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1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models have become a standard tool in

various fields of Economics, most notably in Macroeconomics and International Economics.

DSGE models are attractive because they specify explicitly the objectives and constraints

faced by households and firms, and then determine the prices and allocations that result

from their market interaction in an uncertain environment.

To date, calibration is by far the most common approach in the literature to examine the

empirical properties of DSGE models. In calibration, the value of the structural parameters is

fixed to those estimated in previous microeconometric studies and/or those computed using

long-run averages of aggregate data. Then, the model is simulated using a synthetic series

of shocks, and the unconditional moments of the simulated economic series are computed

and compared with the ones of actual data. The model is usually evaluated in terms

of the distance between these two set of moments. This comparison can be casual or

based on measures of fit like the ones proposed, for example, by Gregory and Smith (1991),

Watson (1993), and DeJong, Ingram, and Whiteman (1996). Impulse-response analysis and

variance decomposition are also used to examine, respectively, the model’s behavior following

exogenous shocks and to assess the relative importance of these shocks in explaining the

conditional and unconditional variances of the variables.

Although calibration is a very useful tool for understanding the dynamic properties of

DSGE models, there are some advantages in their fully-fledged econometric estimation.

First, parameter estimates are obtained by imposing on the data the restrictions of the

model of interest. This addresses the concern that the assumptions of the DSGE model

might be inconsistent with the assumptions employed by the micro studies that produced the

parameter estimates used in calibration. Second, the estimation of the DSGE model allows

one to obtain estimates of parameters that might be hard to estimate using disaggregated

data alone. Third, parameter uncertainty can be incorporated explicitly in impulse-response

analysis using, for example, bootstrap techniques to construct confidence intervals for the

model’s response to a shock. Finally, standard tools of model selection and evaluation can

be readily applied. For example, one can test the residuals for serial correlation and ne-

glected Autoregressive Conditional Heteroskedasticity, compare the Root Mean Square Error

of the DSGE model with that of another DSGE model or a Vector Autoregression, perform

tests of parameter stability or directly test some of the model’s identification assumptions.

All this is valuable information in the construction of more realistic economic models.1

1See Hansen and Heckman (1996), and Browning, Hansen, and Heckman (1999) for additional discussion.
For a defense of the merits of calibration, see Kydland and Prescott (1996).
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The estimation procedures studied here are Maximum Likelihood (ML), Generalized

Method of Moments (GMM), Simulated Method of Moments (SMM), and the Indirect In-

ference procedure proposed by Smith (1993). All these procedures are standard and their

asymptotic properties are well known. The goals of this paper are to describe in a pedagogi-

cal manner their application to the estimation of DSGE models, to study their small-sample

properties, to examine their robustness to misspecification, to compare their computational

costs, and to discuss fully the implications of the stochastic singularity of DSGE models for

each estimation procedure. The intention here is not to perform a “horse race” between dif-

ferent estimation strategies. Instead, the more constructive goal is to evaluate their relative

strengths and weaknesses in the context of a simple, but economically interesting model.

An important feature of DSGE models that has implications for all estimation procedures

is their stochastic singularity. DSGE models are usually singular because they generate

predictions about a larger number of observable endogenous variables than exogenous shocks

are used to feed the model. This means that there are linear combinations of the variables

that hold without noise. These restrictions of the theoretical model arise from a particular

form of misspecification: the model assumes a smaller number of shocks than are present in

the real world.

Stochastic singularity limits the number of variables/moments that can be exploited for

the estimation of the model, and imposes restrictions on both the order and the number

of variables in the VAR representation of data generated by a DSGE model. In general,

singularity affects more severely Maximum Likelihood than the Methods of Moments (that

is, GMM and SMM). For example, the RBC model studied here cannot be estimated by

Maximum Likelihood using more than one variable, unless measurement errors are added, but

it can be estimated by the Methods of Moments using moments that involve more than one

variable. Hence, the Methods of Moments might yield more precise parameter estimates than

Maximum Likelihood, despite the fact that they are limited information procedures. The

paper studies the effect of adding measurement errors to sidestep the singularity of the model

and the use of Bayesian priors that incorporate information from microeconometric studies,

long-run averages of aggregate data, and/or economic theory. Priors are incorporated here

into the Maximum Likelihood framework using the mixed estimation strategy in Theil and

Goldberger (1961) and are shown to yield sharper estimates than those obtained by the

classical Maximum Likelihood estimator.

The paper is organized as follows. Section 2 describes the DSGE model that will be used

as backdrop for the estimation procedures. Section 3 describes the estimation procedures

and their application to DSGE models. Section 4 presents the Monte Carlo design and

report its results. Section 5 concludes.
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2 The Artificial Economy

The discussion of the different estimation procedures is best made in the context of a specific

economic model. This paper employs a version of the well-known one-sector Real Business

Cycle model with indivisible labor [see Hansen (1985), and King, Plosser and Rebelo (1988)].2

The representative agent maximizes expected lifetime utility defined by:

Ut = Et
∞X
i=t

βi−t [ln(ci) + ψ`i] ,

where β ∈ (0, 1) is the subjective discount factor, ct is consumption, `t is leisure, and ψ is

the weight of leisure in the instantaneous utility function. There is no population growth.

Without loss of generality, the population size and time endowment are normalized to one.

Hence,

nt = 1− `t,
where nt is hours worked. The agent’s income consists of wages and rents received from

selling labor and renting capital to firms, and is allocated to consumption and investment:

ct + xt = wtnt + rtkt,

where xt is investment, wt is the real wage, rt is the real rental rate of capital, and kt is the

capital stock. The prices wt and rt are expressed in terms of units of the consumption good.

Investment increases the stock of capital according to:

kt+1 = (1− δ)kt + xt,

where δ ∈ (0, 1) is the depreciation rate. In addition to the transversality condition, the

first-order necessary conditions associated with the optimal choice of ct, nt,and kt+1 for this

problem are:

1/ct = βEt[(1/ct+1)(1 + rt − δ)],

ψct = wt.

The single, perishable good in this economy is produced by perfectly competitive firms

using a constant returns to scale technology. Since in this setup the number of firms

2In preliminary work, I performed a limited number of Monte-Carlo experiments using a more complicated
DSGE model with money in the utility function, monopolistic competition, price rigidity, and adjustment
costs to the capital stock. Conclusions are qualitatively similar to those reported here, but the complexity
of the model obscures some of the points illustrated below.
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in equilibrium is indeterminate, it is convenient to focus on a representative firm. The

representative firm rents labor and capital from the agent and combines them according to:

yt = zt(kt)
α(nt)

1−α,

where α ∈ (0, 1), yt is output and zt is a technology shock. The technology shock follows

the exogenous stochastic process:

ln zt+1 = ρ ln zt + ²t,

where ρ ∈ (−1, 1) and ²t is an innovation assumed to be independently, identically, and
Normally distributed with zero mean and variance σ2. In every period, the firm chooses

input levels to maximize profits and equates the marginal product of labor (capital) to the

real wage (rental rate). Due to the assumptions of perfect competition and constant returns

to scale, firms make zero profits in equilibrium.

The competitive equilibrium for this economy is the sequence of prices {wt, rt}∞t=0 and
allocations {ct, nt, xt, kt+1, yt}∞t=0 such that firms maximize profits, agents maximize utility,
and all markets clear. In particular, goods market clearing requires that aggregate output

be equal to aggregate demand:

yt = ct + xt.

The usual strategy to solve DSGE models involves the linearization of first-order condi-

tions and constraints by means of a first-order Taylor series expansion around the model’s

steady state. The linearized equations for this model are presented in the Appendix. These

equations form a dynamic system that determines the path of the six variables in the model,

namely consumption, capital, output, investment, hours worked, and the technology shock.3

Using the circumflex to denote percentage deviation from steady state and after some ma-

nipulations, it is possible to write:"
k̂t+1
Etĉt+1

#
= A

"
k̂t
ĉt

#
+Bẑt,

where

A =

"
a11 a12
0 a22

#
=

"
1 + δγ/(1− γ) −δ(1 + αγ − α)/(α− αγ)

0 α/(ς + α− ας)

#
,

B =

"
b1
b2

#
=

"
δ/(α− αγ)

ςρ/(ς + α− ας)

#
,

3For convenience and without loss of generality, I have substituted out the wage and rental rate by
equating them to the marginal products of labor and capital, respectively.

[4]



ς = αβ(k/n)α−1, k/n = ((1/β + δ − 1)/α)1/(α−1) is the steady-state capital-labor ratio,
γ = 1− δ(k/n)1−α is the steady-state consumption-output ratio, and variables without time

subscript denote steady state values. The rational expectations solution of this system can

be found using, for example, the approaches proposed by Blanchard and Kahn (1980) and

Sims (1997) to obtain:

k̂t+1 = a11k̂t + a12ĉt + b1ẑt, (1)

ĉt = φckk̂t + φcz ẑt, (2)

where φck and φcz are combinations of the eigenvectors and eigenvalues of the matrix A and,

consequently, depend nonlinearly on the structural parameters.

In what follows, it is convenient to define the 2 × 1 vector ξt = (k̂t, ẑt)
0 that collects

the state variables of the system, and the 3 × 1 vector st = (n̂t, ŷt, ĉt)
0 that contains the

observable variables that the researcher will use later in the estimation of the model. Using

the linearized equations of the model, it is possible to write the components of st as functions

of the capital stock and technology shock alone:

st =

 ŷtn̂t
ĉt

 = Φξt =

 φyk φyz
φnk φnz
φck φcz

 " k̂t
ẑt

#
. (3)

The last row of st (i.e., the expression for consumption) reproduces exactly equation (2).

Finally, notice that the elements of the 3×2 matrixΦ are nonlinear functions of the structural
parameters of the model.

This model takes as input the predetermined level of capital and one exogenous shock,

and generates predictions about (at least) three observable endogenous variables, namely

output, consumption and hours worked. Since the number of shocks is less than the number

of endogenous variables, there are linear combinations of these variables that are predicted

to hold without noise. Hence, the model is stochastically singular. For example, one can

eliminate both k̂t and ẑt from (3) to obtain:

(φykφcz − φyzφck)n̂t + (φnzφck − φnkφcz)ŷt − (φnzφyk − φyzφnk)ĉt = 0. (4)

Similarly, using the equations for ŷt and ĉt in (3) and the linearized law of motion for capital,

it is possible to write

[φyz + δγ(φyzφck − φykφcz)/(1− γ)]ĉt − (1− δ)φyz ĉt−1
−[φcz + δ(φyzφck − φykφcz)/(1− γ)]ŷt + (1− δ)φczŷt−1 = 0.

(5)

Combining (4) and (5), it is easy to show that the systems (ŷt, n̂t, ŷt−1, n̂t−1) and (n̂t, ĉt,

n̂t−1, ĉt−1) are also singular. That is, for any sample size, the sample variance-covariance
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matrix of these systems are singular. We will see below that stochastic singularity has

different and nontrivial implications for the application of each estimation method to DSGE

models.

3 Estimation Methods

3.1 Maximum Likelihood

The Maximum Likelihood (ML) estimation of DSGE models requires the construction and

evaluation of the likelihood function of the data given the structural parameters. This paper

considers the more complicated case where the model involves unobserved state variables and

filtering techniques are required to evaluate the likelihood function. In particular, I follow

Ireland (1999) in treating the aggregate capital stock as unobservable.4 The case where

the capital stock is treated as observable is a straightforward simplification of the setup

considered here [see, for example, Christiano (1988), Altug (1989), and Bencivenga (1992)].5

With unobservable state variables, one can exploit the recursive nature of the model and

its fully-specified laws of motion to apply filters like the one proposed by Kalman (1960).6

The Kalman filter allows the construction of inferences about the unobserved state vector and

permits the evaluation of the joint likelihood function of observable endogenous variables.

In turn, the maximization of this likelihood function yields consistent and asymptotically

normal estimates of the parameters of the model. This approach has been employed by,

among others, McGrattan (1994), Hall (1996), McGrattan, Rogerson, and Wright (1997),

Ireland (1999, 2001), Kim (2000), Bouakez, Cardia, and Ruge-Murcia (2001), and Dib and

Phaneuf (2001).

The state-space representation of the DSGE model above consists of the following state

and observation equations. The state equation is constructed by substituting (2) into (1)

to obtain the law of motion of k̂t+1 in terms of k̂t and ẑt only, and by using the linearized

process of the technology shock (see the last equation in the Appendix). Then, it is possible

to write:

ξt+1= Fξt + vt+1,

4This assumption is made throughout the paper, so that differences in the Monte Carlo results across
estimation methods are not due to the way in which the capital stock is treated.

5These authors employ variants of the ML procedure proposed by Hansen and Sargent (1980) to estimate
general equilibriummodels. Estimates of the U.S. capital stock are constructed using data on past investment
and an educated guess about the rate of depreciation.

6As an alternative, Fernández-Villaverde and Rubio (2002) suggest the use of a nonlinear Sequential
Monte Carlo filter to evaluate the log likelihood function of nonlinearized DSGE models.
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where

F =

"
a11 + a12φck a12φcz + b1

0 ρ

#
,

is a 2 × 2 matrix and vt = (0, ²t)0 is a 2 × 1 vector. The observation equation consists of

the process of one of the observable endogenous variables in (3):

xt = hst = hΦξt = Hξt,

where h is a 1× 3 selection vector. For example, in the case where the model is estimated
using output data alone, h = (1, 0, 0) and xt = ŷt. The reason why xt contains only one

variable will become clearer below.

Let us collect the structural parameters of the model in the q × 1 vector θ. Denote

by ℵt−1 = (xt−1, xt−2, . . . , x1) the set of past observations of xt, by ξ̃t|t−1 the time t − 1
forecast of ξt constructed on the basis of ℵt−1, and by Pt|t−1 the Mean Square Error (MSE)
of this forecast. Then, under the assumption that the technology innovation, ²t, is normally

distributed, the density of xt conditional on ℵt−1 is

f(xt|ℵt−1;θ) =N(Hξ̃t|t−1,HPt|t−1H0).

The Maximum Likelihood estimator of θ is

θ̃ml= max L(θ),
{θ} (6)

where L(θ) denotes the log likelihood function:

L(θ) = −(T/2) ln(2π)− (1/2) ln |HPt|t−1H0|
−(1/2) TP

i=1
(xt −Hξ̃t|t−1)0(HPt|t−1H0)−1(xt −Hξ̃t|t−1),

and T is the sample size.

Since the process of ξt is stationary by construction, the Kalman filter recursion can be

started with the unconditional moments ξ̃1|0 = E(ξt) = (0, 0)0 and P1|0 = E(ξtξ
0
t). The

subsequent forecasting and updating of ξt and the computation of the MSE of ξ̃t|t−1 are

obtained using the Kalman algorithm described, for example, in Hamilton (1994, ch. 13).

Under standard regularity conditions [see Judge et al. (1985, p. 178)], the ML estimator is

consistent and asymptotically normal:

√
T (θ̃ml − θ)→ N(0, (=/T )−1),

where = = −E(∂2L(θ)/∂θ ∂θ0) is the information matrix. In the Monte Carlo, = is

estimated using the numerically computed Hessian of the log likelihood function at the

optimum.
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Since there is only one random shock in this model, any attempt to estimate it by

Maximum Likelihood using data on more than one variable yields a singular HPt|t−1H0

matrix. To see why, write the innovation in xt:

xt − E(xt|ℵt−1) = H(ξt − ξ̃t|t−1),
and note that when xt contains more than one variable, the innovations to the variables in xt

(say, consumption and output) are perfectly correlated and proportional to the technology

shock. Thus, the matrix V ar(xt − E(xt|ℵt−1)) = HPt|t−1H0 is singular. In general,

stochastically singular DSGE models cannot be estimated by Maximum Likelihood using

more observable variables than structural shocks are specified in the model. For example,

the RBC model studied here cannot be estimated by Maximum Likelihood using more than

one variable. However, we will see below that it is possible to use data on up to two variables

for the Methods of Moments and Indirect Inference. In this sense, stochastic singularity

affects Maximum Likelihood more severely than alternative estimation methods.

There are at least two strategies to deal with singular DSGE models in the Maximum

Likelihood framework. First, one can estimate the model using at most as many observable

variables as structural shocks. This strategy is followed by Kim (2000), Ireland (2001),

Bouakez, Cardia, and Ruge-Murcia (2001), and Dib and Phaneuf (2001). Second, one can

add error terms to the observation equation of the state-space representation as in McGrattan

(1994), Hall (1996), McGrattan, Rogerson, and Wright (1997) and Ireland (1999).7

3.1.1 Adding Measurement Errors

Adding extra error terms to the observation equation of the state-space representation of

the DSGE model yields:

xt = hst + ut = hΦξt + ut = Hξt + ut,

where xt is now a d× 1 vector, d is the number of observable variables used to estimate the
model, h is a d × 3 selection matrix, and ut is a d × 1 vector of shocks assumed indepen-
dently, identically, and Normally distributed with zero mean and variance-covariance matrix

7Another alternative is to extend the model to permit additional structural shocks. This strategy is
attractive because it increases the realism of the model and allows the use of more observable variables in
the estimation of the model. Early advocates of this strategy include Leeper and Sims (1994) and Ingram,
Kocherlakota, and Savin (1994). In general, adding structural shocks postpones, but does not necessarily
solve, the stochastic singularity of DGSE models. For example, incorporating a government expenditure
shock into the RBC model would add a second structural disturbance, but also would add another observable
variable (i.e., government expenditure). However, adding structural shocks can solve the singularity of
a model if a sufficient number of these shocks are latent. See Bergin (2003) for an application of this
idea. Another issue is that while adding measurement errors preserves the original economic model, adding
structural errors does not. The reason is that decision rules in the extended model would depend on a larger
set of state variables than in the original model.
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E(utu
0
t) = R. Based on Sargent (1989), it is customary to interpret ut as measurement

error. It is further assumed that E(viu
0
j) = 0 for all i ≥ j, meaning that measurement error

contains no information about current or future structural shocks. The extension to serially

correlated errors is straightforward and is discussed in Hansen and Sargent (1998, ch. 8).

As before, the Maximum Likelihood estimator of θ is

θ̃ml= max L(θ),
{θ} (7)

but now the log likelihood function is:

L(θ) = −(T/2) ln(2π)− (1/2) ln |HP0t|t−1H0 +R|
−(1/2) TP

i=1
(xt −Hξt)0(HP0t|t−1H0 +R)−1(xt −Hξt).

Notice that since (by assumption) R is full rank, then HP0t|t−1H
0 + R will no longer be

singular when the number of observable variables included in xt is larger than the number

of structural shocks.

One drawback of this approach is that measurement error lacks a truly structural inter-

pretation and it essentially represents specification error. One can think of the singularity

of DSGE models as arising from a particular form of misspecification: in the real world

there are many more types of shocks than the ones assumed by the model. This is the

main specification error that is captured by the term ut. When ut is modeled as serially

and/or contemporaneously correlated, other forms of misspecification can be captured by

this term as well. Ireland (1999) interprets measurement errors as capturing movements

and comovements in the data that the model cannot explain.

On the other hand, it can be argued that adding extra error terms is just a simple strategy

to deal with misspecification. Relationships like (4) and (5) might hold approximately in the

data, even if not without noise as predicted by the DSGE model. Thus, adding measurement

error provides a less stringent platform to assess the theory.

3.1.2 Incorporating Priors

Economic theory, previous microeconometric studies, and long-run averages of aggregate data

can be informative about the parameter values in structural macroeconomic models. This

prior knowledge about θ can be represented in a prior density and combined with aggregate

time series data to obtain a posterior density of θ. The posterior density summarizes

our knowledge about θ after observing the data and is the basis of probabilistic statements

regarding the structural parameters. There is a sense in which calibration can be interpreted

as a Bayesian procedure where the prior density of θ is degenerate and concentrated on a
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single numerical value. With such a strong prior, observations of the data series contribute

nothing to our knowledge of the parameter values and the posterior density coincides with

the prior one.

A simple way to incorporate priors into the Maximum Likelihood framework is based on

the mixed estimation strategy in Theil and Goldberger (1961). This approach was originally

developed for the linear regression model and leads to a Generalized Least Squares (GLS)

estimator that incorporates optimally prior information regarding the parameter values. It is

easy to show that the mean and variance of this GLS estimator corresponds exactly to mean

and variance of the Bayesian posterior distribution [see Hamilton (1994, p. 359)]. Stone

(1954) gives a Maximum Likelihood interpretation to the same estimator. DeJong, Ingram,

and Whiteman (2000) and Chang, Gomes, and Schorfheide (2002) incorporate priors in the

estimation of DSGE models and use, respectively, importance sampling and the Metropolis-

Hastings algorithm to compute numerically the moments of the posterior distribution.

For the mixed estimation strategy, write the prior distribution of the parameters as

µ = Kθ + e, (8)

where µ is q×1 vector,K is a known q×q nonsingular matrix, and e is q×1 vector of random
errors assumed Normally distributed with zero mean, variance-covariance matrix Σ, and

independent of vt and ut. The matrix Σ is assumed known and represents the researcher’s

uncertainty about the prior information. This specification of the prior distribution is

general in that it allows the characterization of the priors in terms of linear combinations of

the parameters, and permits correlations across priors in the form of nonzero elements in the

off-diagonal of Σ. In the special case where K is diagonal, the prior would take the familiar

form f(θ) = N(µ, Σ).

The mixed estimation strategy interprets the prior information as a set of q additional

observations of µ and combines them with the sample of T observations of the data ℵT = (xT ,
xT−1, xT−2, . . . , x1) to obtain an estimate of θ as in:

θ̃qb= max L(θ)+L(µ(θ)).
{θ} (9)

where L(µ(θ)) is the log of the density of µ in (8) and L(θ) was defined above. For

the Monte Carlo, I will treat this quasi-Bayesian estimate of θ as asymptotically normally

distributed with variance-covariance matrix (=)−1 and estimate the information matrix using
the numerically computed Hessian at the optimum.

Notice that the estimator defined in (9) corresponds to the mode of the log of the posterior

distribution f(θ|ℵT ). However, under the assumption of Gaussianity, the mode corresponds
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exactly to the mean and, consequently, the point estimate of θ obtained here is the same

as the one obtained using the approach in DeJong, Ingram, and Whiteman (2000). In

the special case where the prior is diffuse or improper, the estimator θ̃qb converges to the

classical ML estimator. When the prior is proper, the quasi-Bayesian estimate of θ can be

interpreted as the one obtained by the maximization of a penalized log likelihood function.

The penalty L(µ(θ)) depends on the strength of the researcher’s prior about θ and has the

effect of “pulling” the estimator towards the mean of the prior density.

3.2 Simulated Method of Moments

In calibration, the researcher computes the unconditional moments of synthetic series simu-

lated using given parameter values and then compares them with the unconditional moments

of the data. The Simulated Method of Moments (SMM) estimator pursues this idea further

by updating the parameter values in a manner that reduces the distance between these two

sets moments. SMM estimators have been proposed by McFadden (1989) and Pakes and

Pollard (1989) to estimate discrete-choice problems and by Lee and Ingram (1991) and Duffie

and Singleton (1993) to estimate time-series models.

Let us definemt to be a p×1 vector of empirical observations on variables whose moments
are of interest. Elements of mt could include, for example, ŷtĉt, ŷtŷt−1, etc. Define mi(θ)

to be the synthetic counterpart of mt whose elements are computed on the basis of artificial

data generated by the DSGE model using parameter values θ. The sample size is denoted

by T and the number of observations in the artificial time series is τT. The SMM estimator,

θ̃smm, is the value of θ that solves

min G(θ)0WG(θ),
{θ} (10)

where

G(θ) = (1/T )
TX
t=1

mt − (1/τT )
τTX
i=1

mi(θ),

is a p× 1 vector, andW is the optimal weighting matrix

W = lim V ar

Ã
(1/
√
T )

TP
t=1
mt

!−1
.

T →∞
(11)

Notice that, as usual, by using the optimal weighting matrix, a larger weight is given to the

moments, or the linear combinations of moments, that are most informative.

Under the regularity conditions in Duffie and Singleton (1993),

√
T (θ̃smm − θ)→ N(0,(1 + 1/τ )(D0W−1D)−1),
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where D = E(∂mi(θ)/∂θ) is a q × p matrix assumed to be finite and of full rank. In the

Monte Carlo, the derivatives ∂mi(θ)/∂θ are computed numerically and the expectation

approximated by the average over the simulated τT data points. W is computed using

the Newey-West estimator with a Barlett kernel. A general specification test of the DSGE

model can be constructed using the chi-square test proposed by Hansen (1982). As it is well

known, this test can be applied provided that the model be overidentified, meaning p > q.

In the case of SMM:

T (1 + 1/τ )[G(θ̃smm)
0WG(θ̃smm)]→ χ2(p− q),

where G(θ̃smm)
0WG(θ̃smm) is the value of the objective function at the optimum.

The stochastic singularity of DSGE models also affects their estimation by SMM. In

particular, singularity restricts the variables that can be included in the vector m. For

example, multiplying (4) by ŷt shows that n̂tŷt, ŷ
2
t , and ĉtŷt are not linearly independent.

Thus, if one were to include these three variables as elements of m, the Jacobian matrix D

would not be of full rank and Assumption 6 in Duffie and Singleton (1993, p. 944) would

not be satisfied. Similarly, multiplying (5) by ŷt shows that ŷ
2
t , ĉtŷt, ŷt−1ŷt, and ĉt−1ŷt are

not linearly independent either. Hence, stochastic singularity imposes restrictions on the

moments that can be exploited for its estimation by SMM.

For the RBC model studied here, a set of linearly independent objects is (ŷ2t , ĉ
2
t , ĉtŷt,

ĉtĉt−1, ŷtŷt−1). These variables are linearly independent despite relations (4) and (5) because

n̂tŷt, ŷtĉt−1 and ĉtŷt−1 are not included in mi. For the Monte Carlo experiments below, I

also use mi = (ŷ
2
t , n̂

2
t , n̂tŷt, n̂tn̂t−1, ŷtŷt−1)

0 and mi = (n̂
2
t , ĉ

2
t , ĉtn̂t, ĉtĉt−1, n̂tn̂t−1)

0, in order

to examine the sensitivity of the results to the variables and moments employed.

Stochastic singularity has different implications for SMM and Maximum Likelihood. Es-

timation is limited by the number of linearly independent moments under SMM, but by

the number of linearly independent variables under Maximum Likelihood. The former is

a weaker restriction because it is possible to find independent moments that incorporate

information about more variables than those that are linearly independent. For example,

for the RBC model here, one can use independent moments that involve up to two vari-

ables for estimation by SMM, but only one observable variable for estimation by Maximum

Likelihood (without measurement errors added). This means that SMM might yield more

precise estimates than Maximum Likelihood, despite the fact that the former is a limited

information procedure. Second, SMM requires at least as many moments as parameters are

to be estimated (i.e., p ≥ q) but only linearly independent objects can be included in m.
Thus, singularity might impose limits on the number of structural parameters that can be

identified.
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3.3 Generalized Method of Moments

Consider now the case where it is possible to compute analytical expressions for the uncon-

ditional moments of the variables as a function of the structural parameters. This means

that in the objective function (10), the simulation-based estimate (1/τT )
τTP
i=1
mi(θ) could be

replaced with its analytical counterpart E(m(θ)). Then, a Generalized Method of Moments

(GMM) estimator of θ can be obtained by minimizing the distance between the empirical

moments of the data and the theoretical moments predicted by the model. This approach

has been followed, among others, by Christiano and Eichenbaum (1992), Burnside, Eichen-

baum, and Rebelo (1993), and Ambler, Guay, and Phaneuf (1999). GMM is also used by

Braun (1994) to estimate the Euler equations of a DSGE model. Christiano and den Haan

(1996) examine the effects of alternative detrending methods and estimates of the weighting

matrix for the small-sample properties of GMM. Although the analytical computation of the

moments can be algebraically tedious, GMM estimates are computationally and statistically

more efficient than SMM.

The GMM estimator is defined by

θ̃gmm= min G(θ)0WG(θ),
{θ} (12)

where

G(θ) = (1/T )
TX
t=1

mt −E(m(θ)),

andW is the q×q optimal weighting matrix defined in (11). Under the regularity conditions
in Hansen (1982): √

T (θ̃gmm − θ)→ N(0,(D0W−1D)−1),

where D = ∂E(m(θ))/∂θ is a q× p matrix assumed to be finite and of full rank. In princi-
ple, one could obtain ∂E(m(θ))/∂θ analytically using the expressions for the unconditional

moments E(m(θ)). Note, however, that these derivatives need to be computed only once,

when standard errors are calculated.8 Thus, for the Monte Carlo, I follow the simpler route

of computing ∂E(m(θ))/∂θ numerically prior to the calculation of the standard errors. As

before, the optimal weighting matrix,W, is computed using the Newey-West estimator with

a Barlett kernel.

Comparing the asymptotic variance-covariance matrix of SMM and GMM estimates, note

that they differ by the term (1 + 1/τ ) that premultiplies (D0W−1D)−1 in the former case.

8Also, one might want to compute ∂E(m(θ))/∂θ analytically in order to supply an expression for the
gradient in the optimization routine. As we will see below, this would make GMM even more computationally
efficient than alternative estimation methods.
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SinceW depends only on the data, and the simulated moments converge to the analytical

ones as τT → ∞, then the difference in the standard errors of both estimates is primarily
due to the term (1+1/τ ), rather than to differences in the estimates ofW and D. The term

(1 + 1/τ) can be thought of as a measure of the increase in sample uncertainty due to the

use of simulation to compute the population moments. Since (1 + 1/τ)→ 1 as τ →∞, the
efficiency of SMM converges to that of GMM as the length of the simulated series increases.

Moreover, since τ is chosen by the researcher, the effect of simulation on sample uncertainty

can be reduced by selecting an appropriately large value of τ.

It is easy to see that the effect of simulation on sample uncertainty decreases rapidly as

τ increases. For τ = 5, the standard errors of SMM estimates are (1 + 1/5)1/2 ≈ 1.10 times
larger than the ones obtained using GMM. For τ = 10 and 20, they are approximately 1.05

and 1.025 times larger than those obtained using GMM. Hence, the difference in statistical

efficiency between SMM and GMM can be made reasonably small by increasing τ . However,

we will below that SMM is less computationally efficient than GMM and that the time per

replication under SMM increases proportionally with τ.

The implications of stochastic singularity for GMM estimation are the same as those

for SMM. Singularity limits the moments that can be exploited by GMM to those that

form a linearly independent set. Because identification requires at least as many moments

as parameters are to be estimated, singularity might also limit the number of parameters

that can be identified. Finally, GMM might deliver more precise estimates than Maximum

Likelihood because one can use information on more observable endogenous variables. For

example, for the RBC model in Section 2, GMM can use moments computed using up to

two variables, but Maximum Likelihood (without measurement errors) can only use one

observable variable.

A global specification test for overidentified DSGE models can be performed using the

chi-square statistic

T [G(θ̃gmm)
0WG(θ̃gmm)]→ χ2(p− q),

where G(θ̃gmm)
0WG(θ̃gmm) is the value of the objective function at the optimum.

3.4 Indirect Inference

This section examines the Indirect Inference procedure proposed by Smith (1993). For

reasons to be made clear below, Smith refers to this procedure as Extended Method of

Simulated Moments (EMSM). In order to understand the mechanics of EMSM, it is useful

to recall that SMM constructs an estimate of θ by minimizing the distance between the

unconditional moments of the data and those of an artificial series simulated using given
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parameter values. In contrast, EMSM constructs an estimate of θ by minimizing the

distance between the parameters of a Vector Autoregression (VAR) estimated from the data

and those estimated from an artificial series simulated using given parameter values. This

approach has a Method of Moments interpretation because the coefficients of the VAR are

proportional to covariances and autocovariances of the series in the VAR. This approach also

has an Indirect Inference interpretation [Gouriéroux, Monfort, and Renault (1993)] because

the auxiliary model (the VAR) is a misspecified version of the true state-space representation

of the model.9

More formally, denote by η the p× 1 vector with the estimates of a VAR representation
of the data. Denote by η(θ) the synthetic counterpart of η with the estimates of a VAR

representation of artificial data generated by the DSGE model. As before, the sample size

is denoted by T and the number of observations in the artificial time series is τT. Then, the

Indirect Inference estimator of θ, θ̃im, is the value that solves

min [η − η(θ)]0V[η − η(θ)],
{θ} (13)

where V is the p × p optimal weighting matrix. In the case where the information matrix
equality holds, Smith suggests using the inverse of the variance-covariance matrix of the

estimate η as an estimator of V.

Under the regularity conditions in Smith (1993),

√
T (θ̃im − θ)→ N(0,(1 + 1/τ)(J0V−1J)−1),

where J = E(∂η(θ)/∂θ) is a q × p matrix assumed to be finite and of full rank. In the

Monte Carlo, the derivatives ∂ηt(θ)/∂θ are computed numerically and the expectation

approximated by the average over the simulated τT data points. Smith suggests a test

based on Hansen’s (1982) chi-square statistic as specification test of an overidentified DSGE

model:

T (1 + 1/τ){[η − η(θ̃im)]0V[η − η(θ̃im)]}→ χ2(p− q),
where [η − η(θ̃im)]0V[η − η(θ̃im)] is the value of the objective function at the optimum.
The singularity of the DSGE model has implications for both the order and the number

of variables included in the auxiliary VAR. More precisely, the artificial data generated by

the DSGE model does not have an unconstrained VAR representation. In the case of the

9Rather than matching VAR parameters, some authors match instead the impulse-responses of the model.
Since the impulse-responses are nonlinear transformations of the VAR parameters, this strategy is similar to
the one studied here. For an application of this idea, see Christiano, Eichenbaum, and Evans (2001). An
advantage of matching impulse responses is that the researcher can focus on specific horizons by a choosing
an appropriate weighting matrix.
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RBC model studied here, recall that the systems (n̂t, ŷt, ĉt), (ŷt, ĉt, ŷt−1, ĉt−1), (ŷt, n̂t, ŷt−1,

n̂t−1), and (n̂t, ĉt, n̂t−1, ĉt−1) are singular, meaning that their sample variance-covariance

matrices are singular. This implies that the data generated by this simple DSGE model has

only a bivariate VAR representation of order one.10 Any attempt to estimate a VAR with

the three observable variables and/or using more than one lag will fail because the matrix

of explanatory variables is not of full rank.

Since in constructing the synthetic VAR, one is limited to two of the three observable

endogenous variables and to only one of their lags, I use VARs of order one on (ŷt, n̂t), (ŷt,

ĉt) and (n̂t, ĉt) in the Monte Carlo experiments below in order to examine the sensitivity of

the results to the variables used.

4 Monte-Carlo Experiments

4.1 Design

The small-sample properties of all estimators are studied here using Monte Carlo analysis.

First, I study the small-sample properties under the null hypothesis. That is, the Data

Generating Process (DGP) is the linearized, one-sector RBC model with indivisible labor

and one structural (technology) shock that was described in Section 2. Second, I study the

small-sample properties in the case where the DSGE model is misspecified. In this case

the DGP is also a linearized, one-sector RBC model with indivisible labor, but with three

structural shocks. In addition to the technology shock, the model incorporates a preference

shock and a shock to the investment function.

All experiments are based on 500 replications using a sample size of 200 observations.

This sample size corresponds to, say quarterly observations of the series for a period of 50

years. In order to limit the effect of the starting values used to generate the series, 100 extra

observations were generated in every replication. Then, for the estimation of the model, the

initial 100 observations were discarded.

I focus on three observable variables, namely output, consumption and hours worked, and

examine whether estimates are sensitive to using different combinations of these variables in

the estimation procedures. In order to reduce the computational burden in the Monte Carlo

experiments, I concentrate on three (of the five) model parameters, namely the subjective

discount factor (β), the autocorrelation coefficient of the technology shock (ρ), and the

10Smith is able to specify a bivariate VAR of order two for a model similar to the one here because he
assumes a second disturbance that affects the productivity of the new investment good. Since in this case,
the linearized law of motion for capital has an error term, systems like (ŷt, ĉt, ŷt−1, ĉt−1) in (5) are not
singular.
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standard deviation of the technology innovation (σ). Thus, θ = (β, ρ, σ)0 is a 3× 1 vector.
The data were generated using parameter values (β, ρ, σ) = (.95, .85, .04). The share of

capital in production (α) and the depreciation rate (δ) were fixed in all experiments to

.36 and .025, respectively. This Monte Carlo design is realist in the sense that the true

parameter values correspond to the ones typically found in empirical analysis.11

For the Monte Carlo experiments with priors, I consider independent prior densities for

β and ρ: β ∼ N(.95, .0252), ρ ∼ N(.85, .072), and a diffuse prior for σ. In terms of the prior
representation in (8), they correspond to"

.95

.85

#
=

"
1 0
0 1

# "
β
ρ

#
+ e, with e ∼ N

Ã"
0
0

#
,

"
.0252 0
0 .072

#!
. (14)

The priors for β and ρ mean that, before observing the data, the researcher believes that with

a 95 per cent probability their true values are in the intervals (.901, .999) and (.713, .987),

respectively.

For SMM and Indirect Inference, I used three different values of τ = 5, 10, 20, meaning

that the simulated series are, respectively, 5, 10, and 20 times larger than the sample size of

200 observations. Here, I also simulated 100 extra observations in every simulation and then

discarded the initial 100 observations when computing the moments or the VAR parameters.

For these simulation procedures, I fixed the seed in the random numbers generator in each

replication and used the same draw for the model estimation. A problem with using blocks

of random numbers is that they are perforce small [Ripley (1987, p. 138)]. However, in this

case the use of common random draws is essential to calculate the numerical derivatives of

the maximization algorithm. Otherwise, the objective function would be discontinuous and

the optimization algorithm would be unable to distinguish a change in the objective function

due to a changes in the parameters from a change in the random draw used to simulate the

series.

4.2 Results under the Null Hypothesis

Monte Carlo results are reported in Tables 1 to 3. In all tables, Mean is the average of

the estimated parameter values. A.S.E. is the average asymptotic standard error. Both

averages are taken over the 500 replications in each experiment. Median and S.D. are the

median and standard deviation of the empirical parameter distribution. Comparing Median

11A slightly larger value of β, say β = .99, would more appropriate if one were to adhere to the interpre-
tation of the series as quarterly observations of the variables. However, from the numerical perspective, it
is convenient to work with a value of β that is close, but not too close, to the admissible boundary of 1.
In unreported work, I performed a very limited set of Monte-Carlo experiments using the parameterization
(β, ρ,σ²) = (.98, .95, .04) with similar results to the ones reported.
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and Mean with the true parameter value, and S.D. with A.S.E., is informative about the

small-sample distribution of the estimates. For example, if the Mean is well below the true

parameter value, this indicates the downward bias of the estimate. If Mean and Median are

substantially different, this indicates that the small-sample distribution of the estimates is

skewed. If S.D. is much larger than A.S.E., this indicates that using the asymptotic formula

to compute the standard error might understate the true variability of the estimate in small

samples.

In all tables, Size is the proportion of times that the null hypothesis that the parameter

takes its true value is rejected using a t-test with nominal size of 5 per cent. In other words,

Size denotes the empirical size of this t-test. S.E. is the standard error of this empirical size

and is computed as the standard deviation of a Bernoulli variable. In ideal circumstances,

the nominal and empirical sizes of the t-test would be close. More formally, the 95 per cent

confidence interval around the empirical size would contain the nominal size of 5 per cent.

However, we will see below that in practice there are substantial size distortions because the

asymptotic standard error is not always a good approximation to the small-sample standard

error of the estimates. In Tables 2 and 3, OI is the empirical size of the χ2 test of the

overidentification restrictions.

Panel A in Table 1 reports results using Maximum Likelihood without adding measure-

ment errors/priors. Recall that singularity implies that the RBC model cannot be estimated

by Maximum Likelihood using more than one observable variable. Experiments 1 through

3 refer to the experiments using output, consumption, and hours worked, respectively.

Despite the fact that the model is a general equilibrium one, not all variables appear to be

equally informative about all structural parameters. In other words, the choice of variable(s)

employed in Maximum Likelihood estimation might matter. We will see below that this is

also true for the Methods of Moments. In particular, the average estimate and A.S.E. of

β vary substantially depending on whether one uses data on output, consumption, or hours

worked. When the model is estimated using data on output alone, the average estimate of

β is well below its true value and the A.S.E. is very large. When the model is estimated

using data on either consumption or hours worked, the average estimate is close to the true

value and the A.S.E. is small. All this means that for the simple RBC model studied here,

a sharper estimate of the subjective discount factor can be obtained using consumption or

hours worked, rather than output. The effect of the choice of variable on the point estimates

of the other structural parameters is minor. However, the standard error of the empirical

distribution and the A.S.E. of ρ seem to vary with the variable employed. For example,

the A.S.E. of ρ is much larger when consumption, rather than output, is used to estimate

the model. Thus, the autoregressive coefficient of the technology shock is estimated more
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precisely using output than either consumption or hours worked.

The asymptotic standard errors approximate well the small-sample standard deviation

of the estimates. However, the difference between them is large enough that in some cases

there are size distortions for the t-test of the null hypothesis that the true parameter value

is the one used to generate the data.

Panel B in Table 1 reports results using Maximum Likelihood incorporating the priors

specified in (14). Experiments 4 through 6 refer, respectively, to the experiments using out-

put, consumption, and hours worked. Because the prior about σ was uninformative, results

regarding this parameter are basically the same as those reported in Panel A. Regarding

β and ρ, the mean of the prior density was, by design, the same as the true value used to

generate the sample. Recall that an interpretation of the prior is that of a penalty on the

log likelihood function as the estimate deviates from the prior mean. As a result, estimates

obtained using Maximum Likelihood with priors tend to be numerically closer to their true

values than ML estimates without priors. An interesting case is the estimate of β obtained

using output data. Results from Panel A suggest that output is not very informative regard-

ing the discount factor. Consequently when the prior and the output data are combined,

the resulting posterior distribution of the estimate looks very similar to the prior density.

In most cases, the A.S.E. is larger than the standard deviation of the parameter estimates.

Hence, asymptotic standard errors overestimate the variability of the parameter estimates in

small samples. As a result, the t-test of the hypothesis that the parameter takes its true value

has a smaller empirical than nominal size and tends to underreject the null hypothesis.12

Table 2 report results using the Simulated and Generalized Methods of Moments. In

all cases, the mean and median of the estimated parameters are close to their true values.

Standard errors are reasonably low and vary with τ as predicted by the discussion in Section

3.4.13 That is, SMM standard errors based on simulated series with τ = 5, 10 and 20

are roughly 1.1, 1.05, and 1.025 times larger than those obtained using GMM, respectively.

12Notice that when the DGP is the RBC model with one shock, it is not possible to estimate the model
by Maximum Likelihood with measurement errors added. The reason is that under the null, the mean and
variance of measurement errors is zero. Results using ML with measurement errors are reported below for
the case where the model is misspecified. The previous version of this paper [Ruge-Murcia (2002, Table
2)] reports results where the DGP is the one-shock model with extra errors added. Those results are not
comparable with the ones reported here because the DGP is not the same
13Recent research [see, for example, Fuhrer, Moore, and Schuh (1995)] shows that GMM can yield biased

parameter estimates when applied to conditional moments of the data (e.g., Euler equations). The reason is
that in this case instruments are used to frame the model implications in terms of orthogonality conditions
to which GMM is then applied. Their research finds that GMM can have very poor small sample properties
when the instruments are weak. However, notice that GMM is applied here to unconditional moments of
the data and no instruments are required. This means that the problems caused by weak instruments do
arise here, but could arise potentially when one combines conditional and unconditional moments to estimate
DSGE models by GMM.
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However, this variation in efficiency is of the same order of magnitude as that observed across

moments employed in the estimation procedures. This means that the choice of the length

of the simulated series in SMM might be as important as the choice of moments to match.

As reported above for Maximum Likelihood, the choice of moments to match under SMM

and GMM can have some effect on the precision of the parameter estimates. This is because

not all moments are equally informative about all structural parameters. For example, in

Panel A, the standard deviation of the estimate of β obtained using the moments of output

and hours worked is roughly 30 per cent larger than the one obtained using the moments of

consumption and hours worked, for the same value of τ .

There are some differences between the A.S.E. and the standard deviations of the em-

pirical distribution of the parameters. Since the t-statistics are computed using asymptotic

standard errors, this translates into fairly large size distortions for the t-test. There is no

obvious pattern for the size distortions, but they appear to vary more with the moments

matched than with the length of the simulated series (in SMM).

The last column in Table 2 report the empirical size of the χ2 test of the overidentification

restrictions of the model. Notice that in all cases the empirical size of the test is well below

its nominal size of 5 per cent. This means that a researcher comparing the χ2 statistic with

the 5 per cent critical value of the appropriate distribution is very likely to conclude that the

overidentification restrictions of the DSGE model cannot be rejected. This is because rather

than taking a 5 per cent probability of rejecting a true model, the researcher actually takes

approximately a 1 per cent probability. In some cases (see, for example, Experiment 9 in

Panel C), the model’s overidentification restrictions were never rejected by the χ2 test in the

500 replications. The fact that Hansen’s χ2 easily fails to detect a misspecified model is well

known in the literature [see, among others, Newey (1985)]. The results in this paper suggest

that the severe size distortions of the χ2 test also arise in the context of fully-specified DSGE

models.

Finally, Table 3 reports results using Indirect Inference. In all experiments, the mean and

median of the estimated parameters are close to their true values. The standard errors of the

estimates of β and ρ are large, but the standard deviation of the innovation to the technology

shock, σ, is estimated more precisely by Indirect Inference than by any other method. As in

Maximum Likelihood, SMM, and GMM, the choice of variables/moments to use in estimation

has some effect on the precision of the estimates. This can be traced back to the fact that not

all variables/moments are equally informative about all structural parameters. For example,

σ can only be identified under Indirect Inference when η includes the standard deviation of

the residuals of the Vector Autoregression. Thus, the autocorrelations and cross correlations

of the variables do not seem informative regarding the standard deviation of technology
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innovations. In line with the finding that under Maximum Likelihood, consumption and

hours worked are more informative than output about the subjective discount rate, the

standard deviation of the empirical distribution of β is smallest when the VAR consist of ĉt

and n̂t. There are very large size distortions for both the t-test that the parameters take

their true value and the χ2 test of the overidentification restrictions. As in the Methods

of Moments, there is no clear pattern for these size distortions, but they seem to vary more

with the moments matched than with the length of the simulated series.

It is enlightening to go beyond the summary statistics in these Tables and plot the

empirical distribution of the parameter estimates obtained under the different methods. The

frequency histograms for estimators of β, ρ, and σ are plotted in Figures 1 to 3, respectively.

They correspond to results in Experiments 3 and 6 in Table 1, Experiments 5, 6, 11, and 12

in Table 2, and Experiments 5 and 6 in Table 3. The reason I focus on these experiments,

is because they help illustrate more general results uncovered by the Monte Carlo analysis.

Four conclusion can be drawn from these Figures. First, the Methods of Moments esti-

mators can deliver more precise estimates than Maximum Likelihood. This was anticipated

from the earlier observation that singularity implies that the RBC model can be estimated

by Maximum Likelihood using only one observable variable, but using moments of up to two

variables by the Methods of Moments. However, it is very likely that this finding is specific

to the one-shock RBC model examined here and might not carry over to the models with a

larger number of structural shocks. For example, in the preliminary work mentioned in foot-

note 2, where there were two structural shocks, Maximum Likelihood and SMM performed

equally well.

Second, informative priors can be combined with sample data to sharpen the researcher’s

inferences regarding the structural parameters of DSGE model. This can be seen in Figures

1 and 2 by comparing the empirical distribution of the estimators of β and ρ obtained using

Maximum Likelihood with and without priors.

Third, the difference in efficiency between GMM and SMM does not appear to be very

large, though the empirical distribution obtained by SMM with τ = 5 (not reported) is

somewhat more diffuse than the others. Hence, the effect of simulation on sample uncertainty

and the precision of parameter estimates can be moderated by a suitable choice of τ.

Fourth, the choice of variables/moments employed can have some effect on the precision

of the estimators. This can be seen in Figures 1 and 2 by comparing the empirical distri-

bution of the estimators of β and ρ obtained by SMM, GMM, and Indirect Inference using

the moments of output/hours worked and consumption/hours worked. Indirect Inference

estimates based on the moments of output/hours worked have a very diffuse empirical distri-

bution and a substantial number of outliers, though their mean is close to the true parameter
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value used to generate the sample.

One of the reason DSGE model are interesting is because they allow the researcher to

examine the response of a model economy to shocks. An advantage of the full estimation

of DSGE models is that parameter uncertainty can be incorporated to construct confidence

intervals around the model’s dynamic response to a shock. Since impulse-responses depend

nonlinearly on the structural parameters, it is useful to examine how the precision of the

estimates translates into less or more precise impulse-responses. Figure 4 plots the dynamic

responses of consumption, output, and hours worked following a technology shock. The

dotted lines are the 90 per cent confidence intervals for the response. The parameter

estimates used to construct these figures come from the same experiments used to obtain

Figures 1 to 3.

Figure 4 supports four conclusions. First, the mean response does not depend on the

estimation method because all methods deliver unbiased parameter estimates. However,

there are some small differences in the coverage probabilities of the estimated confidence

intervals because not all estimation procedures are equally efficient. Second, confidence

intervals for the response based on Indirect Inference estimates obtained using output/hours

worked moments are the widest. This reflects the diffuse empirical distributions of β and ρ

reported in Figures 1 and 2. Third, aside from the latter case, there are no large differences

in the confidence intervals obtained using different estimators of the structural parameters.

This means that the differences in parameter efficiency across estimation methods reported

above, does not translate necessarily into substantial differences in the coverage probabilities

of their impulse responses.

4.3 Robustness to Misspecification

This section report results of Monte Carlo experiments where the DSGE model is misspec-

ified. The intention here is to study the robustness of the different estimation methods to

misspecification. To that end, the artificial data is generated by the linearized, one-sector

RBC model with indivisible labor, but with three (rather than only one) structural shock.

It is assumed that, in addition to the technology shock, the true model incorporates a pref-

erence shock and a shock to the investment function. The preference shock is a disturbance

to the weight of leisure in the utility function, ψ. This weight follows the stochastic process

lnψt+1 = 0.6 lnψt + ζt,

where ζt is an innovation assumed to be independently, identically, and Normally distributed

with zero mean and variance 0.032. The shock to the investment function affects the trans-

formation of investment into new capital. In particular, the law of motion of the capital
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stock is generalized to:

kt+1 = (1− δ)kt + νtxt,

where νt is a shock that follows the process

ln νt+1 = 0.6 ln νt + εt,

where εt is an innovation assumed to be independently, identically, and Normally distributed

with zero mean and variance 0.042. Notice that the mean of νt equals 1 so that on average

one unit invested becomes one unit of capital. Since there are now three structural shocks,

a researcher looking at the (artificial) data series on, say output, consumption, and hours

worked would find them to be nonsingular. The estimated model is the economically-

interesting but misspecified and stochastically-singular RBC model with only one technology

shock.

Results are reported in Tables 4 to 6. In all tables, Bias is the average difference

between the estimated parameter values and the true value used to generate the artificial

data. Remaining headings are a previously described. Table 4 reports results obtained using

Maximum Likelihood. Panel A considers the case where neither priors nor measurement

errors are used in estimation, and the researcher is limited to using at most as many variables

as structural shocks. Estimates of σ are biased upwards, while estimates of β and ρ are

biased downwards. The biases are more severe when data on hours worked or output,

rather than consumption, is used. The reason σ is biased upwards is that all the conditional

variance of the series is attributed to the technology shock.

In order to understand why different series lead to different estimates, recall that Max-

imum Likelihood minimizes the one-step-ahead predictions of the model. The variance

decomposition of the true model with multiple shocks indicates that the technology shock

explains 89, 78, and 44 per cent of the conditional variance of the one-step ahead forecasts

errors of consumption, output, and hours worked, respectively. Because the only shock in

the estimated RBC model (that is, the technology shock) is more important in explaining

the variation of consumption in the short-run than the one of hours worked or output, the

misspecification affects ML estimates less severely when one uses data on consumption than

hours worked or output.

Note also in Panel A, that the asymptotic standard errors usually underestimate the

standard errors of the empirical, small-sample distribution of the estimates. Consequently,

t-tests tend to reject the null hypothesis that the parameters take their true value more often

that the nominal size of 5 per cent.

Panel B in Table 4 reports results using Maximum Likelihood but incorporating Bayesian

priors. In general, using priors reduces the bias of the estimates and the variance of their
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small-sample distributions. One of the reasons because of which biases are reduced is simply

that the priors are centered around the true parameter value. More generally, incorporating

prior information will “pull” ML estimates towards more economically reasonable values,

even if the estimated model is misspecified. The asymptotic standard errors tend to over-

estimate the standard error of the small-sample distribution and, as a result, t-tests tend to

reject the null hypothesis less often than 5 per cent of the times.

Finally, Panel C reports the results using Maximum Likelihood but adding measurement

errors. Because measurement errors are added, more variables than the number of structural

shocks can be used in Maximum Likelihood estimation. In general, the bias of the estimates

are smaller in this case than the ones reported in Panel A. However, because the technology

shock is not equally important in explaining the short-run behavior of all series, results

depend on the data used in estimation. For the example considered here, biases are less

severe for combinations of variables that include consumption. Finally, note that, as in

Panel A, the asymptotic standard errors underestimate the standard errors of the small-

sample distribution of the estimates. This means that the t-test that the parameters take

their true value will overreject.

Table 5 report results for the Simulated and Generalized Method of Moments. Estimate

of ρ are downward biased in all cases but, in general, the bias of the Methods of Moments

estimates is smaller than that of ML estimates. Because the asymptotic standard errors

differ from the small-sample standard errors, the t-test is subject to size distortions, but these

distortions are smaller than the ones observed in Table 4 for Maximum Likelihood. Hence,

the Methods of Moments appear more robust than Maximum Likelihood to the form of

misspecification considered here, in the sense that biases are smaller and statistical inference

is less affected.

Finally note that, as in Table 2, standard errors vary with τ as a result of the uncertainty

introduced by simulation error. As predicted by the discussion in Section 3.4, SMM standard

errors based on simulated series with τ = 5, 10 and 20 are roughly 1.1, 1.05, and 1.025 times

larger than those obtained using GMM, respectively. However, this variation in efficiency

is much smaller than that observed across moments employed in estimation. Thus, when

the model is misspecified, the choice of moments to match might be more important than

the length of the simulated series in SMM.

Table 6 reports results using Indirect Inference. In general, results are similar to those

obtained the Methods of Moments. The reason is that the version of Indirect Inference

studied here matches coefficients on a VAR representation of the data and these coefficients

are proportional to covariances and autocovariances of the series in the VAR. These explains

why the bias in the parameter estimates are usually smaller than those observed under Maxi-
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mum Likelihood and roughly of the same magnitude as those obtained under the Methods of

Moments. However, the size distortions of the t-test are usually larger than those observed

under the Methods of Moments and there are instances where the bias of β̂ and ρ̂ is severe.

Figure 5 compares the biases in all experiments under each estimation method. In

particular, I focus on the bias of the estimates of β and ρ by plotting them in a plane with

the bias of β̃ is in the horizontal axis and that of ρ̃ is in the vertical axis. Notice that

for the Methods of Moments estimators, the biases are closely packed near the (0, 0) point,

meaning that, although not exactly zero, these biases are comparatively small. For Indirect

Inference, that is also true in most cases, but there are some outliers where the biases are

large. By far the most diffuse plot is that of Maximum Likelihood. The points closest to

(0, 0) are those where Bayesian priors were incorporated in estimation. Biases tend to be

generally larger than under the Methods of Moments, and there are cases where they can be

very severe.

Figure 6 examines the effects of misspecification and bias on impulse response analysis.

In particular, I compare the response to a technology shock for the misspecified model (con-

tinuous line) with the response predicted by the true model (dotted line). These responses

were constructed using estimates from Experiments 3, 6, and 9 in Table 3, Experiments 5,

6, and 12 in Table 4, and Experiments 5 and 6 in Table 6. In order not to saturate the

picture, I have abstained from plotting confidence intervals of these responses.

Consider first the responses predicted by GMM and SMM estimates in columns 4 to 6.

Quantitatively, the (average) estimated responses are not too far from the true response

and the predicted dynamics are roughly similar. Statistically, the true response lies just

above the 90 per cent confidence bound (not shown). Note that because, GMM and SMM

results in Table 5 are similar, these plots are representative of the effect of misspecification

on impulse response analysis with GMM and SMM estimates.

Columns 1 to 3 plot the responses obtained using ML estimates. When no priors

are added, the (average) estimated response can be quite different from the true response,

both in terms of numerical and statistical distance and in terms of the dynamics. Notice,

however, that these results are not representative of all ML results. For example, responses

using results from Maximum Likelihood estimation with consumption data (not shown) yield

responses whose 90 per cent confidence interval includes the true response. Still, these plots

illustrate the general observation that Maximum Likelihood is generally less robust to the

form of misspecification considered here than the Methods of Moments.

Columns 7 and 8 plot the responses obtained using Indirect Inference estimates. These

plots illustrate the previous observation that matching VAR coefficient will lead to similar

results that matching moments directly. However, the moments coded in the VAR might
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not always be the most informative. In this case, biases can be severe and predicted impulse

response might differ substantially from the true response.

In general, results from these two sections are in line with the general econometric obser-

vations that 1) when the model is correctly specified Maximum Likelihood is more efficient

than limited information procedures, like the Methods of Moments, but 2) when the model

is misspecified, limited information procedures are more robust. In the case of DSGE mod-

els, the first observation is qualified by the fact that stochastic singularity affects Maximum

Likelihood more severely than the Methods of Moments. Consequently, both Maximum

Likelihood and the Methods of Moments might be similarly efficient when the DSGE model

is correctly specified.

4.4 Comparison in Terms of Computing Time

The estimation of DSGE models can be computationally demanding because the model

needs to be solved for each observation in each iteration of the optimization procedure that

maximizes (or minimizes) the relevant objective function. Thus, an important goal of this

paper is to compare the different estimation methods in terms of their computing time.

Table 7 reports in the first column the average number of seconds taken to complete a

replication, including the computation of standard errors. The average is taken over all

replications for all experiments in Tables 1 to 3 that employ the same estimation method.

The second column reports the ratio of the number in column one to the corresponding one

for GMM, that is taken as benchmark. For example, for Maximum Likelihood this ratio is

3.44/.67 = 5.1, and means that Maximum Likelihood takes on average 5 times longer than

GMM to complete a replication.

From this Table is clear that GMM is by far the most efficient procedure computationally,

followed by Maximum Likelihood. On the other hand, GMM requires the analytical calcu-

lation of the unconditional moments implied by the model. This task can be algebraically

tedious and time-consuming for models more complicated than the one studied here. There

is a large difference in computational efficiency between SMM/Indirect Inference and GMM,

and the time per iteration appears to increase proportionally with τ. The reason is that

SMM and Indirect Inference require the solution of the DSGE model and computation of

the gradients using τ times more observations than GMM.14

14Results regarding EMSM need to be interpreted with caution. For all estimation methods, the maxi-
mization (or minimization) routines were started at the true parameter values in order the make the Monte
Carlo experiment more efficient. However, I found that for EMSM, the algorithm would frequently blow up
if the routine was started at the true value of σ. Hence, for EMSM, the minimization routine was started
using a value for σ much larger than the one used to generate the sample. Just for this reason alone EMSM
would take longer to converge than the other estimation methods. This means that the numbers in Table
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5 Discussion

The paper studies the application of standard econometric techniques for the estimation

of Dynamic Stochastic General Equilibrium models. Although stochastic singularity im-

poses restrictions on the variables/moments that can be used in estimation and affects more

severely Maximum Likelihood than the Methods of Moments, all procedures yield unbiased

and reasonably precise parameter estimates under the null hypothesis. Monte Carlo re-

sults indicate that, despite the fact that the model is a general equilibrium one, not all

variables/moments are equally informative about all structural parameters. Since all pro-

cedures deliver consistent estimates, this has only a small effect on the point estimates but

it appears to have some moderate implications for the small-sample standard errors.

For the one sector Real Business Cycle model studied here, the Methods of Moments de-

liver more precise estimates than Maximum Likelihood without added measurement errors.

However, this finding is probably specific to one-shock DSGE models and might not carry on

to the models with a larger number of structural shocks that are more representative of the

current state of the literature. Although the Simulated and Generalized Methods of Mo-

ments are roughly comparable in terms of statistical efficiency, SMM is more computationally

demanding.

When the model is misspecified, Monte-Carlo results are in line with the general econo-

metric observations that limited information procedures are more robust than Maximum

Likelihood. However, incorporating Bayesian priors “pulls” ML estimates towards more

economically reasonable values and reduces both the bias of the estimates and the variance

of their small-sample distributions.

7 most likely overstate the computating time required by EMSM.
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Table 1. Maximum Likelihood Results

Under the Null Hypothesis

(Artificial Data is Stochastically Singular)

β ρ σ
Experiment Mean A.S.E. Size Mean A.S.E. Size Mean A.S.E. Size
# Var. Median S.D. S.E. Median S.D. S.E. Median S.D. S.E.

A. Using as Many Variables as Shocks
1 ŷt .8045 .2218 .0740 .8114 .0595 .0360 .0487 .0181 .2120

.8430 .1688 .0117 .8218 .0586 .0083 .0488 .0102 .0183
2 ĉt .9256 .0859 .1440 .8203 .1229 .0580 .0511 .0366 .0860

.9462 .1038 .0157 .8562 .1172 .0105 .0375 .0328 .0125
3 n̂t .9375 .0610 .1420 .8426 .0610 .0460 .0440 .0217 .1600

.9383 .0520 .0156 .8579 .0520 .0094 .0444 .0166 .0164

B. Incorporating Bayesian Priors
4 ŷt .9501 .0249 .0000 .8425 .0335 .0220 .0398 .0037 .0020

.9501 .0009 .0000 .8446 .0288 .0066 .0398 .0022 .0020
5 ĉt .9488 .0228 .0000 .8463 .0523 .0000 .0396 .0086 .0000

.9394 .0068 .0000 .8454 .0295 .0000 .0396 .0023 .0000
6 n̂t .9488 .0222 .0000 .8428 .0433 .0020 .0399 .0080 .0000

.9486 .0061 .0000 .8445 .0255 .0020 .0400 .0024 .0000

Notes: The true values are β = .95, ρ = .85, and σ = .04. Mean is the arithmetic average of

the estimated parameter values;, A.S.E. is the average asymptotic standard error; Median

and S.D. are the median and standard deviation of the empirical parameter distribution;

Size is an estimate of the actual size of the t-test with nominal size of 5 per cent of the

null hypothesis that the parameter takes its true value; and S.E. is the standard error of

the actual test size. The experiments were based on 500 replications. The priors used are:

β ∼ N(.95, .0252), ρ ∼ N(.85, .072). The prior for σ is diffuse.
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Table 2. Results using Methods of Moments

Under the Null Hypothesis

(Artificial Data is Stochastically Singular)

β ρ σ
Experiment Mean A.S.E. Size Mean A.S.E. Size Mean A.S.E. Size OI
# Var. Median S.D. S.E. Median S.D. S.E. Median S.D. S.E. S.E.

A. Simulated Method of Moments with τ = 5
1 ŷt, ĉt .9505 .0128 .0160 .8368 .0411 .1040 .0395 .0042 .0360 .0100

.9511 .0089 .0056 .8466 .0504 .0137 .0396 .0032 .0083 .0044
2 n̂t, ŷt .9497 .0138 .0860 .8400 .0314 .1880 .0395 .0037 .0820 .0060

.9508 .0153 .0125 .8452 .0470 .0175 .0394 .0037 .0123 .0035
3 n̂t, ĉt .9501 .0107 .0520 .8413 .0294 .1580 .0396 .0032 .0860 .0000

.9502 .0099 .0099 .8444 .0409 .0163 .0396 .0034 .0125 .0000

B. Simulated Method of Moments with τ = 10
4 ŷt, ĉt .9503 .0122 .0300 .8370 .0392 .0840 .0393 .0040 .0240 .0120

.9505 .0095 .0076 .8442 .0478 .0124 .0394 .0028 .0068 .0049
5 n̂t, ŷt .9483 .0133 .0740 .8367 .0303 .1320 .0396 .0035 .0740 .0020

.9497 .0148 .0117 .8414 .0417 .0151 .0394 .0036 .0117 .0020
6 n̂t, ĉt .9510 .0101 .0520 .8436 .0277 .1640 .0397 .0030 .0920 .0020

.9516 .0098 .0099 .8475 .0377 .0166 .0396 .0034 .0129 .0020

C. Simulated Methods of Moments with τ = 20
7 ŷt, ĉt .9506 .0120 .0260 .8372 .0382 .0880 .0394 .0039 .0320 .0120

.9509 .0088 .0071 .8426 .0443 .0127 .0394 .0029 .0079 .0049
8 n̂t, ŷt .9496 .0131 .1000 .8428 .0291 .1420 .0398 .0035 .0720 .0020

.9510 .0147 .0134 .8496 .0426 .0156 .0395 .0037 .0116 .0020
9 n̂t, ĉt .9499 .0101 .0600 .8411 .0277 .1260 .0395 .0030 .0820 .0000

.9502 .0098 .0106 .8458 .0376 .0148 .0393 .0033 .0123 .0000

D. Generalized Method of Moments
10 ŷt, ĉt .9501 .0118 .0100 .8369 .0375 .1020 .0395 .0039 .0180 .0040

.9502 .0084 .0044 .8429 .0457 .0135 .0395 .0026 .0059 .0028
11 n̂t, ŷt .9484 .0128 .0720 .8382 .0288 .1480 .0397 .0034 .0780 .0020

.9496 .0137 .0116 .8418 .0400 .0159 .0396 .0035 .0120 .0020
12 n̂t, ĉt .9499 .0099 .0540 .8380 .0272 .1360 .0395 .0029 .0740 .0000

.9497 .0094 .0101 .8407 .0383 .0153 .0395 .0030 .0117 .0000

Notes: For Experiments 1, 4, 7, and 10, mt = (ŷ
2
t , ĉ

2
t , ĉtŷt, ĉtĉt−1, ŷtŷt−1)

0; for Experiments

2, 5, 8, and 11, mt = (ŷ2t , n̂
2
t , n̂tŷt, n̂tn̂t−1, ŷtŷt−1)

0; and for Experiments 3, 6, 9, and 12,

mt = (n̂
2
t , ĉ

2
t , ĉtn̂t, ĉtĉt−1, n̂tn̂t−1)

0. See the notes to Table 1.
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Table 3. Results using Indirect Inference

Under the Null Hypothesis

(Artificial Data is Stochastically Singular)

β ρ σ
Experiment Mean A.S.E. Size Mean A.S.E. Size Mean A.S.E. Size OI
# Var. Median S.D. S.E. Median S.D. S.E. Median S.D. S.E. S.E.

A. τ = 5
1 ŷt, ĉt .9560 .0261 .2700 .8436 .0807 .3200 .0400 .0004 .7220 .0620

.9543 .0295 .0199 .8562 .1134 .0209 .0400 .0021 .0200 .0108
2 n̂t, ŷt .9499 .0254 .2380 .8120 .0195 .2400 .0401 .0002 .8480 .2340

.9505 .0319 .0190 .8519 .1513 .0191 .0401 .0021 .0161 .0189
3 n̂t, ĉt .9482 .0262 .0020 .8390 .0980 .0000 .0400 .0006 .6260 .0040

.9488 .0108 .0020 .8457 .0426 .0000 .0399 .0022 .0216 .0028

B. τ = 10
4 ŷt, ĉt .9566 .0252 .2500 .8446 .0744 .3160 .0398 .0004 .7500 .0540

.9574 .0299 .0194 .8759 .1172 .0208 .0399 .0020 .0194 .0101
5 n̂t, ŷt .9463 .0251 .2020 .8020 .0948 .1960 .0400 .0002 .8780 .1700

.9478 .0291 .0180 .8420 .1484 .0178 .0399 .0021 .0146 .0168
6 n̂t, ĉt .9484 .0255 .0040 .8405 .0945 .0000 .0400 .0005 .6160 .0020

.9489 .0103 .0028 .8459 .0405 .0000 .0400 .0021 .0218 .0020

C. τ = 20
7 ŷt, ĉt .9559 .0246 .3060 .8366 .0701 .3660 .0400 .0003 .7840 .0600

.9564 .0327 .0206 .8724 .1283 .0215 .0400 .0020 .0184 .0106
8 n̂t, ŷt .9448 .0254 .2040 .7854 .0970 .2000 .0398 .0002 .8680 .2280

.9489 .0316 .0180 .8460 .1838 .0179 .0397 .0019 .0151 .0188
9 n̂t, ĉt .9488 .0251 .0100 .8414 .0925 .0020 .0401 .0005 .5840 .0040

.9487 .0109 .0044 .8451 .0433 .0020 .0401 .0020 .0220 .0028

Notes: For Experiments 1, 4, and 7, the VAR consists of ŷt and ĉt; for Experiments 2, 5, and

8, the VAR consists of ŷt and n̂t; and for Experiments 3, 6, and 9, the VAR consists of n̂t,

and ĉt. In all cases a VAR of order one is used. See the notes to Table 1.
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Table 4. Maximum Likelihood Results

Artificial Data is Nonsingular Because True Model has

Multiple Structural Shocks

β ρ σ
Experiment Mean A.S.E. Size Mean A.S.E. Size Mean A.S.E. Size
# Var. Bias S.D. S.E. Bias S.D. S.E. Bias S.D. S.E.

A. Using as Many Variables as Shocks
1 ŷt .8392 .0418 .1260 −.0195 .1157 .9920 .2353 .0554 .9900

−.1108 .2323 .0148 −.8695 .2468 .0040 .1923 .0812 .0044
2 ĉt .9098 .0942 .1240 .8132 .1209 .1040 .0547 .0383 .1300

−0.0402 .1189 .0147 −.0368 .1273 .0137 .0147 .0372 .0150
3 n̂t .6067 .1835 .5200 .0381 .1479 .9840 .1199 .0222 .9840

−.3433 .2334 .0223 −.8019 .1878 .0056 .0799 .0236 .0056

B. Incorporating Bayesian Priors
4 ŷt .9303 .0268 .0020 .7657 .0876 .0820 .1890 .0285 .9860

−.0197 .0162 .0020 −.0843 .0589 .0123 .1490 .0156 .0053
5 ĉt .9482 .0227 .0020 .8429 .0092 .0020 .0424 .0092 .0000

−.0018 .0069 .0020 −.0071 .0027 .0020 .0024 .0027 .0000
6 n̂t .9232 .0319 .0020 .7331 .0968 .1340 .2011 .0313 .9780

−0.0268 .0138 .0020 −0.1169 .0523 .0152 .1611 .0149 .0066

C. Adding Measurement Errors
7 ŷt, ĉt .9999 .0053 .9780 .9765 .0095 .9900 .0544 .0048 .8960

.0499 .0006 .0066 .0265 .0037 .0044 .0144 .0034 .0137
8 n̂t, ŷt .0394 .0930 .8920 .7820 .0928 .0620 .0298 .0081 1.000

−.9106 .1344 .0139 −.0680 .0672 .0108 −.0102 .0064 .0000
9 n̂t, ĉt .9554 .0020 .6760 .7748 .0245 .7940 .0508 .0028 1.000

.0054 .0051 .0209 −.0752 .0363 .0181 .0108 .0029 .0000

Notes: Bias is the arithmetic average of the difference between the estimated and true

parameter values. See the notes to Table 1.
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Table 5. Results using Methods of Moments

Artificial Data is Nonsingular Because True Model has

Multiple Structural Shocks

β ρ σ
Experiment Mean A.S.E. Size Mean A.S.E. Size Mean A.S.E. Size
# Var. Bias S.D. S.E. Bias S.D. S.E. Bias S.D. S.E.

A. Simulated Method of Moments with τ = 5
1 ŷt, ĉt .9484 .0117 .0200 .8122 .0430 .1500 .0449 .0042 .1300

−.0016 .0088 .0063 −.0378 .0530 .0160 .0049 .0033 .0150
2 n̂t, ŷt .9705 .0096 .5900 .7846 .0366 .3940 .0453 .0036 .3080

.0205 .0126 .0220 −.0654 .0508 .0219 .0053 .0040 .0206
3 n̂t, ĉt .9512 .0106 .1080 .7552 .0380 .6200 .0530 .0038 .9040

.0012 .0121 .0139 −.0948 .0544 .0217 .0130 .0046 .0132

B. Simulated Method of Moments with τ = 10
4 ŷt, ĉt .9479 .0112 .0036 .8081 .0418 .1860 .0446 .0040 .1240

−.0021 .0093 .0083 −.0419 .0547 .0174 .0046 .0033 .0147
5 n̂t, ŷt .9705 .0091 .6060 .7869 .0351 .4160 .0454 .0034 .3640

.0205 .0116 .0219 −.0631 .0471 .0220 .0054 .0041 .0215
6 n̂t, ĉt .9518 .0102 .1140 .7545 .0363 .7180 .0528 .0037 .9280

.0018 .0116 .0142 −0.955 .0515 .0201 .0128 .0043 .0116

C. Simulated Methods of Moments with τ = 20
7 ŷt, ĉt .9477 .0110 .0160 .8095 .0407 .1640 .0448 .0040 .1220

−.0023 .0082 .0056 −.0405 .0523 .0166 .0048 .0030 .0146
8 n̂t, ŷt .9699 .0090 .6040 .7871 .0338 .4100 .0458 .0033 .4140

.0199 .0117 .0219 −.0629 .0480 .0220 .0058 .0041 .0220
9 n̂t, ĉt .9512 .0100 .0880 .7566 .0358 .7040 .0532 .0036 .9520

.0012 .0109 .0127 −.0934 .0464 .0204 .0132 .0041 .0096

D. Generalized Method of Moments
10 ŷt, ĉt .9476 .0108 .0320 .8104 .0397 .1520 .0449 .0039 .1380

−.0024 .0083 .0079 −.0396 .0501 .0161 .0049 .0030 .0154
11 n̂t, ŷt .9704 .0087 .6040 .7875 .0330 .4140 .0457 .0033 .4300

.0204 .0114 .0219 −.0625 .0473 .0220 .0057 .0473 .0221
12 n̂t, ĉt .9508 .0098 .1080 .7569 .0342 .9400 .0530 .0035 .9400

.0008 .0112 .0139 −.0931 .0507 .0106 .0130 .0042 .0106

Notes: See the notes to Tables 1 and 2.
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Table 6. Results using Indirect Inference

Artificial Data is Nonsingular Because True Model has

Multiple Structural Shocks

β ρ σ
Experiment Mean A.S.E. Size Mean A.S.E. Size Mean A.S.E. Size
# Var. Bias S.D. S.E. Bias S.D. S.E. Bias S.D. S.E.

A. τ = 5
1 ŷt, ĉt .9436 .0165 .4380 .7465 .0719 .4580 .0448 .0003 .9640

−.0064 .0300 .0222 −.1035 .1687 .0223 .0048 .0025 .0083
2 n̂t, ŷt .9999 .0013 1.000 .1649 .0745 .9980 .0343 .0001 1.000

.0499 .0000 .0000 −.6851 .3265 .0020 −.0057 .0019 .0000
3 n̂t, ĉt .9577 .0133 .0020 .7666 .0842 .0700 .0523 .0005 1.000

.0077 .0071 .0020 −.0834 .0461 .0114 .0123 .0026 .0000

B. τ = 10
4 ŷt, ĉt .9423 .0159 .4560 .7413 .0685 .5120 .0449 .0003 .9540

−.0077 .0297 .0223 −.1087 .1618 .0224 .0049 .0025 .0094
5 n̂t, ŷt .9999 .0013 1.000 .1365 .0765 .9920 .0341 .0001 1.000

.0499 .0000 .0000 −.7135 .2894 .0040 −.0059 .0017 .0000
6 n̂t, ĉt .9578 .0127 .0000 .7674 .0809 .0540 .0525 .0005 1.000

.0078 .0065 .0000 −.0826 .0413 .0101 .0125 .0026 .0000

C. τ = 20
7 ŷt, ĉt .9467 .0169 .4040 .7626 .0673 .4320 .0451 .0003 .9700

−.0033 .0306 .0219 −.0874 .1601 .0222 .0051 .0023 .0076
8 n̂t, ŷt .9999 .0012 1.000 .0820 .0770 .9940 .0341 .0001 1.000

.0499 .0000 .0000 −.7680 .3087 .0035 −.0059 .0016 .0000
9 n̂t, ĉt .9574 .0124 .0020 .7646 .0792 .0760 .0525 .0005 1.000

.0074 .0063 .0020 −.0854 .0411 .0119 .0125 .0025 .0000

Notes: See the notes to Tables 1 and 3.
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Table 7. Comparison in Terms of Computing Time

Seconds Compared with
Method τ per Replication GMM

Maximum Likelihood − 3.19 4.8
Simulated Method of Moments 5 7.52 11.2

10 14.74 22.0
20 27.41 40.1

Indirect Inference 5 27.89 41.6
10 59.15 88.3
20 90.96 135.8

Generalized Method of Moments − 0.67 1

Notes: The Monte Carlo was performed using GAUSS for Windows running in a Dell Inspiron

7500 with Pentium III processor.
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A Appendix A : The Log-linearized Model

In what follows, variables without time subscript denote steady state values and the cir-

cumflex denotes percentage deviation from steady state. For example, ĉt = (ct − c)/c is
the percentage deviation of consumption from its steady state at time t. For the model in

Section 2, the linearized first-order conditions of the agent’s problem are (notice that the

marginal products of labor and capital have already been substituted out):

Etĉt+1 = ĉt + ς(α− 1)Etk̂t+1 + ς(1− α)Etn̂t+1 + ςEtẑt+1,

n̂t = −(1/α)ĉt + k̂t + (1/α)ẑt.

where ς = αβ(k/n)α−1 and the steady-state capital-labor ratio k/n = ((1/β+δ−1)/α)1/(α−1).
The linearized production function and resource constraint are:

ŷt = αk̂t + (1− α) n̂t + ẑt,

ŷt = γĉt + (1− γ)x̂t,

where γ is the consumption-output ratio in steady and equals 1 − δ(k/n)1−α. Finally, the

linearized law of motions for capital and the technology shock are:

k̂t+1 = (1− δ)k̂t + δx̂t,

ẑt+1 = ρẑt + ²t.

[35]
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Working Paper 69.

[3] Bencivenga, V. R., (1992), “An Econometric Study of Hours and Output Variation with

Preference Shocks,” International Economic Review 33, 449-471.

[4] Bergin, P. R., (2003), “Putting the ‘New Open Economy Macroeconomics’ to a Test,”

Journal of International Economics 60, 3-34.

[5] Blanchard, O. J. and Kahn, C. M., (1980), “The Solution of Linear Difference Models

under Rational Expectations,” Econometrica, 48, 1305-1311.

[6] Bouakez, H., Cardia, E., and Ruge-Murcia, F. J., (2001), “Habit Formation and the

Persistence of Monetary Shocks,” Université de Montréal, Mimeo.
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