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Abstract

The in�uential class size reduction experiment Project STAR randomly assigned students

to classrooms in successive grades. The experiment su¤ered from a variety of implementation

problems rendering traditional evaluation methods unable to recover the full set of causal e¤ects.

We consider sequential di¤erence in di¤erence estimation of education production functions and

account for attrition using inverse probability weighting. Estimates from our model are combined

to recover the full set of dynamic treatment e¤ects presenting a complete and di¤erent picture

of the e¤ectiveness of reduced class size. We �nd that accounting for attrition and selection on

unobservables is crucial and necessary.
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Recent years have seen an interdisciplinary resurgence of interest that examines the eco-

nomics and econometrics of broken randomized trials.1 These studies focus on the estimation

of various causal parameters in the presence of a variety of implementation problems in single

period programs where participants either comply fully with their assignment or choose not to

comply at all. Yet many randomized trials in social science and clinical medicine involve repeated

or multiple stages of intervention,when it is possible that the participation of human subjects

in the next stage is contingent on past participation outcomes. The study of causal e¤ects from

a sequence of interventions is limited even in the case of perfect compliance.2 Only recently

in economics, Lechner and Miquel (2002) and Miquel (2002,2003) examine the identi�cation of

dynamic treatment e¤ects under alternative econometric approaches when attrition is ignorable.

This paper concerns itself with randomized trials that provide a sequence of interventions and

su¤er from various forms of noncompliance including selective attrition.

We examine these issues in the context of Tennessee�s highly in�uential class size experiment,

Project STAR. The experiment was conducted for a cohort of students with refreshment in 79

schools over a four-year period from kindergarten through grade 3. Within each participating

school, incoming kindergarten students were randomly assigned to one of the three intervention

groups: small class (13 to 17 students per teacher), regular class (22 to 25 students per teacher),

and regular-with-aide class (22 to 25 students with a full-time teacher�s aide). Most published

results from this study have reported large positive impacts of class size reduction on student

achievement, which has provided much impetus in the creation of large-budget class size reduc-

tion policies in many states and countries.3 Several of these studies have noted and attempted

to address complications due to missing background and outcome data and noncompliance with

the randomly assigned treatment that occurred during implementation.4 However, to the best of

our knowledge, an examination of the data as the result of a sequence of treatment interventions

with various non-compliance issues has not been formally explored.

A variety of complications arise in experiments involving human subjects. These include

subjects exiting the experimental sample (attrition bias), not taking the treatment when assigned

(drop-out bias), or receiving the treatment or similar treatments when not assigned (substitution
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bias). Faced with these complications researchers often report either an intent to treat (ITT)

parameter that compares outcomes based on being assigned to, rather than actual receipt of

treatment or undertake an instrumental variables strategy. In his highly in�uential examination

of Project STAR, Krueger (1999) follows the latter approach using initial random assignment to

class type as an instrument for current class size to uncover the causal e¤ect of reduced class size

on student achievement. The IV estimate is simply the ratio of the ITT estimates of the e¤ect

of being assigned to di¤erent class types on outcomes to that on program participation. The

IV estimate obtains a causal interpretation provided a series of assumptions detailed in Angrist,

Imbens and Rubin (1995) are satis�ed,5 and the resulting parameter estimate is often referred to

as a local average treatment e¤ect (LATE) in the economics literature or as a complier average

causal e¤ect (CACE) in the statistics literature.6 Further, without stronger assumptions we

generally cannot identify from the population who those compliers are, which barely shed light

on the corresponding policy questions.

In multi-period randomized experiments with noncompliance but ignorable attrition, estima-

tors employing initial assignment as instruments provide estimates of the cumulative e¤ects of a

program only for those compliers who conformed with their initial assignment in all subsequent

years of the program. However, in the presence of non-ignorable attrition, ITT estimators are

biased and IV estimators are distorted from a causal e¤ect even with a randomized instrument.7

The scope of non-compliance in Project STAR is extensive. Approximately ten percent of the

subjects switch class type annually and over half of the subjects who participated in kindergarten

sample attrited. These attritors di¤ered signi�cantly in their initial behavioral relationships.

Attritors received half of the average bene�t of attending a small class in kindergarten. Further,

the pattern of attrition di¤ered markedly between class types within and across schools. By

treating attrition as random and ignorable past studies may have overstated the bene�ts of

reduced class size.

In multi-period experiments, implementation problems proliferate as subjects may exit in

di¤erent periods or switch back and forth in between the treatment and control groups across

time. To estimate the average treatment e¤ects of reduced class size in a multi-period setting,
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the researcher must compute counterfactual outcomes for each potential sequence of classroom

assignment. In the context of Project STAR this yields 16 possible paths for the kindergarten

cohort in grade three. Note that even if the experiment perfectly re-randomized subjects annu-

ally, an instrumental variables approach would be unable to estimate the full sequence of causal

e¤ects since the number of randomized instruments is less than the number of counterfactual

outcomes.

To estimate the average treatment e¤ects of reduced class size in a multi-period setting, we

consider a sequential di¤erence in di¤erence strategy. We account for non-ignorable attrition

using inverse probability weighting M-estimators. Our parameter estimates have a direct struc-

tural interpretation since our underlying model allows cognitive achievement to be viewed as a

cumulative process as posited by economic theory. Further, we allow the e¤ects of observed in-

puts and treatment receipt on achievement levels to vary at di¤erent grade levels. The structural

parameter estimates permit us to construct estimates of the full sequence of dynamic treatment

e¤ects to present a more complete picture of the e¤ectiveness of reduced class size.

We �nd there are bene�ts to attending a small class initially in all subject areas in kinder-

garten and grade one. However, there does not exist additional bene�ts from attending small

classes in both years in grade one. Further, we �nd there are no signi�cant dynamic bene�ts from

continuous treatment versus never attending small classes in all subjects in grades two and three.

Attendance in small classes in grade three is signi�cantly negatively related to performance in all

subject areas. The data suggests that the decreasing returns to small class attendance is related

to signi�cantly greater variation in incoming academic performance in small classes relative to

regular classes. The weakest incoming students in mathematics in each classroom experienced

the largest gains in achievement, which is consistent with the story of teaching towards the

bottom. Finally, speci�cation tests indicate that accounting for attrition due to observables and

controlling for selection due to unobservables is crucial and necessary with data from Project

STAR.
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1 Parameters of Interest

We begin by providing a brief overview of the parameter estimates and the e¤ect of several

sources of implementation biases in a one period model of treatment.8 In the context of the

STAR class size experiment, we refer to being in small classes as being in the treatment group

and otherwise in the control group. A student is initially assigned to a small class, M = 1 or a

regular class,M = 0 when she enters a school in the STAR sample.9 Due to the non-mandatory

compliance nature of this social experiment, each year the actual class type a student attends

may di¤er from the initial assignment. We use St = 1 to denote actually being in a small class

in grade t and St = 0 as being in a regular class. At the completion of each grade t, she takes

exams and scores At (potential outcomes, A1t if attending a small class and A0t if attending

a regular class). Notice that we cannot observe A1t and A0t for the same individual. Some

subjects leave the STAR sample over the four years, let Lt+1 = 1 indicates that a subject leaves

a STAR school and attends a school elsewhere after the completion of grade t, if she remains in

the sample for the next period Lt+1 = 0.

Project STAR was conducted to evaluate the e¤ect of class size on student achievement to

determine whether small class size should be extended to the schooling population as a whole.

Thus, in a single period experiment the relevant parameter is the average treatment e¤ect (ATE)

4ATEt = E(A1t� A0t) or in its conditional form E(A1t� A0tjXt) where Xt are characteristics

that a¤ect achievement.

Project STAR was designed to use random assignment to circumvent problems result from

selection in treatment. By randomly assigning subjects to class types the researcher is assured

that the treatment and control groups are similar to each other (i.e., equivalent) prior to the

treatment and any di¤erence in outcomes between these groups is due to the treatment, not

complicating factors. In implementation, however, if people self select outside of their assigned

treatment, risks rise that the groups may no longer be equivalent prior to a period of treatment

and the standard experimental approach identi�es alternative parameters of interest in a single

period model of treatment intervention.
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A. Sources of Bias in a Single Period Intervention

Self selection has given rise to three categories of bias in the economics literature: dropout

bias, substitution bias and attrition bias. The �rst two biases involve noncompliance with

treatment assignment while the last term deals with missing data. In the context of Project

STAR, dropout bias occurs if an individual assigned to the treatment group (small class) does

not comply with her assignment and attends a regular class (M = 1; S = 0). In total, 88.0%

of the subjects who were initially assigned to small classes and completed all four years of the

experiment attended small classes in all the years.10 Correspondingly substitution bias arises

if members of the control group transfer to small classes (M = 0; S = 1).11 Of those subjects

assigned to regular classes in kindergarten, only 83.3% comply with their assignment in all four

years of the experiment.

In the presence of noncompliance with treatment assignment, the standard experimental

impact which compares means of the outcome variable between individuals assigned to the

treatment and the control group is an estimate of the intention to treat (ITT). The ITT e¤ect

can be de�ned as dITT = _
AM=1 �

_
AM=0 (1)

where
_
AM=1and

_
AM=0 are the sample mean achievements of individuals assigned to small and

regular classes respectively. Thus, the researcher carries out an �as randomized� analysis in

place of an �as treated�analysis. The approach ensures that if randomization is violated, factors

associated with drop-out or substitution do not corrupt the interpretation of causal e¤ects. ITT

is appropriate if one is interested in estimating the overall e¤ects of treatment assignment. Since

education policies on class sizes are concerned with the actual experience of students in di¤erent

class sizes, the ITT estimates are not valid for cost bene�t analysis of policies that mandate

caps on class size for every student.

Standard IV analysis that makes use of initial random assignment as an instrument for

current class size recovers an alternative parameter that is referred to in the statistics literature

as the complier average causal e¤ect (CACE). Angrist, Imbens and Rubin (1996) list a series of

assumptions that if satis�ed, allow IV estimates to be interpreted as average treatment e¤ects
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for compliers.12 Complying individuals are those who would only receive the treatment when

assigned.13 The identi�cation of a group of compliers is not straightforward in general. The

CACE can be de�ned as dITT IV = _
A
c

M=1 �
_
A
c

M=0 (2)

where
_
A
c

M=1and
_

AcM0t refer to the sample mean potential achievement outcomes of complying

individuals if assigned to small and regular classes respectively.

The CACE estimate obtained using an IV approach implicitly re-scales the experimental

impact. Even with experimental data, non-experimental assumptions (see footnote 12) are

required to identify the CACE in the presence of drop-out bias or substitution bias. With

dropout, the CACE estimate is given as

\CACE1 =

_
AM=1 �

_
AM=0

Pr(St = 1jMt = 1)
(3)

The experimental impact is re-scaled by the sample proportion of compliers in the treatment

group and implicitly assumes that those who dropout received a zero impact from the interven-

tion. With both substitution and dropout the IV estimate recovers an alternative CACE given

as

\CACE2 =

_
AM=1 �

_
AM=0

Pr(St = 1jMt = 1)� Pr(St = 1jMt = 0)
(4)

which re-scales the experimental impact by the di¤erence between the sample proportion of

compliers in the treatment group and the sample proportion of non-compliers in the control

group. The estimator implicitly assumes that those who drop out and those who substitute in

received a zero impact from the intervention as the dropouts would never have attended a small

class and the substitutes would have attended a small class in the absence of the experiment.

While an intent-to-treat analysis is robust to the problem of students changing class types,

there still remains the problem of students being lost to follow-up. Attrition bias is a common

problem researchers face in longitudinal studies when subjects non-randomly leave the study

and the remaining sample for inference is no longer random but choice based. For example, only

48.77% of the kindergarten sample participated in all four years of the STAR experiment. The

ITT and CACE estimates presented above are not robust to attrition bias.14
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More formally, assume that we are interested in the conditional population density f(AtjXt)

but in practice we observe g(AtjXt; Lt = 0) since At is observed only if Lt = 0. Addi-

tional information is required to infer f(�) from g(�): Assuming that attrition occurs when

Lt+1 = 1fL�t+1 > 0g where L�t+1 is a latent index that is a function of observables (Xt; At)

and unobservable components. Only when attrition is completely random (i.e. Pr(Lt+1 =

0jAt; Xt) = Pr(Lt+1 = 0jXt) = Pr(Lt+1 = 0)) would traditional experimental analysis that

compares outcomes of the treatment and control groups recover unbiased parameter estimates.

Attrition may be due to selection on observables and / or selection on unobservables. Fitzger-

ald, Gottschalk and Mo¢ tt (1998) provide a econometric framework for the analysis of attrition

bias and describe speci�cation tests to detect and methods to adjust estimates in its presence.

Econometric solutions require one to determine the factors leading to non-random attrition.

Selection on observables is not the same as exogenous selection since selection can be made on

endogenous observables such as past academic performance (lagged dependent variables) that

are observed prior to attrition. If only selective attrition on observables is present, the attrition

probability is independent of the dependent variable (and hence unobserved factor), which im-

plies that Pr(Lt = 0jAt; Xt) = Pr(Lt = 0jXt): As such, estimates can be re-weighted to achieve

unbiased estimates and f(�) can be inferred from g(�).

To test for selection on observables, we examine whether individuals who subsequently leave

the STAR experiment are systematically di¤erent from those who remain in terms of initial be-

havioral relationships. We estimate the following contemporaneous speci�cation of an education

production function in kindergarten by subject area

Aij = �
0Xij + �

0
LLijXij + vj + "ij (5)

where Aij is the level of educational achievement for student i in school j , Xij is a vec-

tor of school, individual and family characteristics, Lij is an indicator for subsequent attrition

(Lij = Lit+s for s = 1:::T � 1), vj is included to capture unobserved school speci�c attributes

and �ijT captures unobserved factors. The vector �0L allows for both a simple intercept shift and

di¤erences in slope coe¢ cients for future attritors. Selection on observables is non-ignorable if
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this coe¢ cient vector is signi�cantly related to scaled test score outcomes at the point of en-

try (completion of kindergarten) conditional on the individuals characteristics and educational

inputs at that point of the survey.15

The results are presented in table 1 and Wald tests indicate that the �0L coe¢ cient vector is

signi�cantly di¤erent for attritors and non-attritors in all subject areas. The attrition indicator

is signi�cantly negatively related to test score performance in all three subject areas indicating

that the levels of performance for subsequent attritors is signi�cantly lower in kindergarten.

In all subject areas, the joint e¤ect of attrition on all student characteristics and class type

is signi�cantly di¤erent from zero. Students on free lunch status that left scored signi�cantly

lower than free lunch students who remained in the sample in mathematics only. Interestingly

female attritors out performed female non-attritors in kindergarten in all subject areas but

the magnitude is small. Finally, in both mathematics and word recognition attritors received

half the gain of reduced class sizes suggesting that non-attritors obtained the largest gains in

kindergarten which may bias future estimates of the class size e¤ect upwards. These results

provide strong evidence that selection on observables exists and is non-ignorable. Correcting for

selection on observables in the panel will reduce the amount of residual variation in the data

due to attrition and likely reduce the biases due to selection on unobservables.16

In a single period intervention the estimated intent to treat and CACE parameter is distorted

from a causal e¤ect unless the research accounts for the additional complications presented by

attrition which complicates the interpretation of past estimates from Project STAR. Moreover,

as we discuss in the next section it is important to treat the data as if it were from a multi-period

intervention.

2 Multi-Period Intervention

The STAR project occurred for students in kindergarten through grade three. Answers to many

hotly debated questions, such as when class size reductions are most e¤ective or whether small

classes provided any additional bene�ts in grades two and three, can be properly answered in a

multi-period intervention framework. For policy purposes, one may be interested in determining
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whether or not the bene�ts of small class attendance persist in subsequent grades or which

treatment sequence yields the largest bene�ts. In this context, the relevant parameters of interest

are the full sequence of dynamic average treatment on the treated parameters that we de�ne in

the next section.

We begin by considering a two period case with constant e¤ects, perfect compliance, no

attrition bias and no refreshment samples. Aij2 takes one of two possible values depending on

which treatment sequence [(Si2 = Si1 = M = 1) or (Si2 = Si1 = M = 0)] an individual was

assigned to. A standard economic model of individual achievement would postulate that both

current and lagged inputs a¤ect current achievement. Equation 6 is a linearized representation

of the cumulative education production function at period two

Aij2 = �
0
x2Xij2 + �

0
S2Si2 + �

0
x1Xij1 + �

0
S1Si1 + vj + "ij1 (6)

where Aij2 is the level of educational achievement for student i in school j in year 2, Xijt is a

vector of current school, individual and family characteristics in year t, vj is included to capture

unobserved school attributes and �ijt captures unobserved factors in year t. Consider estimation

of the following contemporaneous speci�cation of an education production function in period

two

Aij2 = 

0Xij2 + 


0
SSi2 + vj + wij2 (7)

where wij2 may include lagged inputs if they a¤ect current achievement. In this case, 
0S presents

an estimate of the cumulative e¤ect (�0S2 + �
0
S1) of being in a small class for two periods.

It is not possible to separately identify �0S2 and �
0
S1 by estimating equation 6 since Si2 = Si1

(perfectly colinear). With annual estimates of equation 7, one could examine the evolution of

the cumulative e¤ect, �0S . With the exception of the initial year of randomization one would not

be able to estimate the e¤ect of being in a small class in that particular year without invoking

strong assumptions. These assumptions are similar to those that underlie education production

function studies (value added models) in that one must assume how lagged inputs a¤ect future

achievement. For instance, if the impacts are assumed to depreciate at a constant rate (as

in a linear growth or gains speci�cation in the education production function literature), it is
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straightforward using repeated substitution to recover estimates of the e¤ect of being in a small

class in a particular year.

If compliance was not perfect then individual achievement outcomes in period 2 would take

one of four possible sequences [(Si2 = 1; Si1 = 1); (Si2 = 1; Si1 = 0); (Si2 = 0; Si1 = 1); (Si2 =

0; Si1 = 0)]: While this may break up the collinearity problem, unbiased estimates would be

obtained only if individuals switched class type exogenously. If these transitions were due

to observed test performance, individual characteristics (observed or unobserved), unobserved

parental education tastes, corresponding econometric solutions are required to address these

selection issues. Further, determining the causal e¤ect of class size for each individual requires

the calculation of three counterfactuals as the e¤ect of being in a small class in the �rst year

(Si1) on second period achievement (Aij2) may interact in unknown ways with second year class

assignment (Si2). For example, class size proponents argue that teaching strategies di¤er in

small versus large classes (i.e. �on-task events�versus �institutional events�(e.g., disciplinary

or organizational)). The e¤ect of the current class may di¤er due to past learning experiences

as well as incoming knowledge or foundation.

In contrast to claims in Finn et al. (2001) that �with few exceptions students were kept

in the same class grouping throughout the years they participated in the experiment�, simple

summary statistics indicate that 15.20% of the students who participated in the experiment

all four years switched class type at least once.17 Further, fewer than half of the kindergarten

students participated in all four years of the experiment (3085 out of 6325 students). The full

set of transitions for the cohort of students who participated in Project STAR in kindergarten

is shown in �gure 1. Notice that excluding attrition in grade two, there is support for all eight

sequences and fourteen of the sixteen possible sequences in grade three. Accounting for this

large number of transitions further motivates treating the data as a multi-period intervention.

3 Empirical Approach

Our approach builds on Miquel (2003), which demonstrates that a conditional di¤erence-in-

di¤erences approach can nonparametrically identify the causal e¤ects of sequences of inter-
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ventions.18 We consider a sequential linear di¤erence in di¤erence estimator which provides

estimates of the full sequence of dynamic average treatment e¤ects for the treated. In a single

period intervention, a treatment e¤ect for the treated estimates the average gain from treat-

ment from those that select into treatment and is the relevant parameter for policies that are

voluntary. Dynamic versions compare alternative sequences as individuals determine at the end

of each grade whether they wish to alter their participation sequence and are de�ned below.

For ease of exposition we consider a two period model and temporarily ignore the role of

attrition and school e¤ects. An individual outcome at the conclusion of the second period is

given by

Ai2 = Si1Si2A
11
i + (1� Si1)Si2A01i + Si1(1� Si2)A10i + (1� Si1)(1� Si2)A00i (8)

where A11i indicates participation in small classes in both periods, A10i indicates small class

participation only in the �rst period, etc. It is clear that an individual who participated in

both periods (A11i ) has three potential counterfactual sequences to estimate (A
01
i ; A

10
i and A00i )

assuming the four paths are all the sequences an individual can take.

As posited by a standard economic model we allow cognitive achievement to be viewed as

a cumulative process. We linearize the production function at each time period allowing us to

express an individual�s achievement outcome in period one as

Ai1 = �i + �
0
1Xi1 + �

0
S1Si1 + "i1 (9)

where �i is a individual �xed e¤ect. Similarly in period two achievement is given as

Ai2 = �i + �
0
2Xi2 + �

0
1Xi1 + �

0
S2Si2 + �

0
S1Si1 + �

0
S12Si2Si1 + t2 + "i2 (10)

and t2 re�ects common period two e¤ects. First di¤erencing the achievement equations generates

the following system of two equations

Ai2 �Ai1 = �02Xi2 + �
0
S2Si2 + �

0
S12Si2Si1 + t2 + (�1 � �1)0Xi1 + (�S1 � �S1)0Si1 + "�i2(11)

Ai1 = �01Xi1 + �
0
S1Si1 + "

�
i1

where "�i2 = "i2� "i1 and "�i1 = �i+ "i1: Consistent estimates of the structural parameters of the

education production function in equations 9 and 10 are obtained from this system of equations
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via full information maximum likelihood provided that the o¤-diagonal elements of the variance-

covariance matrix are restricted to equal zero to satisfy the rank condition for identi�cation.19

Consistent structural estimates of �0S1 and of the teacher characteristics in the Xi1 matrix are

obtained since subjects and teachers were randomized between class types in kindergarten and

to the best of our knowledge compliance issues did not arise until the following year. A subset

of the structural parameter estimates for the Xi1 matrix may not be identi�ed since they may

be correlated with "�i1:
20

This implementation allows the e¤ects of observed inputs and treatment receipt on achieve-

ment levels to vary at di¤erent grade levels. This is also more �exible than other commonly used

empirical education production function speci�cations in that it does not restrict the deprecia-

tion rate to be the same across all inputs in the production process. However, by assumption

the e¤ect of unobserved inputs are restricted to be constant between successive grades.

The full sequence of dynamic e¤ects can be estimated as follows

� (1;1)(0;0)(1; 1) = �0S1 + �
0
S2 + �

0
S12 (12)

� (1;1)(1;0)(1; 1) = �0S2 + �
0
S12

� (0;1)(0;0)(0; 1) = �0S2

where � (x;y)(v;w)(x; y) presents the dynamic average treatment e¤ect for the treated for an in-

dividual who participated in program x in period 1 and program y in period 2 and compares

her actual sequence (x; y) with potential sequence (v; w). The parameters presented in (12) are

of policy interest. For example, � (1;1)(0;0)(1; 1) provides an estimate of the average cumulative

dynamic treatment e¤ect for individuals who received treatment in both periods, � (1;1)(1;0)(1; 1)

provides an estimate of the e¤ect of receiving treatment in the second year for individuals who

received treatment in both periods, and � (0;1)(0;0)(0; 1) is the e¤ect of receiving treatment in the

second period for individuals who received treatment only in period two.

It is straightforward to extend the above two period regression example to T periods. Miquel

(2003) proves that the full sequence of causal e¤ects are estimated under the straightforward

assumptions of common trend, no pretreatment e¤ects and a common support condition.21 Intu-

itively, the idea builds upon classical di¤erence in di¤erence analysis which uses pre-intervention
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data to remove common trends between the treated and controls. In this setting, data between

periods of the interventions is used in addition to remove common trends between individuals

on alternative sequences.

While concerns regarding substitution bias and dropout bias can also be addressed through

the individual �xed e¤ect under the plausible assumption that substitution or dropout re�ect

some time invariant unobservables such as parental concern over their child�s development over

this short time period, attrition bias may contaminate the results.22 As shown in the preced-

ing subsection it is possible to reweight the data to account for attrition due to selection on

observables. We consider estimating the following attrition logit

Pr(Lit+1 = 0jAit; Xit) = 1f�0Zit + wit � 0) (13)

where t is the period being studied and Zt is a matrix of variables that are observed conditional

on Lt = 0 and may include lagged dependent variables; At�s. The predicted probability of

staying in the sample (
f
pit) are then constructed

f
pit = Fw(�̂

0Zit) (14)

where Fw is the logistic cumulative distribution function.

Table 3 presents results from a series of logistic regressions for the determinants of remaining

in the STAR experiment. The sample for each time period is restricted to units that were in

the sample in the previous period. Notice that subjects who scored higher on their most recent

mathematics examination are more likely to remain in the sample at each grade level. The

signi�cance of earlier test score performance in the di¤erent subject areas further demonstrates

that attrition due to observables is not ignorable.

Returning to our two period example, we now assume a random sample in period one and

non-random attrition due to observables at the end of period one after removing the permanent

unobservable factors a¤ecting attrition. We calculate the probability of remaining in the sample

for period two
f
pi1; and following Wooldridge (2002) use it to reweight observations in estimating
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equation (11) as follows

Ai2 �Ai1
f
pi1

=
�02Xi2 + (�1 � �1)0Xi1 + �0S2Si2 + �0S12Si2Si1 + (�S1��S1)0Si1+t2+"�i2

f
pi1

(15)

Ai1 = �01Xi1 + �
0
S1Si1 + "i1

This method provides consistent
p
N asymptotic normal estimates. However, the asymptotic

variance is conservative since it ignores the fact that we are weighting on the estimated and not

the actual
f
pi1 :

23

We estimate equation 15 for grade one as well as corresponding versions for grade two and

grade three with the kindergarten sample. Attrition is an absorbing state and the weights used

in estimation for grades two and three (
f
r
2

i and
f
r
3

i ) are simply the product of all past estimated

probabilities

f
r
2

i =
f
pi2 �

f
pi1 (16)

f
r
3

i =
f
pi3 �

f
pi2 �

f
pi1

where
f
pis are estimated probabilities for staying in the sample for period s from a logit regression

using all subjects in the sample at s�1.24 Note, it is trivial to add school e¤ects to the estimating

equations, however, identi�cation of school e¤ects will only come from the limited number of

school switchers.

Finally, in the above analysis we treat attrition as leaving the sample permanently and

assume other missing data problems are at random. That is if a student only has reading and

mathematics scores in the dataset we assume that she randomly missed the word recognition

test. Selective test completion would be simple to correct for in this setting replacing the

Lit+1 indicator with a subject speci�c missing data indicator Lsit+1 and following the same

estimation strategy assuming that test completion in kindergarten is random. The advantage

of this approach is that we can use more observations per subject area. We implement this

approach as a robustness check on our earlier results.
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4 Data

In our analysis, we include only the sample of students who participated in the STAR experiment

starting in kindergarten. Pooling the kindergarten sample with the refreshment samples (stu-

dents who joined the experiment after kindergarten) rests on two assumptions. First, individuals

leave the sample in a random manner. Second, subsequent incoming groups are conditionally

randomly assigned (based on seat availability/capacity constraint) within each school. We have

shown in section 2.1 the selective attrition pattern. The second claim can be examined through

simple regressions of the random assignment indicator (RAijT ) on individual characteristics and

school indicators as follows

RAijT = 

0XijT + vj + eijT (17)

for each group of students entering the experiment in year T: The results are presented in the

top panel of table 2.

The results clearly demonstrate that incoming students were not conditionally randomly

assigned in grades one and three. The incoming students in grades one and three as well as the

full samples (bottom panel) in grades one, two and three have a signi�cantly higher percentage

of students on free lunch status in the control groups. Since the incoming subjects are not

conditionally randomly assigned in grade one and grade three this invalidates the use of initial

random assignment as an instrument for these cohorts of students.25

Our outcome measures are total scaled scores from the Reading, Mathematics, Word Recog-

nition sections of the Stanford Achievement test. The Stanford Achievement Test is a norm-

referenced multiple choice test designed to measure how well a student performs in relation to

a particular group, such as a sample of students from across the nation. The scaled scores are

calculated from the actual number of items correct adjusting for the di¢ culty level of the ques-

tion to a single scoring system across all grades.26 Ding and Lehrer (2003) demonstrate that

transformations of scaled scores to other outcome measures such as percentile scores or standard

scores either reduce the information contained in the outcome data or require assumptions that

are likely to be violated by the underlying data. We treat each test as a separate outcome

measure because subjects are not comparable and one may postulate that small classes may be
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more e¤ective in some subject areas such as mathematics where classroom instruction is used

as opposed to group instruction for reading.

5 Results: Dynamic Treatment E¤ects

Our structural estimates of the causal e¤ects of reduced class size are provided in table 4. For

example, Si1 captures the unique regression adjusted contribution of attending a small class in

grade one on achievement at di¤erent points in time. Thus alternative sequences at a given time

(i:e: SiKSi1Si2 versus SiKSi1(1�Si2)) are restricted to receiving the same common e¤ect of Si1.

Several interesting patterns emerge from these estimates. In kindergarten and grade one

small class attendance ((SiK) and (Si1)) has a positive and signi�cant e¤ect in all subjects

areas. However, there does not exist additional (nonlinear) bene�ts from attending small classes

in both years (SiKSi1) in grade one. Moreover, Ding and Lehrer (2003) �nd that the positive

e¤ect of small class in kindergarten is driven by 25% of the schools in the STAR sample, which

show positive e¤ects of small class in all three subjects; while 50% of the schools in kindergarten

experienced either signi�cantly negative or statistically insigni�cant small class e¤ects in all

three subjects.

After grade one, no signi�cantly positive e¤ect of small class exists (P (t) � 10%) except

for grade two math. In the higher grades nearly all of the estimated structural parameters are

statistically insigni�cant. Thus, the structural estimates do not lend much support for positive

e¤ect of small class attendance beyond grade one. In fact, the average small class e¤ect in grade

three (Si3) is signi�cantly (� 10%) negatively related to contemporaneous achievement in all

three subject areas.

Estimates of the dynamic average treatment e¤ect for the treated are presented in table 5

and are calculated with the structural parameter estimates discussed above using the formulas

presented in equations 12. A maximum of 1, 6, 28, and 120 e¤ects can be calculated for each

grade. However, due to lack of support of some treatment paths only 78 e¤ects can be calculated

for grade 3. We present evidence comparing sequences with the largest number of observations.

These treatment e¤ects can also be interpreted as policy simulations explaining how much one
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would increase achievement by switching sequences conditional on your full history of student,

family and teacher characteristics.

In grade one, the set of dynamic treatment e¤ects suggest that the largest gains in perfor-

mance in all subject areas occur for students who attended small classes in either kindergarten

or in grade one (� (0;1)(0;0)(0; 1) or � (1;0)(0;0)(1; 0)). Bene�ts from attending small classes in

both kindergarten and grade one versus attendance in either but not for both of these years

(� (1;1)(0;1)(1; 1) or � (1;1)(1;0)(1; 1)) are statistically insigni�cant. While the economic signi�cance

of attending a small class in grade one alone is slightly larger in all subject areas than attendance

in kindergarten alone (i.e. � (0;1)(0;0)(0; 1) > � (1;0)(0;0)(1; 0)), there does not exist a signi�cant

di¤erence between either sequence (� (0;1)(1;0)(0; 1)). From a policy perspective the results sup-

port class size reductions, but only a single dose of small class treatment instead of continuing

treatment.

These estimates provide a more complete picture of the structure and source of the gains

in small class reductions. In kindergarten there was a signi�cant e¤ect driven by a subset of

schools. Following kindergarten there are positive e¤ects in grade one for students who made a

transition between class types. Both students who substituted into small classes and dropped out

of small classes scored signi�cantly lower than their grade one classmates in each kindergarten

subject27 and received a signi�cantly greater improvement in grade one achievement compared

to their grade one classmates.28 It is possible that teachers were targeting the weaker students

in the class. Further, these growth rates were signi�cantly larger than those achieved by their

kindergarten classmates who did not switch in grade one.29 These tests are possible since scaled

scores are developmental and can be used to measure growth across grades since within the same

test subject area. The Stanford Achievement Tests use a continuous scale from the lowest to

the highest grade levels of the tests. Thus a one point change from 50 to 51 is equivalent to a

one point change from 90 to 91.30

The pattern in higher grades presents several additional insights into the e¤ectiveness of re-

duced class size. The dynamic bene�ts from continuous treatment versus never attending small

classes (� (1;1;1)(0;0;0)(1; 1; 1) and � (1;1;1;1)(0;0;0;0)(1; 1; 1; 1)) become both statistically and econom-
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ically insigni�cant in all subject areas. This result contrasts sharply with prior work (Finn et al.,

2001) that �nd the bene�ts of small classes persisting in later grade and increasing the longer an

individual stayed in small classes. Moreover, the economic signi�cance of these dynamic bene�ts

from continuous treatment are smaller in magnitude than � (1;1)(0;0)(1; 1): Together, this suggests

a erosion of the early gains in later grades. The raw data supports these �ndings as simple t-tests

between these two groups of students (always versus never attended small classes) indicate that

the growth in performance in each subject area was signi�cantly higher for students who never

attended small classes in higher grades.31 Multiple regression results further demonstrate that

students who never attended small classes experienced larger growth in mathematics both from

grade one to grade two and grade two to grade three. These students also had greater gains in

reading from grade one to grade two.32

Krueger (1999) reports that students received large bene�ts the �rst year they spent in a

small class. Our results support this �nding in all subject areas in grade one and in grade

two mathematics. Grade two reading and word recognition have insigni�cantly small e¤ects

(� (0;0;1)(0;0;0)(0; 0; 1)). In grade three, �rst time entrants (� (0;0;0;1)(0;0;0;0)(0; 0; 0; 1)) had signi�-

cantly negative returns from small class attendance in all subject areas.

In grade one, approximately 250 students substituted into the treatment and received pos-

itive bene�ts. Continuing along this path and remaining in small classes in higher grades did

not provide any additional bene�ts as both � (0;1;1)(0;0;0)(0; 1; 1) and � (0;1;1;1)(0;0;0;0)(0; 1; 1; 1) are

statistically insigni�cant. Further, their economic signi�cance is smaller than � (0;1)(0;0)(0; 1).

The dynamic treatment e¤ects for the treated for students who switched class types for the

�rst time motivated a closer examination of their behavior and changes in performance. We

�nd that switching to small classes yielded bene�ts to students who had signi�cantly lower past

performance in math. We compared students who dropped out of or substituted into small

classes with their new classmates based on prior performance on examinations by subject area.

In all subject areas and grades, students who joined small classes scored signi�cantly lower than

their new classmates with the exception of reading for those who substituted in grade two.

Yet, only in mathematics did these students receive signi�cantly greater growth in performance

20



between grades for each period.

Coleman (1992) suggests that the focus of US education is on the bottom of the distribution

and it is much easier for teachers to identify weaker students in mathematics than other subject

areas. To investigate this claim which may explain what we have found in Project STAR, we

identi�ed the �ve students in each grade one class who had the weakest subject area performance

in kindergarten. We included an indicator variable for being one of these �weak� students in

the classroom in regression equations to explain growth in performance controlling for teacher

indicators and the full history of teacher, family and student characteristics. We found that

being a �weak�student in the classroom in any subject area led to signi�cantly higher growth in

mathematics. Further, being a �weak�student in any subject area signi�cantly reduced growth

in reading.33 At all grade levels we found that being one of the �weakest" students in the

classroom in mathematics and word recognition led to signi�cantly larger gains in performance

within the classroom in the respective subject areas.

The bene�ts occurring to students who made transitions between class types following kinder-

garten runs counter to the hypothesis that students bene�t from environmental stability. We

conduct a more detailed examination of small classes in grade one. In each grade one small

class, we identi�ed members of the largest subgroup of students who were taught by the same

teacher in kindergarten. We then ran regressions of growth in performance by subject area on

this indicator controlling for school indicators and the full history of student and teacher charac-

teristics. Members of this largest subgroup had signi�cantly smaller gains than their classmates

in mathematics (coe¤.=-6.129, s.e. 2.714) and word recognition (coe¤.=-4.524, s.e. 3.008) and

no signi�cant di¤erences in readings. Multiple regressions using the number of your classmates

who were taught by the your kindergarten teacher (instead of a simple indicator variable) also

�nd signi�cantly smaller gains in mathematics (coe¤.=-1.797, s.e. 0.572) and word recognition

(coe¤.=-1.179, s.e. 0.572) for each additional former classmate. These results do not support

arguments for environmental stability.34 Neither do they directly contradict the stability hy-

pothesis since peer groups (classmates) were no longer exogenously formed after kindergarten.

An additional e¤ect of these transitions is they substantially increased the variation of back-
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ground subject knowledge within small classrooms in higher grades. The variation in past

performance was twice as large in grade two and three than grade one in reading and word

recognition. In higher grades, small classes had signi�cantly more variation in past performance

in mathematics and reading than regular classes.35 Faced with relatively less variation in the

incoming knowledge of students, regressions indicate students in regular classes were able to

achieve signi�cantly larger gains in mathematics and reading between grades one and two and

in mathematics from grade two to three.36 As regular classes gained more, the dynamic bene�ts

of small class attendance vanished. There were no signi�cant di¤erences in the variation of

prior performance on word recognition tests between class types in higher grades nor signi�cant

di¤erences in gains in performance on word recognition examinations between class types in

grades two and three. While the patterns exhibited in higher grade may be explained by the

existence of a trade-o¤ between variation in incoming student performance and class type, more

investigation is needed and the underlying economic model must be expanded to include peer

e¤ects to directly test this hypothesis.37

Overall, the patterns of the results does not provide systematic evidence of positive small

class size e¤ect. It is interesting to see when small classes work and when it fails by comparing

growth rates in performances between alternative sequences. Yet, the evidence clearly �nds that

small classes do not work unconditionally.

A. Speci�cation Tests

This studies di¤ers from past research on Project STAR not solely through the focus of

treating the experiment as a multi-period intervention but also in accounting for both attrition

due to observables and the possibility that other forms of non-compliance are due to unobserv-

ables. The importance of accounting for attrition due to observables is examined using a test

proposed by DuMouchel and Duncan (1983). The test evaluates the signi�cance of the impact of

sampling weights on unweighted estimation results by including �rst order interactions between

the covariates and the weighting variable. Weighted and unweighted estimates are signi�cantly

di¤erent if the F test on these additional covariates is signi�cant. In the absence of sample se-

lection bias, unweighted estimates are preferred since they are more e¢ cient than the weighted
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estimates. Test results are presented in table 6 and demonstrate that weighted estimates are

preferred in all subject areas and grade levels at conventional levels in reading and mathematics

and below the 20% level in word recognition.

Assuming there does not exist selection on unobservables permits direct estimation of the

structural equations 9 and 10. This approach is implicitly undertaken in past studies using STAR

data (even those that include school �xed e¤ects) since �i is assumed to be both uncorrelated

with the regressors and equal to zero.38 A likelihood ratio test can be conducted to test whether

the individual intercept e¤ects can be restricted to equal zero. Under the Null, the restriction is

valid and the e¢ cient estimator is least squares estimation without di¤erencing. Table 7 present

results of this speci�cation test. In all subject areas and grades the Null hypothesis is strongly

rejected supporting the presence of unobserved heterogeneity and the estimation of equation

11. Finally, it is worth noting that DuMouchel and Duncan (1983) tests con�rm that weighted

estimates are preferred for these direct estimates of the structural equations further indication

that ignoring selective attrition in past studies leads to inconsistent parameter estimates.39

B. Robustness Checks

To check the robustness of our structural parameter estimates, we estimate a simpler attrition

model by subject area with only the most recent lagged test score is used as an explanatory

variable to predict whether the subject completes the examination in the next period. This

has the advantage of substantially increasing the sample for analysis by over one thousand

observations per subject area. In each attrition model, the lagged dependent variable entered

signi�cantly demonstrating that selection on observables is not ignorable. We present weighted

structural parameter estimates in Table 8.40

There are a few minor di¤erences between the samples in the structural parameters. For

example, in grade one, the combined e¤ect of being in treatment both years is signi�cantly neg-

ative in both mathematics and word recognition. The larger sample also permits identi�cation

of additional parameters in grade three such as Si1Si2Si3: Our focus is on the impact of changes

in these estimates on the dynamic treatment e¤ects. We �nd few changes in the statistical sig-

ni�cance of the dynamic treatment e¤ects presented in table 5. In higher grades, we �nd the the
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dynamic bene�ts of substituting into a small class in grade two become signi�cantly smaller in

mathematics. Further, substituting in to small classes in grade three (� (0;0;0;1)(0;0;0;0)(0; 0; 0; 1))

becomes insigni�cant in all subject areas.

In grade one, the results continue to lend increased support to only a single dose of class size

reductions. The economic signi�cance of kindergarten increases and � (0;1)(0;0)(0; 1)< � (1;0)(0;0)(1; 0):

However, (� (0;1)(1;0)(0; 1)) remains statistically insigni�cant. The trade-o¤ between small class

attendance in kindergarten versus grade one is settled when examining higher grades. Kinder-

garten small class attendance (SiK) is positively related to performance in grade two reading and

grade three reading and word recognition examinations. Attendance in small classes in grade

one (Si1) is either negatively related or unrelated to performance in grades two and three.

Overall, these results suggest that the bene�ts of attending a small class early may extend

only in reading and word recognition. Following grade one, receiving additional treatment does

not accrue any additional bene�ts and it remains a subject for future research to pin point why

the bene�ts of small class instruction do not grow and actually declined in the STAR study.

Further, it remains a subject of further study to understand why the bene�ts of early small

class attendance do not persist in mathematics. We �nd evidence that students with the lowest

entry scores gained the most within the classroom in mathematics and it remains open the exact

mechanism that led to this result. In conclusion, the results suggest from a policy perspective

that the single dose of small class treatment should be received in kindergarten to yield persistent

positive bene�ts in reading at all grade levels and bene�ts in word recognition in kindergarten

and grades one and three.

6 Conclusion

This paper considers the analysis of data from randomized trials which o¤er a sequence of

interventions and su¤er from a variety of problems in implementation. In this setting, neither

traditional program evaluation estimators or non-experimental estimators recover parameters of

interest to policy makers, particularly if there is non-ignorable selective attrition. Our approach

is applied to the highly in�uential randomized class size study, Project STAR. We discuss how
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a researcher could estimate the full sequence of dynamic treatment e¤ects for the treated using

a sequential di¤erence in di¤erence strategy that accounts for attrition due to observables using

inverse probability weighting. These estimates allow us to recover the structural parameters of

the small class e¤ect in the underlying education production function and construct dynamic

average treatment e¤ects.

The evidence presented in this study (and our companion paper) presents a more complete

picture of the e¤ectiveness of reduced class sizes. Past estimates generally treat the data as if

it were from a single period intervention, ignore the in�uences of past educational inputs and

recover parameters not of interest to policy makers. Further, by ignoring selective attrition

on observables past estimates are likely to be upward biased since attritors received half the

bene�ts of reduced class size in kindergarten. Past estimates generally treat other forms of non-

compliance as random whereas we �nd strong evidence for selection due to individual unobserved

heterogeneity. Finally, estimates of conditional random assignment demonstrate that analysis

with any sample above the kindergarten year may require further bias corrections.

We �nd that small class attendance is most e¤ective in kindergarten. The bene�ts of attend-

ing a small class in early years does not have lasting impacts in mathematics and some lasting

impact in reading and word recognition. This result is surprising, since in practice, teachers

generally divide the full class of students in to small groups for reading whereas they teach the

full class mathematics. The dynamic treatment e¤ects indicate that there were no signi�cant

bene�ts of receiving instruction in small classes in the current and all prior years of the ex-

periment as compared to never being in a small class in mathematics and above grade two in

reading and word recognition. Finally, we present evidence that teachers are able to identify

weak students in mathematics and boost their achievement relative to their classmates and in

higher grades a trade-o¤ between variation in background knowledge and class size may account

for decreasing small class achievement gap.

While this paper presents compelling new evidence to one of the hotly debated education

policy areas several methodological limitations remain. First, for identi�cation we assume that

the variance covariance matrix is diagonal and that there is no serial correlation after controlling
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for person-speci�c �xed e¤ects and grade e¤ects. If this assumption is valid, more e¢ cient

estimates can be obtained by exploiting the zero covariance restrictions via nonlinear GMM

as proposed by Hausman, Newey and Taylor (1987). However, serial correlation would exist if

unobserved factors a¤ect achievement in a di¤erent manner each period. Ding and Lehrer (2003)

propose a simple speci�cation test based on an instrumental variables procedure to test if the

growth rate of unobserved factors (i.e. innate ability) is constant between periods. If the growth

rate is not equal to one, the achievement equations could be quasi-di¤erenced and instrumental

variables regression techniques used to obtain consistent estimates of the structural parameters.

Third, this study considers a weighting strategy rather than an imputation method to deal with

attrition or selective test completion. To the best of our knowledge studies have yet to examine

which of these approaches performs better with panels that have a triangular structure. Fourth,

translating the bene�ts of alternative sequences of small classes to later academic and labor

market outcomes is of importance for policy purposes. Krueger and Whitmore (2001) present

strong evidence that being initially assigned to a small class increased the likelihood that a

subject took the SAT or ACT college entrance examination using the full sample. Fifth, a more

complete understanding of the trade-o¤ between increased student variability, class size and

teaching methods is needed to see if this hypothesis accounts for the reduced class size bene�ts

in higher grades and larger bene�ts to low achieving students in mathematics. Data on teaching

practices has been collected by the original STAR researchers but has yet to be made available

to the general research community. Answers to these and other questions present an agenda for

future research.

26



Notes

1Comprehensive surveys of recent developments in the economics literature can be found in

Imbens and Rubin (1997) and Heckman, LaLonde and Smith (2001). See Yau and Little (2001)

and Frangakaris and Rubin (2002) for developments in biostatistics and statistics.

2The original investigation on treatment e¤ects explicitly in a dynamic setting can be traced

to Robins (1986). More recent developments in epidemiology and biostatistics can be found in

Robins, Greenwald and Hu (1999). In these papers, subjects are required to be re�randomized

each period to identify the counterfactual outcomes.

3See Finn et al., 2001 and the references within for an updated list of STAR papers. The

United States Congress set aside $1.3 billion for class-size reduction in 2000-01, while individual

states spend additional dollars. California enacted legislation in 1996 that reduced K-3 class

sizes by roughly ten students per class at an annual cost of over $1 billion; the cost in 2002 was

$1.6 billion. Minnesota and Nevada�s proposed budget reduction recommend for $237 million

and $80 million respectively. In Florida, estimates have shown the class-size initiative could

cost the state as much as $27.5 billion through 2010. The positive results have in�uenced

education policies in other countries such as Canada, where in 1997 the Education Improvement

Commission in Ontario argued that in order to achieve the modest gains that were witnessed

in Project STAR funding would have to be increased by 57%. The Ontario government passed

the Education Quality Improvement Act in 1997 that placed a maximum on average class sizes.

The government provided school boards with $1.2 billion over three years to reduce class sizes.

In 2001, Quebec began spending $137 million annually to fund a four year class size reduction

program. Other provinces including British Colombia and Alberta have similar programs.

4In his analysis, Krueger (1999) presents instrumental variable estimates to correct for biases

related to deviations from assigned class type. Nye Hedges and Konstanioiulos (1999) show that

the attrition patterns were similar across small and large classes. Ding and Lehrer (2003) �nd

that these attrition patterns by class type di¤er by school type. Speci�cally, students initially

assigned to small classes were signi�cantly less likely to leave the sample from schools where

class size reductions were bene�cial. About 25% of the sample schools in Kindergarten saw
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their small classes perform better academically than their regular classes, while 50% of the

schools saw things the other way around.

5Without these assumptions which are detailed in footnote 12, the IV estimator has no

interpretation as a causal e¤ect.

6Our use of �complier�here follows Angrist, Imbens and Rubin (1995), which de�nes com-

plying individuals to be those who would only receive the treatment when assigned.

7Frangakis and Rubin (1999) demonstrates that neither standard ITT analyses (i.e. analyses

that ignores the discrepancy between assigned treatment and actual treatment) or standard IV

analyses (i.e. analyses that ignores the interaction between treatment and attrition) will obtain

valid estimates of the ITT and LATE respectively.

8See Heckman, LaLonde and Smith (2001) for a comprehensive overview of the economics and

econometrics of program evaluation. Detailed discussions of dropout bias, substitution bias and

attrition bias can be found in Heckman Smith and Taber (1999), Heckman, Hohmann Smith and

Khoo (2001) and in a special issue of The Journal of Human Resources Spring 1998 respectively.

9Students were added to the sample in later years because either kindergarten was not manda-

tory, they had previously failed their grade and had to repeat it, switched from a private school

or recently moved to the school district that contained a participating school.

10Of the 12% who dropped out, slightly more than half (68 students) were moved to reg-

ular classes in grade 1 after being termed incompatible (Finn and Achilles (1990)) with their

classmates in Kindergarten. 18 of those students returned to small classes after grade 1.

11Parental actions would result in substitution bias. It would also occur if members of the

control group �nd a close substitutes for the experimental treatment through the use of services

such as private tutoring.

12The assumptions inlude random assignment of the instrument, strong monotonicity of the

instrument (i.e. instrument a¤ects probability of treatment receipt in only one direction), in-

strument a¤ects outcomes only through the endogenous teatment regressor (i.e. exclusion re-

striction) and the stable unit value treatment assumption which posits that there are no general

equilibrium e¤ects. Without these assumptions, the IV estimator is simply the ratio of intention-
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to-treat estimators with no interpretation as an average causal e¤ect.

13In other words, these individuals were induced to switch classes by the instrument (complied

with initial assignment). This parameter is also referred to as a local average treatment e¤ect

(LATE). Since di¤erent instruments exploit di¤erent sources of variation in the data, the use of

alternative instruments result in di¤erent LATE parameters.

14The majority of the literature that has examined the STAR data for issues related to non-

compliance considers attrition patterns between class types. Past studies have presented re-

sults from simple t-tests indicating that there are signi�cant di¤erences between attritors and

non-attritors in critical variables. In contrast, we consider regression based tests as a simple

comparision of means between subsamples of those lost to follow up and those who remained

in the STAR experiment, may be misleading regarding the extent of signi�cant association of

these characteristics with sample attrition once the full set of educational inputs are controlled.

15This test was originally developed in Becketti, Gould, Lillard and Welch (1988). Fitzgerald

et al. (1998) demonstrate that this test is be a simply the inverse of examining whether past

academic performance signi�cantly a¤ects the probability of attrition. Note, in this paper we

subsequently estimate attrition logits to create weights to account for non-compliance. As shown

in table 3, past academic performance is also signi�cantly related to attrition further indicating

that selection on observables is not ignorable.

16This occurs if the biases due to observables did not previously o¤set the biases due to

unobservables. We are unable to directly or indirectly test for selection on unobservables as this

requires an auxillary data source or a rich set of instruments. In our empirical approach we

account for the possibility that attrition is due to unobserved factors.

17Our comparision is small classes versus regular or regular with aide classes. As many schools

contained multiple classes of the same class type there is likely to be even more transitions

between classes of the same class type as well as switches between regular classes with and

without teacher aides. Note that this pooling was also undertaken in Krueger and Whitmore

(2001) and Finn, Gerber, Achilles and Boyd-Zaharias (2001) since the results are not signi�cantly

di¤erent between these two groups.
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18Miquel (2002) proves that instrumental variable strategies are unable to identify the full set

of dynamic treatment e¤ects.

19Note it is possible to exploit cross-equation restrictions by accounting for the error-component

structure of the residual but requires the assumption that �i is uncorrelated with the regressors.

We discuss extensions in the concluding section of the paper.

20Since outcome data prior to kindergarten was not collected by the STAR research team

alternative approaches that explicitly allow for pre-kindergarten inputs are not possible and

prevent obtaining consistent estimates of the non teacher characteristic elements of Xi1 matrix.

21The common support assumption ensures that there are comparable individuals in each of

the counterfactual sequence. The latter assumptions a¤ect conditional expectations and are

taken for a full sequnce. In a one period case, the common trend assumption assumes that the

sole di¤erence before and after is due to treatment across groups as in the absence of treatment

both groups would have in expectation similar gains in academic performance. Finally, the

pretreatment assumption is that there is no e¤ect of the treatment on outcomes at any point in

time prior to actual participation. The extension to multi-period is not complex as described in

Miquel (2003).

22Note that the individual �xed e¤ect can also account for attrition due to selection on un-

observables provided permanent unobserved heterogeniety is the driving force. Thus, the term

captures both initial achievement and parental concern that is assumed �xed between two con-

secutive grades.

23The asymptotic variance matrix that adjusts for �rst stages estimates is smaller. See

Wooldridge (2002) for details and a discussion of alternative estimation strategies.

24The assumption that attrition is an absorbing state holds in the STAR sample used in our

analysis and allows the covariates used to estimate the selection probabilities to increase in

richness over time. See Wooldridge (2002) for a discussion.

25A linear probability model is used to assess conditional random assignment in Krueger and

Whitmore (2001) for the full sample of incoming students with year of entry indicators. This

approach simply weights the data across grades and schools over three times as much weight
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on the kindergarten sample than the grade one sample. Note the statistical signi�gance of the

results does not change if a logit was estimated in place of a linear probability model. We did not

consider checking whether extrinsic measures of teacher quality were randomly assigned since

they are known to have minimal correlation with actual teacher quality.

26The raw score is simply the number of correct responses a student gives to test items. Total

percent scores divide the raw score by the total number of items on the test. Raw scores are

converted to scaled scores by use of a psychometric technique called a Rasch model process.

The Rasch model developed by George Rasch in 1960, is a one parameter logistic model that

examines how performance relates to knowledge as measured by items on a test. Intuitively

the idea is that the probability that an exam taker of a certain ability level answers a question

correctly is based solely on the di¢ culty level of the item. The estimated coe¢ cient is on the

ability continuum where the probability of a correct response is 50%.

27These results are from within classroom regressions controlling for grade one student, family

and teacher characteristics.

28These results are from within classroom regressions controlling for kindergarten and grade

one student and teacher characteristics.

29It is worth noting that those students who substituted into small classes in grade one scored

signi�cantly higher than their classmates on kindergarten reading and word recognition.

30Other test score measures such as percentile scores, grade equivalent scores, raw scores or

standard scores do not o¤er these bene�ts in interpretability.

31Students who never attended small classes has greater growth in performance from grade

one to two in mathematics and reading than those always in small classes ( t = 2.3068 with

P > t = 0.0106 on one-sided test in math and t = 2.1296, P > t = 0.0166 on one-sided test

in reading. The hypothesis is that gains for those never attended small classes is greater than

gains for those always in small classes.), with no signi�cant di¤erences in word recognition ( t =

0.9905, P > jtj = 0.3220). From grade two to three, never attenders gained more than always

attenders in math (t = 1.6844, P > t = 0.0461 in one sided test) with no signi�cant di¤erences

in reading and word recognition ( t = -0.1373, P > jtj = 0.8908, t = 0.0024, P > jtj = 0.9981
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two-sided test respectively) between these groups.

32The regressions include school incators as well as student and teacher characteristics. The

regreesor if interest is an indicator variable set equal to 1 if SiK = Si1 = Si2 = 1 and set to 0

if SiK = Si1 = Si2 = 0. Individuals whose treatment history are on alternative paths are not

included in the regressions. The e¤ect (and standard error) of this regressor is -4.18 (1.46) in

grade two reading gains and -2.75 (1.35), -2.18 (1.28) in grade two and grade three mathematics

gains respectively. Note in grade one, there are positive and signi�cant gains for always attending

a small class in reading and word recognition which explains the dynamic bene�ts at that time.

33These results are robust to several alternative de�nitions of being a �weak� student. The

results in word recognition varied by de�nition of a �weak� students. Relative to classmates

growth, the �weak" students experienced i) signi�cantly larger gains in word recognition, ii)

signi�cantly smaller gains in mathermatics and iii) no signi�cant di¤erence in performance gains

in reading.

34We do not analyze students in regular classes since they were re-randomized between classes

with and without aides following kindergarten.

35T-tests on the equality of variances in incoming test scores indicate signi�cantly larger

variation in small classes in mathematics in grades two (P < F_obs = 0.04) and three (P <

F_obs = 0.11) and in grade two reading (P < F_obs = 0.06). Variation may in�uence student

performance through teaching methods as having a more diverse classroom may lead to increased

di¢ culties for instructors at engaging the di¤erent levels of students. Note that in grade one,

we believe heterogeneity in the class room is driven by the incoming students some of which did

not attend kindergarten.

36Regressions including school indicators demonstrate that gains in reading between grades

one and two (coe¢ cient =-2.54, std. err.=1.05) and gains in mathematics between between

grades one and two (coe¢ cient =-2.22, std. err.=1.11) and between grades two and three

(coe¢ cient =-2.21, std. err.=0.88) were signi�cantly lower in small classes.

37A discussion of peer e¤ects estimation is beyond the scope of the current paper. Since

students switch class types, refreshment samples may be non randomly assigned to class type
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there are a variety of selection issues that need to be considered. An attempt at peer e¤ect

estimation with this data can be found in Boozer and Cacciola (2001) who examine peer e¤ects in

class type and not actual class attended and use an instrumental variables procedure to overcome

the myriad of selection issues where initial class type assignment is used as the instrument under

the assumption that initial assignment in each year of the program was random. Note that the

hypothesis is also consistent with evidence on elementary school students presented in Hoxby

(2000a) and Hoxby (2000b) who exploited natural variation in age cohorts in the population

and found evidence that class size does not a¤ect student achievement in Conneticut and peer

group composition a¤ects achievement in Texas respectively. Further, international evidence

from the TIMMS study �nds grade four Korean students who are ability streamed in classrooms

were the only country to signi�cantly outperform the US in both science and mathematics had

the largest teacher-pupil ratio of the countries that participated in the study (28.6 pupils per

teacher in Korea versus 17.1 pupils per teacher in the US; OECD (1997)).

38Past studies have not directly estimated the structural parameters of the education produc-

tion function without imposing additional assumptions. For example, Krueger (1999) estimates

a contemporaneous version assuming past inputs do not a¤ect achievement and also considered

alternative speci�cations that restricted the manner in which past inputs a¤ect current achieve-

ment. Ding and Lehrer (2003) present evidence that these assumptions are rejected by the

underlying data and these alternative empirical education production function models do not

recover the structural parameters.

39Structural parameter estimates that do not account for either selection or unobservables or

attrition due to observables are available from the authors by request. Not surprisingly, these

estimates yield alternative policy reccomendations that is more supportive of past conclusions

drawn from Project STAR. Finally, the signi�cance of the results does not change if we compare

inverse probability weighted estimates of the likelihood functions. These are not presented as

the likelihood for weighted MLE does not fully account for the "randomness" of the weighted

sampling and is not a true likelihood.

40Unweighted estimates that correspond to the same sample are available from the authors
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by request. Note the DuMouchel and Duncan (1983) test suggest that the weighted estimates

are pre¤ered for this sample.
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Figure 1: Transitions During Project Star for Kindergarten Cohort
Kindergarten Grade One Grade Two Grade Three

Si3 = 1; [858]
Si3 = 0; [32]

Si2 = 1; [1027] % Li3 = 1; [137]
Si2 = 0; [27] & Si3 = 1; [18]

% Li2 = 1; [239] Si3 = 0; [18]
Si1 = 1; [1293] Li3 = 1; [6]
Si1 = 0; [108] & Si3 = 1; [15]
Li1 = 1; [499] Si3 = 0; [0]

Si2 = 1; [17] % Li3 = 1; [2]
% Si2 = 0; [55] & Si3 = 1; [3]

Li2 = 1; [36] Si3 = 0; [46]
Si0 = 1; [1900] Li3 = 1; [6]

Si3 = 1; [158]
Si0 = 0; [4425] Si3 = 0; [9]

Si2 = 1; [187] % Li3 = 1; [20]
& Si2 = 0; [8] & Si3 = 1; [0]

Li2 = 1; [53] Si3 = 0; [4]
Si1 = 1; [248] % Li3 = 1; [4]
Si1 = 0; [2867] & Si3 = 1; [75]
Li1 = 1; [1310] Si3 = 0; [5]

Si2 = 1; [93] % Li3 = 1; [13]
Si2 = 0; [2135] & Si3 = 1; [101]
Li2 = 1; [639] Si3 = 0; [1758]

Li3 = 1; [276]
Note: Number or individuals are in [*] brackets.
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Table 1: Are Attritors Di¤erent from Non-attritors
Subject Area Mathematics Reading Word Recognition

Kindergarten Class Type
10.434
(2.332)

6.513
(1.440)

7.370
(1.628)

White or Asian Student
20.499
(2.760)

8.608
(2.005)

8.505
(2.524)

Female Student
2.587
(1.363)

3.349
(1.074)

2.488
(1.296)

Student on Free lunch
-13.729
(1.679)

-12.239
(1.187)

-13.916
(1.480)

Years of Teaching Experience
0.323
(0.220)

0.255
(0.123)

0.329
(0.135)

White Teacher
-.926
(4.366)

-1.577
(3.068)

-1.578
(3.506)

Teacher has Master Degree
-1.482
(2.396)

-1.211
(1.423)

-0.491
(1.729)

Attrition Indicator
-17.305
(3.838)

-13.674
(2.537)

-13.198
(3.251)

Attrition Indicator Interacted with
Kindergarten Class Type

-5.383
(2.616)

-2.069
(1.686)

-3.004
(2.045)

Attrition Indicator Interacted with
White or Asian Student

-3.949
(2.732)

-.259
(1.824)

-1.177
(2.368)

Attrition Indicator Interacted with
Female Student

5.597
(2.078)

2.943
(1.454)

3.750
(1.739)

Attrition Indicator Interacted with
Student on Free lunch

-5.186
(2.384)

-0.496
(1.554)

0.549
(1.891)

Attrition Indicator Interacted with
Years of Teaching Experience

0.188
(0.210)

0.075
(0.131)

-0.060
(0.164)

Attrition Indicator Interacted with
White Teacher

1.263
(3.490)

2.269
(2.133)

0.642
(2.678)

Attrition Indicator Interacted with
Teacher has Master Degree

-1.370
(2.490)

0.939
(1.586)

1.552
(1.876)

Number of Observations (R-Squared) 5810 (0.305) 5729 (0.295) 5789 (0.259)
Joint E¤ect of Attrition on Constant
and Coe¢ cient Estimates

42.39
[0.000]

32.68
[0.000]

25.76
[0.000]

Joint E¤ect of Attrition on all
Coe¢ cient Estimates but not constant

3.14
[0.003]

1.23
[0.280]

1.45
[0.181]

E¤ect of Attrition
on Constant Alone

20.33
[0.000]

29.06
[0.000]

16.48
[0.000]

Note:Regressions include school indicators. Standard errors corrected at
the classroom level are in ( ) parentheses. Probability > F are in [ ] parentheses.
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Table 2: Testing Randomization of Student Characteristics across Class Types
Kindergarten Grade One Grade Two Grade Three

INCOMING STUDENTS

White or Asian Student
2.35*10E-4
(0.012)

-0.275
(0.193)

-0.061
(0.041)

7.63*10E-4
(0.063)

Female Student
0.012
(0.019)

0.199
(0.126)

-0.020
(0.021)

-0.017
(0.028)

Student on Free lunch
-8.74*10E-3
(0.017)

-0.262
(0.167)

0.013
(0.022)

-0.057
(0.037)

Joint Test of Student
Characteristics

0.29
[0.831]

1.83
[0.150]

1.24
[0.301]

1.01
[0.392]

Number of Observations 6300 2211 1511 1181
R Squared 0.318 0.360 0.248 0.411

FULL SAMPLE

White or Asian Student
2.35*10E-4
(0.012)

-0.003
(0.021)

-0.008
(0.025)

-0.021
(0.027)

Female Student
0.012
(0.019)

0.007
(0.009)

0.004
(0.009)

0.008
(0.009)

Student on Free lunch
-8.74*10E-3
(0.017)

-0.038
(0.016)

-0.030
(0.016)

-0.044
(0.016)

Joint Test of Student
Characteristics

0.29
[0.831]

2.05
[0.114]

1.38
[0.255]

2.98
[0.037]

Number of Observations 6300 6623 6415 6500
R Squared 0.318 0.305 0.328 0359
Note:Regressions include school indicators. Standard errors corrected at
the school level are in ( ) parentheses. Probability > F are in [ ] parentheses.
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Table 3: Logit Estimates of the Probability of Remaining in the Sample
Grade One Grade Two Grade Three

Kindergarten
Reading

.00720
(.00322)

.00230
(.00494)

.00041
(.00597)

Kindergarten
Mathematics

.00865
(.00116)

-.00152
(.00189)

.00126
(.00252)

Kindergarten
Word

-.00035
(.00242)

-.00061
(.00369)

-.00546
(.00464)

Grade One
Reading

*
.00189
(.00293)

.00053
(.00397)

Grade One
Mathematics

*
.01262
(.00222)

-.00494
(.00307)

Grade One
Word

*
.00834
(.00260)

.00834
(.00258)

Grade Two
Reading

* *
.00868
(.00404)

Grade Two
Mathematics

* *
.00728
(.00289)

Grade Two
Word

* *
-.00195
(.00292)

Log likelihood -2755.54 -1239.39 -743.39
Number of Observations 5703 3127 2452
Note: Speci�cations include the complete history of teacher
characteristics, free lunch status and class size. Speci�cations
also includes school indicators, child gender and child race.
Standard errors corrected at the teacher level in parentheses.
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Table 4: Structural Estimates of the Treatment Parameters in Education Production Functions
Subject Area Mathematics Reading Word Recognition
Kindergarten
SiK 8.595 (1.120)*** 5.950 (0.802)*** 6.342 (0.945)***
Grade One
SiK 7.909 (4.625)** 8.785 (5.284)** 11.868 (6.722)**
Si1 9.512 (3.307)*** 9.315 (4.350)*** 15.394 (5.730)***
SiKSi1 -6.592 (5.648) -2.229 (6.992) -11.060 (8.965)
Grade Two
SiK -2.078 (7.276) 11.320 (7.240) 9.959 (8.438)
Si1 -4.010 (3.855) -20.036 (19.189) 4.298 (7.763)
Si2 15.150 (5.430)*** 3.040 (4.428) 0.526 (5.814)
SiKSi1 3.851 (11.678) 1.148 (24.059) -12.074 (17.673)
SiKSi2 -4.049 (13.112) -31.513 (17.366)** -23.084 (13.237)**
Si1Si2 -4.944 (6.617) 25.122 (19.480) 7.868 (8.537)
SiKSi1Si2 6.653 (16.067) 23.634 (28.632) 30.111 (19.851)
Grade Three
SiK -7.298 (10.901) 1.215 (10.372) 13.071 (12.202)
Si1 43.514 (32.898) 22.083 (30.097) -6.920 (37.200)
Si2 25.263 (42.080) -22.085 (26.069) -25.024 (22.031)
Si3 -6.835 (3.932)** -10.590 (4.179)*** -12.738 (5.952)***
SiKSi1 -38.612 (30.944) 7.978 (39.071) -18.002 (32.872)
SiKSi2 37.355 (28.625) -42.740 (25.731)** -2.932 (22.527)
SiKSi3 -39.819 (19.922) 17.870 (18.147) 7.328 (14.855)
Si1Si2 -61.947 (52.749) 25.388 (35.964) -7.586 (36.814)
Si1Si3 17.163 (43.057) -6.613 (32.183) -7.954 (29.718)
Si2Si3 -14.366 (42.280) 35.547 (22.836) 29.203 (26.267)
SiKSi1Si3 -4.651 (52.881) -41.180 (43.335) -14.706 (35.985)
SiKSi1Si2Si3 48.084 (48.704) 6.834 (30.521) 14.377 (33.920)
Note: Corrected standard errors in parentheses. The
sequences SiKSi1Si2; SiKSi2Si3 and Si1Si2Si3 lack
unique support to permit identi�cation in grade 3.
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Table 5: Dynamic Average Treatment E¤ect for the Treated Estimates
Subject Area Mathematics Reading Word Recognition
Kindergarten

� (1)(0)(1) 8.595 (1.120)*** 5.950 (0.802)*** 6.342 (0.945)***
Grade One
� (0;1)(0;0)(0; 1) 9.512 (3.307)*** 9.315 (4.350)*** 15.394 (5.730)***
� (1;0)(0;0)(1; 0) 7.909 (4.625)** 8.785 (5.284)** 11.868 (6.722)**
� (1;1)(0;0)(1; 1) 10.829 (8.021)* 15.872 (9.787)* 16.203 (12.587)*
� (1;1)(1;0)(1; 1) 2.920 (6.544) 7.086 (8.235) 4.334 (10.640)
� (1;1)(0;1)(1; 1) 1.317 (7.300) 6.556 (8.764) 0.808 (11.205)
� (0;1)(1;0)(0; 1) 1.603 (5.686) 0.530 (6.844) 4.066 (8.833)
Grade Two
� (0;0;1)(0;0;0)(0; 0; 1) 15.150 (5.430)*** 3.040 (4.428) 0.526 (5.814)
� (1;0;0)(0;0;0)(1; 0; 0) -2.078 (7.276) 11.320 (7.240)* 9.959 (8.438)
� (1;1;1)(0;0;0)(1; 1; 1) 10.574 (26.606) 12.714 (50.199) 17.603 (33.463)
� (1;1;1)(1;0;0)(1; 1; 1) 12.651 (25.589) 1.394 (49.674) 7.644 (32.381)
� (1;1;1)(1;1;0)(1; 1; 1) 12.810 (22.436) 20.282 (38.993) 15.421 (25.999)
� (0;1;1)(0;0;0)(0; 1; 1) 6.196 (9.400) 8.125 (27.700) 12.691 (12.920)
� (0;0;1)(1;0;0)(0; 0; 1) 17.228 (9.084)** -8.208 (8.490) -9.433 (10.249)

Grade Three
� (0;0;0;1)(0;0;0;0)(0; 0; 0; 1) -6.835 (3.932)** -10.590 (4.179)*** -12.738 (5.952)***
� (1;1;1;1)(0;0;0;0)(1; 1; 1; 1) -2.148 (129.436) -17.192 (93.135) -20.985 (102.228)
� (1;1;1;1)(1;1;0;0)(1; 1; 1; 1) 0.247 (120.810) -22.487 (81.117) -35.114 (85.973)
� (1;1;1;1)(1;1;1;0)(1; 1; 1; 1) -0.424 (96.033) 10.115 (63.543) 7.262 (70.360)
� (1;1;1;1)(0;1;1;1)(1; 1; 1; 1) -4.940 (86.378) -20.263 (64.365) -30.626 (75.468)
� (0;1;1;1)(0;0;0;0)(0; 1; 1; 1) 2.792 (96.397) 3.071 (67.314) 9.641 (68.958)
� (0;0;1;1)(0;0;0;0)(0; 0; 1; 1) 4.062 (59.781) -3.472 (37.243) -2.215 (32.284)
� (0;0;1;1)(1;1;0;0)(0; 0; 1; 1) 6.458 (75.714) -8.767 (59.001) -16.344 (64.043)

Note: Standard Errors in parentheses.
***,** indicate statistical signi�cance at the 5%, and 10% level respectively
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Table 6: Tests of Weighted versus Unweighted Estimates
Subject Area Mathematics Reading Word Recognition

Grade One
8.74
[0.000]

3.39
[0.000]

1.35
[0.169]

Grade Two
1.48
[0.071]

3.86
[0.000]

2.08
[0.002]

Grade Three
1.72
[0.008]

1.91
[0.002]

1.03
[0.424]

Note: Probability > F are in [ ] parentheses.

Table 7: Likelihood Ratio Tests for the Presence of Selection on Unobservables
Subject Area Mathematics Reading Word Recognition

Grade One
2661.91
[0.000]

4468.98
[0.000]

3293.98
[0.000]

Grade Two
1648.11
[0.000]

1478.86
[0.000]

5480.28
[0.000]

Grade Three
1606.95
[0.000]

1421.94
[0.000]

839.84
[0.000]

Note: Probability > �2 are in [ ] parentheses.
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Table 8: Structural Estimates of the Treatment Parameters in Education Production Functions
using Simpler Attrition Model to Account for Test Completion

Subject Area Mathematics Reading Word Recognition
Kindergarten
SiK 8.595 (1.120)*** 5.950 (0.802)*** 6.342 (0.945)***
Grade One
SiK 12.794 (4.742)*** 11.221 (5.088)*** 12.580 (5.433)***
Si1 10.322 (2.798)*** 4.032 (2.962) 9.282 (3.568)***
SiKSi1 -12.748 (5.461)*** -3.164 (5.914) -10.514 (6.603)
Grade Two
SiK 8.993 (7.063) 17.40 (8.054)*** -1.690 (4.068)
Si1 -15.755 (11.672) -37.592 (16.710)*** -23.035 (16.522)
Si2 9.001 (4.839)** -2.471 (4.4149) 7.278 (8.297)
SiKSi1 0.437 (15.122) -0.044 (22.636) 0.061 (21.173)
SiKSi2 -0.933 (8.931) -19.001 (11.704) -10.165 (21.262)
Si1Si2 14.477 (12.686) 43.044 (17.248)*** 29.128 (17.002)**
SiKSi1Si2 -7.712 (16.250) 8.050 (24.184) 9.189 (28.858)
Grade Three
SiK 2.512 (11.252) 12.487 (9.726) 20.241 (11.072)**
Si1 7.347 (11.921) 3.743 (19.584) 3.533 (27.390)
Si2 32.700 (25.589) -14.059 (11.435) -16.140 (8.272)**
Si3 -2.991 (3.932) -3.547 (3.411) -5.491 (4.815)
SiKSi1 -2.424 (19.982) -14.738 (27.662) -18.626 (33.645)
SiKSi2 42.515 (28.165) -19.929 (26.944) -49.423 (35.623)
SiKSi3 -9.926 (26.641) 20.363 (23.145) 29.862 (26.369)
Si1Si2 -30.957 (29.537) 6.710 (27.010) -3.718 (36.282)
Si1Si3 -34.354 (28.549) -45.065 (25.648)** -65.591 (29.914)***
Si2Si3 -27.291 (25.802) 13.957 (11.755) 25.368 (9.699)***
SiKSi1Si2 -43.321 (34.722) 38.333 (40.920) 94.618 (53.809)**
Si1Si2Si3 66.369 (39.566)** 46.807 (31.803) 69.728 (38.514)**
SiKSi1Si2Si3 8.646 (28.371) -34.171 (28.758) -72.552 (36.493)***
Note: Corrected standard errors in parentheses. The
sequences SiKSi1Si3 and SiKSi2Si3 lack unique
support to permit identi�cation in grade 3.
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