov chain Monte Carlo algorithms has facilitated this task. In

addition, we can compare models by likelihood ratios (Vuong, 1989) or Bayes factors (Geweke,

1998) even if the models are misspecified and nonnested.

The previous discussion points out the need to evaluate the likelihood function. The task

is conceptually simple, but its implementation is more cumbersome. Dynamic equilibrium

economies do not have a “paper and pencil” solution. This means that we can study only an

approximation to them, usually generated by a computer. The lack of a closed form for the

solution of the model complicates the process of finding the likelihood.

The literature shows how to write this likelihood analytically only in a few cases (see

Rust, 1994, for a survey). Outside those, Sargent (1989) proposed an approach that has
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become popular. Sargent noticed that a standard procedure for solving dynamic models is to

linearize them. This can be done either directly in the equilibrium conditions or by generating

a quadratic approximation to the utility function of the agents. Both approaches imply that

the optimal decision rules are linear in the states of the economy. The resulting linear system

of difference equations can be solved with standard methods (see Anderson et al., 1996, and

Uhlig, 1999, for a detailed explanation).

For estimation purposes, Sargent emphasized that the resulting system has a linear rep-

resentation in a state-space form. If, in addition, we assume that the shocks exogenously

hitting the economy are normal, we can use the Kalman filter to evaluate the likelihood.

It has been argued (for example, Kim et al., 2003) that this linear solution is likely to be

accurate enough for fitting the model to the data.

However, exploiting the linear approximation to the economy can be misleading. For

instance, linearization may be an inaccurate approximation if the nonlinearities of the model

are important or if we are traveling far away from the steady state of the model. Also,

accuracy in terms of the policy function of the model does not necessarily imply accuracy

in terms of the likelihood function. Finally, the assumption of normal innovations may be a

poor representation of the dynamics of the shocks in the data.

An alternative to linearization is to work instead with the nonlinear representation of the

model and to apply a nonlinear filter to evaluate the likelihood. This is possible thanks to the

recent development of Sequential Monte Carlo methods (see the seminal paper of Gordon,

Salmond, and Smith, 1993, and the review of the literature by Doucet, de Freitas and Gordon,

2000, for extensive references). Fernández-Villaverde and Rubio-Ramírez (2004) build on

this literature to show how a Sequential Monte Carlo filter delivers a consistent and efficient

evaluation of the likelihood function of a nonlinear and/or nonnormal dynamic equilibrium

model.

The presence of the two alternative filters begets the following question: how different are

the answers provided by each of them? We study this question with the canonical stochastic

neoclassical growth model with leisure choice. We estimate the model using both simulated

and real data and compare the results obtained with the Sequential Monte Carlo filter and

the Kalman filter.

Why do we choose the neoclassical growth model for our comparison? First, this model

is the workhorse of modern macroeconomics. Since any lesson learned in this paper is con-

ditional on our particular model, we want to select an economy that is the foundation of

numerous applications. Second, even if the model is nearly linear for the standard calibra-

tion, the answers provided by each of the filters are nevertheless quite different. In this way,

we make our point that linearization has a nontrivial impact on estimation in the simplest

possible environment.

3



Our main finding is that, while linearization may have a second-order effect on the accu-

racy of the policy function given some parameter values, it has a first-order impact on the

model’s likelihood function. Both for simulated and for real data, the Sequential Monte Carlo

filter generates an overwhelmingly better fit of the model as measured by the marginal likeli-

hood. This is true even if most differences in the point estimates of the parameters generated

by each of the two filters are small.

Why is the marginal likelihood so much higher for the Sequential Monte Carlo? Because

this filter delivers point estimates for the parameters that imply model’s moments which are

closer to the moments of the data. This result is crucial in applied work because models are

often judged by their ability to match empirical moments.

Our finding is not the first in the literature that suggests that accounting for nonlinearities

substantially improves the measures of fit of a model. For example, Sims and Zha (2002)

report that the ability of a structural VAR to account for the dynamics of the output and

monetary policy increases by several orders of magnitude when they allow the structural

equation variances to change over time. A similar finding is emphasized by the literature on

regime switching (Kim and Nelson, 1999) and by the literature on the asymmetries of the

business cycle (Kim and Piger, 2002).

The rest of the paper is organized as follows. In section 2 we discuss the two alternatives to

evaluate the likelihood of a dynamic equilibrium economy. Section 3 presents our application.

Section 4 describes the estimation algorithm, and section 5 reports our main findings. Section

6 concludes.

2. Two Frameworks to Evaluate the Likelihood

In this section we describe the nonlinear and the linear filters used to evaluate the likelihood

function of a dynamic equilibrium economy. First, we present the state-space representation

of a dynamic equilibriummodel solved by nonlinear and linear methods. Second, we show how

to use a Sequential Monte Carlo filter to evaluate the likelihood of the nonlinear state-space

representation of the economy. Finally, we do the same with the Kalman filter.

2.1. The State-Space Representation

Assume that we observe yT = {yt}Tt=1, a realization of the n−dimensional random variable

Y T = {Yt}Tt=1 ∈ RnT . The researcher is interested in evaluating the likelihood function of
the observable yT implied by a dynamic equilibrium economy at any given γ, L

¡
yT ; γ

¢
=

p
¡
yT ; γ

¢
, where γ ∈ Υ is the vector collecting the parameters that characterize preferences,

information, and technology in the model.
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Unfortunately, in general, it is not possible to compute this function. Part of the reason is

that most dynamic models do not have a closed-form solution. Consequently, just to solve the

model before any estimation, we need to approximate the equilibrium path using numerical

techniques. This approximation is going to affect the characterization of the likelihood.

There are two main routes to evaluate the likelihood function. If we opt to solve the

model nonlinearly, we can use a Sequential Monte Carlo. If we linearize the model, we can

apply the Kalman filter. We now describe both methodologies.

2.1.1. The Nonlinear Solution of the Model

Dynamic equilibrium economies solved using nonlinear methods have the following state-

space representation. The vector of state variables, St, evolves over time according to the

transition equation:

St = f (St−1,Wt; γ) (1)

where {Wt} is a sequence of exogenous random variables. The observable yt is governed by

the measurement equation:

Yt = g (St, Vt; γ) (2)

where {Vt} is a sequence of exogenous independent random variables. The sequences {Wt}
and {Vt} are independent of each other. Assuming independence of {Wt} and {Vt} is only for
notational convenience. Generalization to more involved structures is achieved by increasing

the dimension of the state space. Along some dimension, the function g can be the identity

mapping if a state is observed without noise.

The functions f and g depend on the equations that describe the equilibrium of the model

- policy functions, laws of motion for variables, resource constraints - and on the nonlinear

solution method used to approximate the policy functions.

To ensure that the model is not stochastically singular, we assume that dim (Wt) +

dim (Vt) ≥ dim (Yt). We do not impose any restrictions on how those degrees of stochas-

ticity are achieved.

2.1.2. The Linear Solution of the Model

If we pick a linear method to solve the same model, the state-space representation has the

following linear form:

St = E (γ) +A (γ)St−1 +B (γ)Wt (3)

Yt = F (γ) + C (γ)St +D (γ)Vt (4)
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where A (γ), B (γ), C (γ), D (γ), E (γ), and F (γ) are matrices with the required dimension

that depend on the parameters of the model. Notice how these equations are nothing more

than a particular case of (1) and (2). Also, we make the same assumptions regarding stochastic

singularity as above.

We have presented two representations of the same economy. Section 2.2 introduces a

Sequential Monte Carlo filter to evaluate the likelihood function implied by (1) and (2).

Section 2.3 exploits the Kalman filter to calculate the likelihood entailed by (3) and (4).

2.2. The Nonlinear Approach: A Sequential Monte Carlo Filter

Fernández-Villaverde and Rubio-Ramírez (2004) propose the following Sequential Monte

Carlo to evaluate the likelihood function of yT induced by (1) and (2).

We assume that we can partition {Wt} into two separate sequences {W1,t} and {W2,t},
such that Wt = (W1,t,W2,t) and dim (W2,t) + dim (Vt) = dim (Yt). Let W t

i = {Wi,m}tm=1, for
i = 1, 2, V t = {Vm}tm=1, and St = {Sm}tm=0 for ∀t. We also define W 0

i = {∅} and y0 = {∅}.
We could work under weaker assumptions, paying the cost of heavier notation.

Given our assumptions, we factor the likelihood function as follows:

p
¡
yT ; γ

¢
=

TY
t=1

p
¡
yt|yt−1; γ

¢
=

TY
t=1

Z Z
p
¡
yt|W t

1, S0, y
t−1; γ

¢
p
¡
W t
1, S0|yt−1; γ

¢
dW t

1dS0. (5)

Conditional on having N draws of
½n
s
t|t−1,i
0 , w

t|t−1,i
1

oN
i=1

¾T
t=1

from the sequence of densities

{p (W t
1, S0|yt−1; γ)}Tt=1, this likelihood can be approximated by:

p
¡
yT ; γ

¢ ' pSMC ¡yT ; γ¢ = TY
t=1

1

N

NX
i=1

p
³
yt|wt|t−1,i1 , s

t|t−1,i
0 , yt−1; γ

´
(6)

using a law of large numbers. Thus, the problem of evaluating pSMC
¡
yT ; γ

¢
is equivalent

to the problem of drawing from {p (W t
1, S0|yt−1; γ)}Tt=1. The Sequential Monte Carlo filter

accomplishes this objective.

Let us fix some additional notation. Let
©
st,i0 , w

t,i
1

ªN
i=1
be a sequence of N i.i.d. draws from

p (W t
1, S0|yt; γ) and

n
s
t|t−1,i
0 , w

t|t−1,i
1

oN
i=1
be a sequence ofN i.i.d. draws from p (W t

1, S0|yt−1; γ).
We call each draw

¡
st,i0 , w

t,i
1

¢
a particle and the whole sequence

©
st,i0 , w

t,i
1

ªN
i=1
a swarm of par-

ticles.

Fernández-Villaverde and Rubio-Ramírez (2004) prove the following result that shows
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how to use p (W t
1, S0|yt−1; γ) as an important sampling density to draw from p (W t

1, S0|yt; γ).

Proposition 1. Let
n
s
t|t−1,i
0 , w

t|t−1,i
1

oN
i=1
be a draw from p (W t

1, S0|yt−1; γ). Let the sequence
{esi0, ewi1}Ni=1 be a draw with replacement from n

s
t|t−1,i
0 , w

t|t−1,i
1

oN
i=1

where qit, defined as

qit =
p
³
yt|wt|t−1,i1 , s

t|t−1,i
0 , yt−1; γ

´
PN

i=1 p
³
yt|wt|t−1,i1 , s

t|t−1,i
0 , yt−1; γ

´ ,
is the probability of

³
s
t|t−1,i
0 , w

t|t−1,i
1

´
being drawn ∀i . Then {esi0, ewi1}Ni=1 is a draw from

p (W t
1, S0|yt; γ).

The proposition 1 shows how a draw
n
s
t|t−1,i
0 , w

t|t−1,i
1

oN
i=1

from p (W t
1, S0|yt−1; γ) can be

used to get a draw
©
st,i0 , w

t,i
1

ªN
i=1

from p (W t
1, S0|yt; γ). This result is crucial. Given par-

ticles at t − 1, ©st−1,i0 , wt−1,i1

ªN
i=1

distributed according to p
¡
W t−1
1 , S0|yt−1; γ

¢
, we can use

p (W1,t; γ) to generate proposal draws
n
s
t|t−1,i
0 , w

t|t−1,i
1

oN
i=1

from p (W t
1, S0|yt−1; γ). Then, we

can exploit of proposition 1 and resample from
n
s
t|t−1,i
0 , w

t|t−1,i
1

oN
i=1

a new swarm of par-

ticles,
©
st,i0 , w

t,i
1

ªN
i=1
distributed according to p (W t

1, S0|yt; γ). The output of the algorithm½n
s
t|t−1,i
0 , w

t|t−1,i
1

oN
i=1

¾T
t=1

is used to compute the likelihood (6).

This is the key step in the filter. A naive extension of Monte Carlo techniques diverges as

T grows because only one particle will eventually accumulate all the information. To avoid

this problem, we do not carry over all the simulations to the next period. We keep those with

higher probability of explaining the data.

The following pseudocode summarizes the description of the algorithm:

Step 0, Initialization: Set tÃ 1. Initialize p
¡
W t−1
1 , S0|yt−1; γ

¢
= p (S0; γ).

Step 1, Prediction: Sample N values
n
s
t|t−1,i
0 , w

t|t−1,i
1

oN
i=1

from the conditional

density p (W t
1, S0|yt−1; γ) = p (W1,t; γ) p

¡
W t−1
1 , S0|yt−1; γ

¢
.

Step 2, Filtering: Assign to each draw
³
s
t|t−1,i
0 , w

t|t−1,i
1

´
the weight qit as defined

in proposition 1.

Step 3, Sampling: Sample N times with replacement from
n
s
t|t−1,i
0 , w

t|t−1,i
1

oN
i=1

with probabilities {qit}Ni=1. Call each draw
¡
st,i0 , w

t,i
1

¢
. If t < T set t Ã t + 1

and go to step 1. Otherwise stop.
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An important point is that the algorithm can be implemented on a good desktop computer.

All programs needed for the computation of the model and the Sequential Monte Carlo were

coded in Fortran 95 and compiled in Intel Fortran 8.0 to run on Windows-based machines.

On a Pentium 4 at 3.00 GHz, each draw from the posterior using the Sequential Monte

Carlo with 60,000 particles takes around 6.1 seconds. That implies a total of about 88

hours for each simulation of 50,000 draws. This relatively low computational cost opens the

nonlinear estimation of dynamic equilibrium models to practitioners, and should be seen as

an important selling point of our procedure.1

It is important to note that we are presenting here only a basic Sequential Monte Carlo

filter and that the literature has presented several refinements to improve efficiency (see,

for example, Kitigawa, 1996, and Pitts and Shephard, 1999). The interested reader can

find further details, comparison with alternative schemes, and a discussion of convergence in

Fernández-Villaverde and Rubio-Ramírez (2004).

2.3. The Linear Approach: The Kalman Filter

Now we describe how to evaluate the likelihood function implied by (3) and (4) with the

Kalman filter.

To apply this filter, we need to assume that {Wt} and {Vt} are both normally distributed.
Therefore, we can define fWt = B (γ)Wt and eVt = D (γ)Vt to be normal with distributionsfWt ∼ N (0, Q (γ)) and eVt ∼ N (0, R (γ)).
The formulae of the Kalman filter allow us to recursively build a linear forecast of yt,

called yt|t−1, based on previous observations. Also, it implies that the difference between yt
and its prediction yt|t−1 is normally distributed with zero mean and variance Σt|t−1. In the
interest of space we refer the reader to Harvey (1989) for details regarding how to compute

yt|t−1 and Σt|t−1. Suffice it to say that we need to keep track of the linear prediction of st
(called st|t−1) and its variance Pt|t−1. The output of the Kalman filter can be used to calculate
the likelihood function as follows:

p
¡
yT ; γ

¢ ' pKF ¡yT ; γ¢ = TY
t=1

1q
(2π)n

¯̄
Σt|t−1

¯̄ exp
Ã
−
¡
yt − yt|t−1

¢0
Σ−1t|t−1

¡
yt − yt|t−1

¢
2

!
(7)

We can also check that, if the transition and measurement equations of the model are

linear and the innovations normally distributed, the Sequential Monte Carlo and the Kalman

filter deliver precisely the same value for the likelihood function (up to a numerical error).

1All of the code is available upon request from the corresponding author.
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3. An Application

This section presents an example of how to implement the two alternatives described above to

evaluate the likelihood function of a dynamic equilibrium model. We select the neoclassical

growth model as our application. The reasons are twofold. First, this environment is the

workhorse of quantitative macroeconomics. In this way, we perform our comparison in an

application that is “representative” of a large number of papers. Since any lesson learned

is conditional on our particular model, we want to deal with a case that can be partially

extrapolated to other setups. Second, the application of the two procedures delivers answers

that are substantially different even if the model is nearly linear. The neoclassical growth

model is a simple environment where we can make our main point. For a more nonlinear

model, the disparities are more striking.

The rest of the section is organized as follows. First, we introduce the neoclassical growth

model. Second, we discuss our linear and nonlinear approaches to solution methods. Third,

we compute pSMC(yT ; γ) and pKF (yT ; γ).

3.1. The Neoclassical Growth Model

We work with the stochastic neoclassical growth model with leisure. Since this model is well

known (see Cooley and Prescott, 1995), we present it only to fix notation.

There is a representative agent in the economy, whose preferences about consumption ct
and leisure lt are represented by the utility function

U = E0

∞X
t=1

βt−1

³
cθt (1− lt)1−θ

´1−τ
1− τ

where β ∈ (0, 1) is the discount factor, τ controls the elasticity of intertemporal substitution,
θ pins down labor supply, and E0 is the conditional expectation operator.

The only good of this economy is produced according to the production function eztkαt l
1−α
t

where kt is the aggregate capital stock, lt is the aggregate labor input, and zt is the technology

level. zt follows an AR(1) zt = ρzt−1+ ²t with ²t ∼ N (0,σ²). We consider the stationary case
(i.e., |ρ| < 1). The law of motion for capital is kt+1 = it + (1 − δ)kt where it is investment.

Finally, the economy satisfies the resource constraint ct + it = eztkαt l
1−α
t .

A competitive equilibrium can be defined in a standard way. Since both welfare theorems

hold, we can solve the equivalent and simpler social planner’s problem. We can think about

this problem as finding policy functions for consumption c (·, ·), labor l (·, ·) , and next period’s
capital k0 (·, ·) that deliver the optimal choices as functions of the two state variables, capital
and the technology level.
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3.2. The Solution Methods

The Sequential Monte Carlo filter is independent of the particular nonlinear solution method

employed. Aruoba, Fernández-Villaverde and Rubio-Ramírez (2003) document that the finite

elements method delivers an accurate, fast, and stable solution for a wide range of parameter

values in a model exactly like the one considered here. Therefore, we choose this method

for our nonlinear approach. Details of how to implement the finite elements method are also

provided by Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2003). For the linearized

approach, the situation is easier, since all the methods existing in the literature (conditional

on applicability) deliver exactly the same solution. Out of pure convenience, we use the

undetermined coefficients procedure described by Uhlig (1999).

3.3. Evaluating pSMC
¡
yT ; γ

¢
Let γ1 ≡ (θ, ρ, τ ,α, δ, β,σ²) ∈ Υ1 ⊂ R7 be the parameters of the neoclassical growth model.
Since the finite element method requires the shocks be bounded between −1 and 1, we
transform the productivity shock as λt = tanh(zt). Let St = (kt,λt) be the states of the

model and set Wt = ²t. Define Vt ∼ N (0,Σ) as the vector of measurement errors. To
economize on parameters we assume that Σ is diagonal with entries σ21, σ

2
2 and σ23. Define

γ2 = (σ21,σ
2
2,σ

2
3) ∈ Υ2 ⊂ R3+ and γ = (γ1, γ2) ∈ Υ. Finally, call the approximated labor policy

function lfem (·, ·; γ) and capital accumulation kfem (·, ·; γ) , where we make the dependence
on the structural parameter values explicit.

The transition equation for this model is:

kt+1 = f1(St−1,Wt; γ) = kfem
¡
kt, tanh

−1(λt); γ
¢

λt = f2(St−1,Wt; γ) = tanh(ρ tanh
−1(λt−1) + ²t).

If we assume that the observed time series, yt, has three components: output, gdpt, hours

worked, hourst, and gross investment, invt, the measurement equation is:

gdpt = g1(St, Vt; γ) = x1(St; γ) + V1,t = e
tanh−1(λt)kαt lfem

¡
kt, tanh

−1(λt); γ
¢1−α

+ V1,t

hourst = g2(St, Vt; γ) = x2(St; γ) + V2,t = lfem
¡
kt, tanh

−1(λt); γ
¢
+ V2,t

invt = g3(St, Vt; γ) = x3(St; γ) + V3,t = kfem
¡
kt, tanh

−1(λt); γ
¢− (1− δ) kt + V3,t

We comment on two assumptions made for convenience: the observables and the presence

of measurement error. First, the selection of observables keeps the dimensionality of the

problem low while capturing some of the most important dynamics of the data. Three

dimensions will be enough to document the differences between the two filters. Second, we
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add measurement errors to avoid stochastic singularity. Nothing in our procedure critically

depends on the presence of measurement errors. For example, we could instead work with a

version of the model with shocks to technology, preferences, and depreciation. This alternative

environment might be more empirically interesting but it would make the solution of the

model much more complicated. Since our goal here is to evaluate the impact of linearization

on estimation, we follow the simple route.

Given that we have four sources of uncertainty, we set dim(W2,t) = 0 and W1,t =

Wt = ²t. Drawing from p (W1,t; γ) is then equivalent to drawing from a normal with mean

zero and standard deviation σ². Since St = g (St−1,Wt; γ) the reader can note, first, that

p (yt|W t
1, S0, y

t−1; γ) = p (yt|St; γ) , and second, that drawing from p (W t
1, S0|yt−1; γ) is equiv-

alent to sampling from p (St|yt−1; γ). This allows us to write the likelihood function as:

p
¡
yT ; γ

¢
=

TY
t=1

Z
p (yt|St; γ) p

¡
St|yt−1; γ

¢
dSt. (8)

But since our measurement equation implies that p (yt|St; γ) = (2π)−
3
2 |Σ|− 1

2 e−
ω(St;γ)

2 where

ω(St; γ) = (yt − x(St; γ)))0Σ−1 (yt − x(St; γ)) ∀t, we can rewrite (8) as

p
¡
yT ; γ

¢
= (2π)−

3T
2 |Σ|−T2

TY
t=1

Z
e−

ω(St;γ)
2 p

¡
St|yt−1; γ

¢
dSt.

The last expression is simple to handle. With the particles
½n
s
t|t−1,i
0 , w

t|t−1,i
1

oN
i=1

¾T
t=1

com-

ing from our filter, we build the states
n
{sit}Ni=1

oT
t=1
and the prediction error

n
{ω(sit; γ)}Ni=1

oT
t=1
.

We set si0|0 = Sss, ∀i. Therefore, the likelihood is approximated by:

p
¡
yT ; γ

¢ ' pSMC ¡yT ; γ¢ = (2π)− 3T
2 |Σ|−T2

TY
t=1

1

N

NX
i=1

e−
ω(sit;γ)

2 (9)

3.4. Evaluating pKF
¡
yT ; γ

¢
Let γ, Wt, and Vt be defined as in section 3.3. The undetermined coefficients method delivers

linear functions of output, investment, and labor, depending on current capital and the

technology level. Then we build the transition equation for the model and, as in the previous

case, the measurement equations gdpt = yt + V1,t, hourst = lt + V2,t and invt = yt − ct + V3,t.
Mapping these equations into the notation of equations (3) and (4), we apply the Kalman filter

and evaluate pKF
¡
yT ; γ

¢
as described in section 2.3. We initialize the filter to s0|0 = Sss and

P0|0 = 0.
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4. The Estimation Algorithm

Now we explain how to incorporate the likelihood functions in a Bayesian estimation al-

gorithm. In the Bayesian approach, the main inference tool is the parameters’ posterior

distribution given the data, π
¡
γ|yT¢. The posterior density is proportional to the likelihood

times the prior. Therefore, we need to specify priors on the parameters, π (γ), and to evaluate

the likelihood function.

We specify our priors in section 5.1, and the likelihood function is evaluated either by (6)

or by (7), depending on how we solve the model. Since none of these posteriors have a closed-

form, we use a Metropolis-Hasting algorithm to draw from them. We call πSMC
¡
γ|yT¢ to the

posterior implied by the Sequential Monte Carlo filter and πKF
¡
γ|yT¢ to the posterior derived

from the Kalman filter. To simplify the notation, we let fSMC (·, ·; γi) and gSMC (·, ·; γi) be
defined by (1) and (2), and fKF (·, ·; γi) and gKS (·, ·; γi) by (3) and (4).
The algorithm to draw a chain {γi}Mi=1 from πj

¡
γ|yT¢, ∀j ∈ {SMC,KF} is as follows:

Step 0, Initialization: Set i Ã 0 and initial γi. Compute functions fj (·, ·; γi)
and gj (·, ·; γi) . Evaluate π (γi) and pj

¡
yT ; γi

¢
using (6) or (7). Set iÃ i+ 1.

Step 1, Proposal draw: Get a proposal draw γpi = γi−1+υi, where υi ∼ N (0,Ψ).
Step 2, Solving the model: Solve the model for γpi and compute fj (·, ·; γpi ) and

gj (·, ·; γpi ).
Step 3, Evaluating the proposal: Evaluate π (γpi ) and pj

¡
yT |γpi

¢
using either

(6) or (7).

Step 4, Accept/Reject: Draw χi ∼ U (0, 1). If χi ≤
π(γpi )pj(yT |γpi )

π(γi−1)pj(yT |γi−1)
set γi = γpi,

otherwise γi = γi−1. If i < M, set iÃ i+ 1 and go to step 1. Otherwise stop.

We used standard methods to check the convergence of the chain generated by the

Metropolis-Hasting algorithm (seeMengersen, Robert, and Guihenneuc-Jouyaux, 1999). Also,

we selected the variance of the innovations in the proposals for the parameters to achieve an

acceptance rate of proposals of around 40 percent.

We concentrate in this paper on Bayesian inference. However, we could also perform

classical inference, maximizing the likelihood function obtained in the previous section, and

building an asymptotic variance-covariance matrix using standard numerical methods. Also,

the value of the likelihood function at its maximum would be useful to compute likelihood

ratios for model comparison purposes.
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5. Findings

We undertake two main exercises. In our first one, we simulate “artificial” data using the

nonlinear solution of the model for a particular choice of values of γ∗. Then, we define some
priors over γ, and we draw from its posterior distribution implied by both pSMC

¡
yT ; γ

¢
and

pKF
¡
yT ; γ

¢
. Finally, we compute the marginal likelihood of the “artificial” data implied

by each likelihood approximation. This exercise answers the following two questions: (1)

How accurate is the estimation of the “true” parameter values, γ∗, implied by each filter?
and (2) How big is the improvement delivered by the Sequential Monte Carlo filter over the

Kalman filter? From the posterior means, we address the first question. From the marginal

likelihoods, we respond to the second.

Since the difference between the policy functions implied by the finite elements and the

linear method depends greatly on γ∗, we perform the described exercise for two different

values of γ∗, one with low risk aversion and low variance, γ∗l , when both policies are close,
and another with high risk aversion and high variance, γ∗h, when the policies are farther away.
Our second exercise uses U.S. data to estimate the model with the Sequential Monte Carlo

and the Kalman filters. This exercise answers the following question: Is the Sequential Monte

Carlo providing a better explanation of the real data?

We divide our exposition in three parts. First, we specify the priors for the parameters.

Second, we present results from the “artificial” data experiment. Finally, we present the

results with U.S. data.

5.1. The Priors

We postulate flat priors for all 10 parameters, subject to some boundary constraints to make

the priors proper. This choice is motivated by two considerations. First, since we are going

to estimate our model using “artificial” data generated at some value γ∗, we do not want to
bias the results in favor of any alternative by our choice of priors. Second, with a flat prior,

the posterior is proportional to the likelihood function (except for the very small issue of

the bounded support of the priors). As a consequence, our experiment can be interpreted as

a classical exercise in which the mode of the likelihood function is the maximum likelihood

estimate. A researcher who prefers more informative priors can always reweight the likelihood

to accommodate her priors (see Geweke, 1998).

The parameter governing labor supply, θ, follows a uniform distribution between 0 and

1. That constraint imposes only a positive marginal utility of leisure. The persistence of the

technology shock, ρ, also follows a uniform distribution between 0 and 1. The parameter

τ follows a uniform distribution between 0 and 100. That choice rules out only risk loving

behavior and risk aversions that will predict differences in interest rates several orders of

13



magnitude higher than the observed ones. The prior for the technology parameter, α, is

uniform between 0 and 1. The prior on the depreciation rate ranges between 0 and 0.05,

covering all national accounts estimates of quarterly depreciation. The discount factor, β,

is allowed to vary between 0.75 and 1, implying steady state annual interest rates between

0 and 316 percent. The standard deviation of the innovation of productivity, σ², follows a

uniform distribution between 0 and 0.1, a bound 15 times higher than the usual estimates.

We also pick this prior for the three standard deviations of the measurement errors. Table

5.1 summarizes our discussion.

Table 5.1: Priors for the Parameters of the Model

Parameters Distribution Hyperparameters

θ

ρ

τ

α

δ

β

σ²

σ1

σ2

σ3

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform

0,1

0,1

0,100

0,1

0,0.05

0.75,1

0,0.1

0,0.1

0,0.1

0,0.1

5.2. Results with “Artificial” Data

We simulate observations from the model and use them as data for the estimation. We

generate data from two different calibrations.

First, to make our experiment as realistic as possible, we present a benchmark calibration

of the model. The discount factor β = 0.9896 matches an annual interest rate of 4.27 percent.

The risk aversion τ = 2 is a common choice in the literature. θ = 0.357 matches the micro

evidence of labor supply. We reproduce the labor share of national income with α = 0.4.

The depreciation rate δ = 0.02 fixes the investment/output ratio and ρ = 0.95 and σ = 0.007

match the historical properties of the Solow residual of the U.S. economy. With respect to

the standard deviations of the measurement errors we set them equal to 0.01 percent of the

steady state value of output, 0.35 percent of the steady state value of hours and 0.2 percent

of the steady state value of investment based on our priors regarding the relative importance

of measurement errors in the National Income and Product Accounts. We summarize the

chosen values in Table 5.2.
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Table 5.2: Calibrated Parameters

Parameter θ ρ τ α δ β σ² σ1 σ2 σ3

Value 0.357 0.95 2.0 0.4 0.02 0.99 0.007 1.58*10−4 0.0011 8.66*10−4

The second calibration, which we will call extreme, maintains the same parameters ex-

cept that it increases τ to 50 (implying a relative risk aversion of 24.5) and σ² to 0.035. This

high risk aversion and variance introduce a strong nonlinearity to the economy. This par-

ticular choice of parameters allows us to check the differences between the Sequential Monte

Carlo filter and the Kalman filter in a highly nonlinear world while maintaining a familiar

framework. We justify our choice, thus, not basing it on empirical considerations but on its

usefulness as a “test” case.

After generating a sample of size 100 for each of the two calibrations,2 we apply our priors

and our likelihood evaluation algorithms. For the Sequential Monte Carlo filter, we use 60,000

particles to get 50,000 draws from the posterior distribution. Since we do not suffer from

an attrition problem, we do not replenish the swarm. See Fernández-Villaverde and Rubio-

Ramírez (2004) for further details of this issue and of convergence. For the Kalman filter, we

also get 50,000 draws. In both cases, we have a long burn-in period.

In Figure 5.1 we plot the likelihood function in logs of the model, given our simulated data

for the Sequential Monte Carlo filter (continuous line) and the Kalman filter (discontinuous

line).We draw in each panel the likelihood function for an interval around the calibrated value

of the structural parameter, keeping all the other parameters fixed at their calibrated values.

We can think of each panel then as a transversal cut of the likelihood function. To facilitate

the comparison, we show the “true” value for the parameter corresponding to the direction

being plotted with a vertical line, and we do not draw values lower than -20,000.

Figure 5.1 reveals two points. First, both likelihoods have the same shape and are centered

on the “true” value of the parameter, although the Kalman filter delivers a slight bias for

four parameters (α, δ, β and θ). Note that, since we are assuming flat priors, none of the

curvature of the likelihoods is coming from the prior. Second, there is a difference in level

between the likelihood generated by the Sequential Monte Carlo filter and the one delivered

by the Kalman filter. This is a first proof that the nonlinear model fits the data better even

for this nearly linear economy.

Table 5.3 conveys similar information: the point estimates are approximately equal re-

gardless of the filter. However the Sequential Monte Carlo delivers estimates that are better

in the sense of being closer to their pseudotrue value.3

2The results were robust when we used different simulated data from the same model. We omit details
because of space considerations.

3The whole posteriors are available upon request from the authors. We also checked that the numerical
errors of the estimates were negligible.
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Table 5.3: Nonlinear versus Linear Posterior Distributions Benchmark Case

Nonlinear (SMC filter)

Parameters Mean s.d

θ

ρ

τ

α

δ

β

σ²

σ1

σ2

σ3

0.357

0.950

2.000

0.400

0.020

0.990

0.007

1.58×10−4
1.12×10−3
5.64×10−4

0.10×10−3
0.29×10−3
0.92×10−3
0.10×10−3
0.02×10−3
0.02×10−3
0.04×10−4
0.15×10−6
0.68×10−6
0.81×10−6

Linear (Kalman filter)

Parameters Mean s.d

θ

ρ

τ

α

δ

β

σ²

σ1

σ2

σ3

0.374

0.914

3.536

0.443

0.030

0.978

0.011

1.86×10−4
5.55×10−4
2.42×10−3

0.06×10−3
0.24×10−3
1.17×10−3
0.08×10−3
0.02×10−3
0.03×10−3
0.36×10−4
4.64×10−7
2.01×10−6
1.75×10−6

Table 5.4 reports the logmarginal likelihood differences between the nonlinear and the

linear case. We compute the marginal likelihood with Geweke’s (1998) harmonic mean pro-

posal. Consequently, we need to specify a bound on the support of the weight density. To

ensure robustness, we report the distances for a range of values of the truncation value p

from 0.1 to 0.9. All the values convey the same message: the nonlinear solution method fits

the data two orders of magnitude better than the linear approximation. A good way to read

this number is to use Jeffreys’ (1961) rule: if one hypothesis is more than 100 times more

likely than the other, the evidence is decisive in its favor. This translates into differences in

logmarginal likelihoods of 4.6 or higher. Our value of 73.6 is, then, well beyond decisiveness

in favor of nonlinear filtering.

Table 5.4: Logmarginal Likelihood Difference Benchmark Case

p Nonlinear vs. Linear

0.1

0.5

0.9

73.631

73.627

73.603

Fernández-Villaverde, Rubio-Ramírez, and Santos (2004) provide a theoretical explana-

tion for this finding. They show how the bound on the error in the likelihood induced by

the linear approximation of the policy function gets compounded with the size of the sam-

ple. The intuition is as follows. Small errors in the policy function accumulate at the same

rate as the sample size grows. This means that, as the sample size goes to infinity, a linear

approximation will deliver an approximation of the likelihood that will fail to converge.
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We now move to study the results for the extreme calibration. Figure 5.2 is equivalent to

Figure 5.1 for the extreme case. First, note how the likelihood generated by the Sequential

Monte Carlo filter is again centered on the “true” value of the parameter. In comparison, the

likelihood generated by the Kalman filter is not. These differences will have an important

impact on the marginal likelihood. Table 5.5 recasts the same information in terms of means

and standard deviations of the posteriors. As in the benchmark case, the Sequential Monte

Carlo delivers better estimates of the parameters of the model.

Table 5.5: Nonlinear versus Linear Posterior Distributions Extreme Case

Nonlinear (SMC filter)

Parameters Mean s.d

θ

ρ

τ

α

δ

β

σ²

σ1

σ2

σ3

0.357

0.950

50.000

0.400

0.020

0.990

3.50×10−2
1.58×10−4
1.12×10−3
8.66×10−4

0.08×10−3
0.17×10−3
0.24×10−1
0.05×10−3
0.05×10−4
0.08×10−4
0.03×10−4
0.06×10−6
0.05×10−5
0.02×10−5

Linear (Kalman filter)

Parameters Mean s.d

θ

ρ

τ

α

δ

β

σ²

σ1

σ2

σ3

0.337

0.894

67.70

0.346

0.010

0.996

3.61×10−2
1.72×10−4
9.08×10−4
2.64×10−3

0.06×10−3
0.19×10−3
0.10×10−1
0.04×10−3
0.02×10−4
0.08×10−4
0.09×10−4
0.05×10−6
0.03×10−5
0.04×10−5

Table 5.6 reports the logmarginal likelihood differences between the nonlinear and the

linear case for the extreme calibration for different p’s. Again, we can see how the evidence

in favor of the nonlinear filter is overwhelming.

Table 5.6: Logmarginal Likelihood Difference Extreme Case

p Nonlinear vs. Linear

0.1

0.5

0.9

117.608

117.592

117.564

As a conclusion, our exercise shows how even for a nearly linear case such as the neo-

classical growth model, an estimation that respects the nonlinear structure of the economy

improves substantially the ability of the model to fit the data. This may indicate that we

greatly handicap dynamic equilibrium economies when we linearize them before taking them

to the data and that some empirical rejections of these models may be due to the biases

introduced by linearization.
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Our results do not imply, however, that we should completely abandon linear methods.

We have also shown that their accuracy for point estimates is acceptable. For some exercises

where only point estimates are required, the extra computational cost of the Sequential Monte

Carlo filter may not compensate for the reduction in bias. Practitioners should weight the

advantages and disadvantages of each procedure in their particular application.

5.3. Results with Real Data

Now we estimate the neoclassical growth model with U.S. quarterly data. We use real output

per capita, average hours worked, and real gross fixed investment per capita from 1964:Q1

to 2003:Q1. We first remove a trend from the data using an H-P filter. In this way, we do

not need to model explicitly the presence of a trend and its possible changes.

Table 5.7: Nonlinear versus Linear Posterior Distributions Real Data

Nonlinear (SMC filter)

Parameters Mean s.d

θ

ρ

τ

α

δ

β

σ²

σ1

σ2

σ3

0.390

0.978

1.717

0.324

0.006

0.997

0.020

0.45×10−1
0.15×10−1
0.38×10−1

0.11×10−2
0.52×10−2
0.12×10−1
0.71×10−3
0.36×10−4
0.92×10−4
0.11×10−3
0.42×10−3
0.25×10−3
0.39×10−3

Linear (Kalman filter)

Parameters Mean s.d

θ

ρ

τ

α

δ

β

σ²

σ1

σ2

σ3

0.423

0.941

1.965

0.412

0.019

0.973

0.009

0.11×10−3
0.83×10−2
0.26×10−1

0.19×10−3
0.27×10−3
0.12×10−2
0.37×10−3
0.79×10−5
0.43×10−5
0.43×10−5
0.18×10−6
0.34×10−5
0.18×10−4

Table 5.7 presents the results from the posterior distributions from 100,000 draws for each

filter, again after a long burn-in period. The discount factor, β, is estimated to be 0.997 with

the nonlinear filter and 0.973 with the Kalman filter. This is an important difference when

using quarterly data. The linear model compensates for the lack of curvature induced by

its certainty equivalence with more impatience. The parameter controlling the elasticity of

substitution, τ , is estimated by the nonlinear filter to be 1.717 and by the Kalman filter to

be 1.965. The parameter α is close to the canonical value of one-third in the case of the

Sequential Monte Carlo, and it is higher (0.412) in the case of the Kalman filter. Finally, we

note how the standard deviation of the parameters is estimated to be much higher when we

use the nonlinear filter than when we employ the Kalman filter, indicating that the nonlinear

likelihood is more dispersed.
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It is difficult to assess whether the differences in point estimates documented in Table 5.7

are big or small. A possible answer is based on the impact of the different estimates on the

moments generated by the model. Macroeconomists often use these moments to evaluate the

model’s ability to account for the data. Table 5.8 presents the moments of the real data and

reports the moments that the stochastic neoclassical growth model generates by simulation

when we calibrated it at the mean of the posterior distribution of the parameters given by

each of the two filters.

Table 5.8: Nonlinear versus Linear Moments Real Data

Real Data Nonlinear (SMC filter) Linear (Kalman filter)

output

hours

inv

Mean s.d

1.95

0.36

0.42

0.073

0.014

0.066

Mean s.d

1.91

0.36

0.44

0.129

0.023

0.073

Mean s.d

1.61

0.34

0.28

0.068

0.004

0.044

We highlight two observations from Table 5.8. First, the nonlinear model matches the

data much better than the linearized one. This difference is significant because the moments

are nearly identical if we simulate the model using the linear or the nonlinear solution method

with the same set of parameter values. The differences come thus from the point estimates

delivered by each procedure. The nonlinear estimation nails down the mean of each of the

three observables and does a fairly good job with the standard deviations. Second, the

estimation by the nonlinear filter implies a higher output, investment, and hours worked

than the estimation by the linear filter.

The main reason for these two differences is the higher β estimated by the Sequential

Monte Carlo. The lower discount factor induces a higher accumulation of capital and, con-

sequently, a higher output, investment, and hours worked. The differences for the standard

deviation of the economy are also important. The nonlinear economy is also more volatile

than the linearized model in terms of the standard deviation of output and hours.

Table 5.9 reports the logmarginal likelihood differences between the nonlinear and the

linear case. As in the previous cases, the real data strongly support the nonlinear version

of the economy with differences in log terms of around 93. The differences in moments

discussed above are one of the main driving forces behind the finding. A second force is that

the likelihood function generated by the Sequential Monte Carlo is less concentrated than

the one coming from the Kalman filter.4

4Another way to think about the marginal likelihood is as a measure of the ability of the model to forecast
within sample. The much higher marginal likelihood of the nonlinear model indeed translates into a better
forecasting record within the sample (this is also true for simulated data). We omit details regarding this
superior forecasting power of the nonlinear procedure because of space constraints.
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Table 5.9: Logmarginal Likelihood Difference Real Data

p Nonlinear vs. Linear

0.1

0.5

0.9

93.65

93.55

93.55

6. Conclusions

We have compared the effects of estimating dynamic equilibrium models using a Sequen-

tial Monte Carlo filter proposed by Fernández-Villaverde and Rubio-Ramírez (2004) and a

Kalman filter. The Sequential Monte Carlo filter exploits the nonlinear structure of the econ-

omy and evaluates the likelihood function of the model by simulation methods. The Kalman

filter estimates a linearization of the economy around the deterministic steady state. The

advantage of the Kalman filter is its simplicity and speed. We compare both methodologies

using the neoclassical growth model. We report two main results. First, both for simulated

and for real data, the Sequential Monte Carlo filter delivers a substantially better fit of the

model to the data. This difference exists even for a nearly linear case. Second, the differences

in terms of point estimates, even if small in absolute terms, have quite important effects on

the moments of the model. From these two results we conclude that the nonlinear filter is

superior as a procedure for taking models to the data.

An additional advantage of the Sequential Monte Carlo filter is that it allows the esti-

mation of nonnormal economies. Nonnormalities or the presence of stochastic volatility may

be important to account for the dynamics of macro data. Future research will address how

much accuracy is gained with the use of a Sequential Monte Carlo filter when estimating this

class of models.
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Figure 5.1: Likelihood Function, Benchmark Calibration 
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Figure 5.2: Likelihood Function, Extreme Calibration 
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