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Abstract

The expectations hypothesis is violated in the U.S. nominal term structure of in-
terest rates. This so-called ”expectations puzzle” can be captured by some descriptive
models of the term structure with time-varying risk premium. This paper provides
an economic explanation for the success of these reduced-form specifications of pric-
ing kernels. Specifically, we show that a consumption-based asset pricing model with
stochastic internal habit, when calibrated to aggregate real macroeconomic and asset
market data, generates market prices of risk with all of the requisite properties to
resolve the expectations puzzle.
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1 Introduction

This paper examines the implications of a consumption-based asset pricing model with
stochastic habit formation for the dynamic properties of the term structure of interest rates.
The habit stock in this model is “internal” in the sense that its future evolution is affected by
the current choice of aggregate consumption. Additionally, the habit shock to the preference
is stochastic in the sense that it is not perfectly predictable given knowledge of current and
past consumption decisions. We argue that these features together go a long ways toward
resolving some the pricing anomalies in the literature on the terms structure of interest rates.

There is now a large literature demonstrating that the introduction of habit formation into
preference-based models generates equity risk premiums that are more consistent with his-
tory than standard time-separable specifications of preferences (see, e.g., Sundaresan (1989),
Constantinides (1990), and Campbell and Cochrane (1999)). However, these models were
parameterized to yield constant interest rates in order to focus on the equity premium puz-
zle. As such, they are, by construction, silent on the implications of habit formation for the
pricing of bonds. Stochastic interest rates are recovered in these models, simply by relaxing
the endowment specification. However, these extended models are nested special cases of
the flexible specification of non-time-separable preferences in Dunn and Singleton (1986),
Ferson and Constantinides (1991), and Heaton (1995). Based on Euler-equation based tests
that are agnostic about the distribution of consumption growth and asset returns, these
authors present substantial empirical evidence against such models. Moreover, the evidence
against models with deterministic habit is particularly strong when the tests involve bond
yield data (see, e.g., Dunn and Singleton (1986) and Hansen and Jagannathan (1991)). One
possible interpretation of this finding is that the autocorrelation properties of marginal rates
of substitution (MRS) with deterministic habit are not consistent with the autocorrelation
properties of bond returns (see Singleton (1993)).1

In this paper we extend the internal habit model of Constantinides to allow for a stochas-
tic habit shock and examine the dynamic properties of the implied term structures. The
stochastic and internal nature of the habit shock are crucial in taking our model outside the
framework of Dunn and Singleton (1986), Ferson and Constantinides (1991), and Heaton
(1995), and set the stage for a novel source of persistence in the MRS. Specifically, if the
expected growth rate of the habit stock is a convex function of the surplus consumption, the
MRS depends not only on the growth rate of the surplus consumption, but also the current
and future level of the per capita surplus consumption. This level dependence of the MRS
implies that there is a long-run value toward which the MRS is mean-reverting. We argue
that these features potentially allow our model to address the tension between autocorrela-
tion properties of bond returns and those of the MRS with deterministic habit. In particular,
we demonstrate that, when calibrated to aggregate real macroeconomic and asset market
data, our model is capable of resolving the so-called ”expectations puzzle” (Campbell and
Shiller (1991)) suggesting that that expected bond returns are predictable by term spreads

1Holding period returns on stocks show very little serial correlation, so the autocorrelation of the MRS
may not be as central an issue in previous studies of equity returns. Though of course the same MRS should
price both stocks and bonds.
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(Fama (1984) and Fama and Bliss (1987)). This gives an economic explanation for the suc-
cess of some reduced-form specifications of pricing kernels in explaining the expectations
puzzle (see, e.g., Dai and Singleton (2002a) and Duffee (2002)).

The remainder of this paper is organized as follows. In Section 2, we start with a discrete-
time formulation of stochastic internal habit and discuss how various ingredients of our
habit specification contribute to the autocorrelation properties of the MRS. We then switch
to the continuous-time formulation and solve the rational expectations equilibrium of the
resulting model. Asset pricing implications are derived with a particular emphasis on the
model-implied dynamics of the real term structure. In Section 3, we calibrate the preference
parameters in the model to match the long-run average of aggregate consumption growth
rate, the aggregate equity premium, and the real riskfree rate, and show that the model
has enough degrees of freedom left to match the slope coefficients in the Campbell-Shiller
“long-rate” regressions. Thus, the equity premium puzzle (Mehra and Prescott (1985)), the
riskfree rate puzzle (Weil (1989)), and the expectations puzzle (Campbell and Shiller (1991))
can be resolved simultaneously in the model. Section 4 concludes.

2 A Model of Stochastic Internal Habit

To motivate our model and help develop some economic intuitions, we begin with a discrete-
time formulation of our habit specification. The continuous-time formulation follows directly
by taking the time interval to 0. Subsequent development of the model, its solution, and its
asset pricing implications will be based on the continuous-time formulation.

2.1 Discrete-time Formulation of Stochastic Habit

Consider first the discrete-time formulation of Constantinides’ habit stock. Let xt be the per
capita habit stock.2 Then Constantinides’ specification of the habit stock is given by

xt+1 = B(L) (ct − xt), (1)

where ct is the per capita consumption, L is the lag operator, and B(L) =
∑∞

j=0 b (1−κ)jLj

is a geometric distributed lag with b > 0 and κ > 0. Equation (1) may be rewritten as
xt+1 = A(L)ct, where A(L) =

∑∞
j=0 b (1 − b − κ)jLj. Thus the habit stock is a weighted

average of past consumption and is locally deterministic.
In this paper, we consider a model in which the per capita habit stock is defined by

xt+1 = B(L) (1 + yt+1) zt, (2)

2The purpose of working with per capita rather than aggregate variables is to take out the time trend,
so that the per capita variables are stationary. We assume that the time trend grows at the rate of Gt,
which represents the long-run growth rate of the economy. Gt can potentially be a persistent stochastic
process itself, although it will be taken as a constant in our calibration exercise. The mapping between
the parameters of the aggregate economy and those of the per capita economy will be made explicit in the
calibration exercise.
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where zt ≡ ct − xt is the per capita surplus consumption, and yt is stochastic process of the
following form:

yt+1 = ζ(zt − z̄) + βvt+1, (3)

where vt+1 is a conditionally zero-mean normal variate and may be contemporaneously cor-
related with the consumption shock, z̄ is interpreted (eventually) as the long-run mean of
the per capita surplus consumption, and ζ > 0 and β > 0. Clearly, if ζ = β = 0, then y ≡ 0,
and (2) reduces to (1). When β 6= 0, yt+1 is stochastic. In this case, the habit stock may
still be viewed as a distributed lag of past consumption, except that the weights are now
perturbed by yt+1. The dating of the shock is such that the habit stock is locally stochastic.
Depending on its sign, the effect of the shock is to weigh the lagged zt more or less in forming
the habit stock at t + 1.

A positive ζ is a subtle but crucial feature of the model. Mechanically, what the condi-
tional mean of yt+1 does is to weigh the lagged zt more when zt > z̄ and less when zt < z̄ in
forming the habit stock at t+1. This means that the expected habit stock at t+1 is a convex
function of the lagged zt. Thus, the effect associated with a positive ζ can be referred to as
the convexity effect.3 Economically, the convexity effect imparts a notion of ”long-run mean”
or ”persistence” of zt into the model (without persistence there is no long-run mean). More
importantly, the convexity effect also imparts a notion of ”long-run mean” or ”persistence”
of the MRS into the model. To elaborate the last point, let us derive the MRS, assuming
that the period utility is a power function of z = c−x with a constant and positive curvature
1− γ and that the subjective discount rate is a positive constant ρ.

2.2 Stochastic Internal Habit and MRS

Following Dunn and Singleton (1986), we can show that the MRS is given by

MRSt,t+1 = e−ρ MUCt+1

MUCt+0

, MUCt = Et

[
∞∑

j=0

e−ρj at,j zγ−1
t+j

]
, (4)

where at,0 = 1, and for ∀j ≥ 1,

at,j =

[
j−1∏
i=0

−(1− κ)

j−1∏
i=1

]
[1− κ− b(1 + yt+i+1 + ζzt+i)] , (5)

which is in the information set at t+ j. When κ, β, and ζ and the length of the time interval
are sufficiently small, {at,j : j ≥ 1} can be approximated by

at,j ≈ −aj (1 + ζ(2zt − z̄) + βvt+1) , aj = b (1− κ− b)j−1, ∀j ≥ 1.

These coefficients are referred to as “internal” coefficients because they are identically zero
in an “external” habit formation model.

3Obviously, a negative ζ will induce a ”concavity effect”. The resulting model has undesirable properties
and is not considered.
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Armed with these results, we can now delineate the marginal contributions of various
ingredients of our habit specification to the autocorrelation properties of the MRS:

1. With a deterministic external habit, β = ζ = 0 and at,j = 0, for ∀j ≥ 1, the marginal
utility of consumption (MUC) is given by

MUCDE
t = zγ−1

t .

In this case, the autocorrelation properties of the MRS are determined by the auto-
correlation properties of zt. If zt were a random walk, then so would be the MRS, and
both the riskfree rate and the Sharpe ratio would be constant. Campbell and Cochrane
(1999) assume that the endowment process ct is a random walk, and the log surplus

consumption ratio st ≡ log
(

zt

ct

)
is persistent. Consequently, zt is persistent and the

riskfree rate is stochastic in general.4

2. With a deterministic internal habit, β = ζ = 0, at,j = aj, ∀j ≥ 1, the MUC is given by

MUCDI
t = MUCDE

t −
∞∑

j=1

aj e−ρj Et

[
zγ−1

t+j

]
.

The internal nature of the habit stock induces the extra terms that are absent in an
external habit formation model.5 These extra terms represent an additional source of
persistence in the MRS.6 Treating aj as free parameters, the internal habit formation
models of Dunn and Singleton (1986), Ferson and Constantinides (1991), and Heaton
(1995) nest both the external habit formation models of Campbell and Cochrane (1999)
and the internal habit formation model of Constantinides (1990).

3. With a stochastic internal habit (β > 0), but no convexity effect (ζ = 0), the MUC is
given by

MUCSI
t ≈ MUCDI

t − β
∞∑

j=1

aj e−ρj Et

[
vt+1 zγ−1

t+j

]
.

This is an intermediate case that helps illustrate the role of the convexity effect. When
the convexity effect is absent, the habit shock induces an extra term through its cor-
relation with production shocks. This extra term does not fundamentally change the
autocorrelation properties of the MRS: if zt were a random walk, and its shock has a

4In focusing on equity returns, Campbell and Cochrane (1999) impose a restriction on the conditional
volatility of st or equivalently that of zt so that the precautionary savings motive renders the riskfree rate
constant.

5This result is first derived by Dunn and Singleton (1986) without imposing the geometric restriction on
the distributed lag B(L).

6In the special case that zt is a random walk, MUCDI
t is proportional to zγ−1

t , as in an external habit
formation model. This is precisely the Constantinides result – the point of departure for his analysis of
equity returns.
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constant correlation with the habit shock, then MUCSI
t is again proportional to zγ−1

t ,
and the riskfree rate is again constant. Of course, stochastic interest rates can still be
induced by a persistent process for zt.

4. Finally, when the stochastic internal habit is formed with a convexity effect, i.e., both
β 6= 0 and ζ 6= 0, the MUC becomes

MUCt ≈ MUCSI
t − ζ (2zt − z̄)

∞∑
j=1

aj e−ρj Et

[
zγ−1

t+j

]
.

The last term in the above equation introduces a novel source of autocorrelation in the
MUC and hence in the MRS: even if zt were a random walk, the last term would contain
a term proportional to zγ

t . Consequently, MUCt would no longer be proportional to
zγ−1

t . In other words, the convexity effect imparts a notion of “long-run mean” or
”persistence” in the MUC, because it is no longer indifferent to the level of zt.

7 The
resulting level dependence of the MRS is responsible for inducing a state-dependent
riskfree rate and state-dependent Sharpe ratios in a Markovian equilibrium of our
model.

The preceding discussion highlights the importance of both the stochastic and internal nature
of the habit shock vt+1. Without either feature, the model would be nested in those of Dunn
and Singleton (1986), Ferson and Constantinides (1991), and Heaton (1995) and therefore
would be econometrically rejected by the data. The discussion (point 3) also shows, however,
that these two features are not sufficient to generate a level-dependence in the MRS. The
convexity effect, which induces the level-dependence in the MRS, is indeed a crucial part of
our model specification.

Up to this point, we have not taken any stand on the dynamic specification of the ag-
gregate endowment process or equivalently the dynamic specification of zt. Using observed
aggregate consumption data to characterize the aggregate endowment process has two draw-
backs. First, the consumption data is noisy. Consequently, it is challenging to econometri-
cally pick up possible persistent and heteroskedastic features of the data generating process.
Second, perhaps more importantly, if we take a model of internal habit seriously, we should
not rule out the possibility that the conditional moments of the endowment process may de-
pend on the habit level, just as the conditional moments of the habit process depend on the
consumption level. Since the habit process is not observed, the aggregate consumption data,
even if it is pristine, may not contain enough information to identify the joint dynamics of
endowment and habit. These considerations lead us to consider an alternative (conceptually
equivalent) formulation of the model, namely, the Merton-style continuous-time formulation
of a dynamic asset pricing model that makes explicit consumption and portfolio decisions
(see, e.g., Merton (1969), Breeden (1979)). This approach has two advantages. First, instead
of being explicit about the joint dynamics of endowment and habit, we only need to impose

7This form of MUC can be generated in an external habit model with period utility of the form
zγ

γ

(
1 + θ × z

z̄

)
, where θ > 0.
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the assumption that the investment opportunity set be Markovian, which is tantamount to
assuming that the joint dynamics of endowment and habit be Markovian. The functional
form of the investment opportunity set is then determined endogenously as part of a ra-
tional expectations equilibrium. Second, the Markovian assumption allows us to solve the
model analytically using the standard dynamic programming method. The rest of the pa-
per is based on this formulation, starting with the continuous-time formulation of the habit
process in the next subsection.

2.3 Continuous-time Formulation of Stochastic Habit

Taking the continuous-time limit of equations (2) and (3), we obtain the fundamental as-
sumption of this paper:

Assumption 1 : The habit stock xt evolves in continuous-time according to

dxt =

(
bzt − κx +

εβ2

2
z2

t

)
dt + β zt dBx

t , (6)

where b > 0, κ > 0, ε > 0, β > 0, and Bx
t is a standard Brownian motion.8

The quadratic term in the conditional mean of the habit stock captures the “convexity”
effect induced by the conditional mean of yt+1 in the discrete-time formulation. The expected
increase in xt induced by a positive shock to zt is larger than the expected decrease in xt

induced by a negative shock to zt with the same magnitude.
To complete our model we follow Constantinides (1990) and assume:

Assumption 2 There exists a representative consumer with a power period utility (ct−xt)γ

γ

with γ < 0 and a constant subjective discount rate ρ > 0;

Assumption 3 The consumer can insure against future consumption risk by trading a
risky asset with instantaneous expected return µt and instantaneous volatility σt, and
a riskfree asset with instantaneous return rt; and

Assumption 4 Markets clear in the sense that in equilibrium, the demand of the riskfree
asset is equal to the supply, which is assumed to be 0.

Under Assumptions 1–4, the representative consumer solves

max
αt,ct:t≥0

E0

[∫ ∞

0

e−ρt (ct − xt)
γ

γ
dt

]
, (7)

subject to the budget constraint

dwt = [αt(µt − rt)wt + rtwt − ct] dt + αtσtwt dBw
t , (8)

8The parameters in Equation (6) are reparameterized version of those that appear in equations (1) and
(2). The restriction ε > 0 is the same as the restriction ζ > 0. The Brownian motion dBx

t is the standardized
version of vt+1 in the continuous-time limit.
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and the habit specification (2), where wt is the per capita aggregate wealth and Bw
t is a

standard Brownian motion with a constant correlation δ with Bx
t . Throughout the paper,

dBw is referred to as the production shock, whereas dBx is referred to as the habit shock.

2.4 The Markovian Solution

We will solve the model under the following assumption on the technological specification of
the economy:

Assumption 5 The investment opportunity set is Markovian. That is, rt, µt, and σt are at
most functions of wt and xt.

Assumption 5 is a relatively weak restriction, since there is no need to specify a priori the
functional form of the investment opportunity set (which will be determined endogenously).9

Under Assumptions 1–5, the representative consumer’s utility maximization problem can
be equivalently characterized in terms of the following Hamilton-Jacobi-Bellman equation:

0 = max
α,z

[u(z, t) + Vt +Aα,zV ] , (9)

where u(z, t) = e−ρt zγ

γ
, V is the value function given by

V (wt, xt; t) = max
αs,zs:s≥t

Et

[∫ ∞

0

u(zs, s) ds

]
,

and Aα,z is the infinitesimal generator given by10

Aα,z = {[α(µ(w, x)− r(w, x)) + r(w, x)] w − z − x} ∂w +
1

2
α2σ(w, x)2w2∂ww

+

(
bz − κx− εβ2

2

)
∂x +

β2z2

2
∂xx + wασ(w, x)δβz∂xw.

The first-order conditions, ∂Aα,z

∂α
V = 0 and uz + ∂Aα,z

∂z
V = 0, imply that the optimal

portfolio policy is given by

α∗ = A(w, x)−1σ(w, x)−1 [Λ(x)−H(w, x)δβz∗] , (10)

9When β = ε = 0, the model reduces to that of Constantinides (1990). The rational expectations
equilibrium of the model is characterized by a constant riskfree rate and a constant Sharpe ratio of the risky
asset. When β 6= 0 and ε 6= 0, however, both the riskfree rate and the Sharpe ratio will become state-
dependent – otherwise markets can not clear in every state of the world. In general, this presents a challenge
in solving the model. Fortunately, under the particular formulation we have adopted, the equilibrium
investment opportunity set takes a simple form and can be easily guessed (see equations (12) –(14)).

10For notational simplicity, we have made a change of variable from c to z = c − x in the optimization
problem.
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where A(w, x) = −wVww

Vw
is the relative risk aversion with respect to wealth and H(w, x) =

−Vwx

Vw
; and the optimal consumption policy is given by c∗ = z∗ + x, where z∗ solves:

uz = Vw −
(
b + εβ2z

)
Vx − β2zVxx − wα∗σ(w, x)δβzVxw. (11)

To obtain explicit expressions for the optimal policies, we conjecture that the investment
opportunity set takes the following form:

r(w, x) =
1− κf ′(x)

f(x)/x
≡ r(x), (12)

µ(w, x) = r(x) + Λ(x)σ(w, x), (13)

σ(w, x) =
w − f(x)

w
g(x), (14)

where f(x) = η 1−e−εx

ε
with η > 0, and the functions g(x) and Λ(x) are to be determined.11

It is easy to verify that, under this conjecture, the optimization problem is solved with the
value function given by

V (w, x, t) = e−ρtJ(w, x), where J(w, x) = φ
(w − f(x))γ

γ
, φ > 0, (15)

and the optimal portfolio and consumption policies given by

α∗ =
Λ(x) + (1− γ)δβh(x)f ′(x)

(1− γ)g(x)
, z∗ = h(x)[w − f(x)], (16)

where
h(x)γ−1

φ
= 1 + bf ′(x) + (1− γ)β2h(x)f ′(x)2 − (1− γ)δβg(x)f ′(x). (17)

The unknown functions g(x) and Λ(x) are obtained by using the Bellman optimality
principle and the market clearing condition, respectively. First, substituting the optimal
policies (16) into (9) yields

0 =
1− γ

2
g(x)2 − (1− γ)δβh(x)f ′(x)g(x)

+

[
r(x)− ρ

γ
+

1− γ

γ

h(x)γ

φ
+

1− γ

2
β2h(x)2f ′(x)2

]
.

(18)

The functions h(x) and g(x) are therefore obtained by solving equations (17) and (18) jointly,
state by state. Once h(x) and g(x) are known, the function Λ(x) is obtained by imposing
the market clearing condition: α∗ = 1 implies that

Λ(x) = (1− γ) [g(x)− δβh(x)f ′(x)] . (19)

11The functional form of f(x) is dictated by the habit specification (6). If the coefficients in the diffusion
and in the quadratic term in the drift are state-dependent, the functional form of f(x) will be different. To
preserve key properties of our model, any alternative habit specification must be such that the function f(x)
satisfies the properties: f(0) = 0, f ′(x) > 0, and f ′′(x) < 0. Under our specification, the sign restriction
ε > 0 ensures that f(x) is monotonically increasing and concave.
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We can easily verify that all necessary and sufficient conditions (including the transver-
sality condition) are satisfied and all markets clear. Thus the initial conjecture of the equi-
librium investment opportunity set, (12)–(14), is validated.

2.5 Pricing Contingent Claims

The model contains a contingent claims pricing model, which is fully specified in terms of
the pricing kernel and the state dynamics.

The Pricing Kernel
The pricing kernel mt is proportional to the marginal utility of wealth, i.e., mt ∝ Vw =

e−ρtφ(w − f(x))γ−1. Ito’s lemma implies

dmt

mt

= −r(xt) dt− Λw(xt) dBw
t − Λx(xt) dBx

t , (20)

where Λw(x) = −wVww

Vw
α∗σ = (1− γ)g(x) and Λx(x) = −Vwx

Vw
βz∗ = −(1− γ)βh(x)f ′(x).

The State Dynamics
Since w = f(x) + z∗

h(x)
is a deterministic function of x and z∗, we can alternatively treat

(x, z∗) as the state vector. The equilibrium solution implies that the joint dynamics of (x, z∗)
are given by

dx = µx(x, z∗) dt + βz∗ dBx, (21)

dz∗

z∗
= µz(x, z∗) dt + g(x) dBw + β

[
zh′(x)

h(x)
− h(x)f ′(x)

]
dBx, (22)

where µx(x, z) = bz − κx + 1
2
εβ2z2, and

µz(x, z) =

[
r(x)− ρ

1− γ
+

2− γ

2(1− γ)2
Λ(x)2 +

2− γ

2
(1− δ2)β2h(x)2f ′(x)2

]
+

[
h′′(x)

h(x)

β2z2

2
+

h′(x)

h(x)
βz

δΛ(x) +
√

1− δ2Λ⊥(x)

1− γ

]
+

h′(x)

h(x)
µx(x, z).

The real functions h(x), g(x), r(x), f(x), Λw(x), and Λx(x) that appear in the pricing
kernel and the state dynamics are all part of the equilibrium solution and known. The
resulting contingent claims pricing model can be used to price any security whose payoffs
load on the two state variables, including equity and debt claims. In the rest of this section,
we use this model to determine the term structure of real interest rates and examine some
of its key properties.

Pricing Real Zero-coupon Bonds
Let Dt,T be the time-t price of a real zero-coupon bond with maturity date T , i.e.,

Dt,T = E

[
mT

mt

∣∣∣∣ xt, z
∗
t

]
. (23)
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In general, Dt,T is a function of both xt and z∗t . Ito’s lemma implies that

dDt,T

Dt,T

= µt,T dt + σw
t,T dBw

t + σx
t,T dBx

t (24)

where µt,T is the instantaneous expected return on the bond, σw
t,T = g(x)

∂ log Dt,T

∂ log z∗
, and

σx
t,T = β

[
z∗h′(x)

h(x)
− h(x)f ′(x)

]
∂ log Dt,T

∂ log z∗
+ βz∗

∂ log Dt,T

∂x
. Since mt Dt,T must be a Martingale,

the expected excess return is given by

µt,T − rt = σw
t,T [Λw(xt) + δΛx(xt)] + σx

t,T [Λx(xt) + δΛw(xt)]. (25)

Equation (25) shows that, in general, the expected bond returns are predictable.
Substituting equation (25) in equation (24), we obtain

dDt,T

Dt,T

= r(xt) dt + σw
t,T dBw,Q + σx

t,T dBx,Q, (26)

where,

Bw,Q
t = Bw

t +

∫ t

0

λw(xs) ds, λw(xs) = Λw(xs) + δΛx(xs),

Bx,Q
t = Bx

t +

∫ t

0

λx(xs) ds, λx(xs) = Λx(xs) + δΛw(xs).

Let P be the physical probability measure under which Bw and Bx are standard Brownian
motions with correlation δ, and define an equivalent probability measure Q by

dQ
dP

= e−
1
2

R T
0 [(λw(xs))2+(λx(xs))2+2δλw(xs)λx(xs)] ds−

R T
0 λw(xs) dBw

s −
R T

t λx(xs) dBx
s . (27)

Then, Bw,Q
t and Bx,Q

t are standard Brownian motions with correlation δ under Q. Thus, Q
is precisely the risk-neutral measure, and the zero-coupon bond prices can be obtained from
the following risk-neutral pricing formula:

Dt,T = EQ
[
e−

R T
t r(xs) ds

∣∣∣ xt, z
∗
t

]
. (28)

Equation (28), together with equations (21), (22), and (27), form a two-factor nonlinear
model of the real term structure. Although bond prices are not given by an explicit analytic
expression, they can be readily computed using numerical methods such as a Monte Carlo
simulation or a finite-difference method.

2.6 Model-implied Properties of the Real Term Structure

The rest of the paper focuses on the term structure implications. We begin in this subsection
with a discussion on some general properties of the real term structure implied by the
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model, followed in the next two subsections by a discussion on how the model resolves
the expectations puzzle.

First, the real term structure is affected not only by the growth rate of per capita con-
sumption c∗, but also by the growth rate of either the habit stock x or the surplus consump-
tion z∗ = c∗ − x. In general, both the production/consumption shock and the habit shock
are priced, with market prices of risk given by λw(x) (which is equal to the Sharpe ratio
Λ(x) of the risky asset) and λx(x), respectively.

Second, the instantaneous riskfree rate is determined entirely by the habit stock x, and
does not depend on the surplus consumption z∗. Thus, the production shock (which affects

directly z∗ not x∗) has a delayed effect on the term structure. That is, letting Rt,T ≡ − log Dt,T

T−t

be the yield on a zero-coupon bond with maturity T , the loading,
∂Rt,T

∂ log z∗
, of the zero yield

on log z∗ is expected to have a humped shape: starting at zero initially, reaching a peak or
valley at some intermediate maturity range, and converging to 0 again at long maturities
(due to mean reversion). Thus, the production shock may potentially induce a hump in the
term structure of volatility. This is consistent with the finding by Fleming and Remolona
(1999) that macro-economic announcements may induce a humped response function in the
term structure.12 A humped term structure of volatility may also induce a humped term
structure of expected returns: in the limit β → 0,

µt,T − rt = σw
t,T Λ(xt) =

[
−Λ(xt)

1− γ

∂Rt,T

∂ log z∗
(T − t)

]
× Λ(xt), (29)

where we have used the fact that Λw(x) = Λ(x) = (1 − γ)g(x) is the Sharpe ratio of the
risky investment opportunity.13

Third, the stochastic shock to the habit stock induces a positive correlation between the
expected bond returns and the term spreads, which implies that the ”expectations hypoth-
esis” does not hold in the model. Indeed, the degree in which the expectations hypothesis
is violated is controlled by the volatility of the habit shock. This fact allows us to calibrate
the parameter β. To elaborate this implication of the model, let us digress for a moment
to introduce formally the notion of “expectations hypothesis” and that of “expectations
puzzle”.

2.7 The Expectations Hypothesis and the Puzzle

For any fixed integer n ≥ 1, let

Rn
t ≡ −1

n
log Dt,t+n, en

t ≡ Et

[
log

Dt+1,t+n

Dt,t+n

−R1
t

]
,

12Empirical evidence for such a humped term structure of volatility is discussed by Litterman, Scheinkman,
and Weiss (1988), Dai and Singleton (2000), Leippold and Wu (2001), and Piazzesi (2001).

13Note that, because ε > 0, our model does not converge to the Constantinides model as β → 0 (in the
Constantinides model, the riskfree rate is constant). If we impose the constraint that ε = 0, then the model
converges to the Constantinides result when β → 0. This shows that our model is a more radical departure
from Constantinides model than what might appear at first glance.

12



be the time-t yield of a n-period zero-coupon bond and the expected one-period holding
period excess return on the bond, respectively. Then it is definitionally true that (see Dai
and Singleton (2002a))

Et

[
Rn−1

t+1 −Rn
t

]
+

en
t

n− 1
=

1

n− 1

(
Rn

t −R1
t

)
, n > 1. (30)

The expectations hypothesis is basically the assumption that en
t is constant for all n. Under

this hypothesis, the following regression (which is often referred to as the Campbell-Shiller
“long-rate” regression)

Rn−1
t+1 −Rn

t = δn + βn
Rn

t −R1
t

n− 1
+ εt+1, n > 1, (31)

should produce a slope coefficient of 1. When the regression is run on nominal Treasury
yields with sample length T , however, the sample slope coefficients βTn are not only different
from 1, but are negative. Furthermore, the magnitude of βTn increases with n. These and
some other related stylized facts are collectively referred to as the expectations puzzle (see
Campbell and Shiller (1991)). Recently, Dai and Singleton (2002a) and Duffee (2002) show
that the expectations puzzle can be explained by a reduced-form dynamic term structure
model, provided that the market prices of risk take some flexible form so that the expected
excess bond returns are positively correlated with the term spreads. These studies, however,
do not provide an economic explanation for the requisite behavior of the market prices of risk,
a gap that this paper tries to fill. It is important to point out that the observed violation of
the expectations puzzle is an empirical statement on nominal yields, rather than real yields,
and there are both theoretical (see, e.g., McCallum (1994)), and empirical (see, e.g., Kugler
(1997)) reasons to believe that monetary policies may play an important role in the violation
of the expectations hypothesis in nominal yields. Nevertheless, it is useful to know to what
extent the puzzle may be explained by real effects alone.

The ability of an affine term structure model to capture the violation of the expectations
hypothesis can be illustrated by the following one-factor extended Gaussian model:14

Dt,T = EQ
[
e−

R T
t r(xs) ds

∣∣∣ xt

]
, (32)

r(x) = δ0 + δ1x, dx = κ(x̄− x)dt + ΣdBx, (33)

dQ
dP

= e−
1
2

R T
0 λ(xs)2 ds−

R T
t λ(xs) dBx

s , λ(x) = Σ−1 (λ0 + λ1x) , (34)

where δ1 > 0, κ > 0, and λ1 > 0. Equations (33) and (34) imply that the risk-neutral
dynamics of the state variable x is given by

dx = κQ(x̄Q − x) dt + Σ dBx,Q, where κQ = κ + λ1 and x̄Q =
κx̄− λ0

κQ . (35)

14This model and its multi-factor extensions are used by Dai and Singleton (2002a) to explain the expec-
tations puzzle.
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Substituting (35) into the bond pricing equation (32), we obtain

Dt,T = e−A(T−t)−B(T−t)rt ,

where A(τ) =

(
δ0 + δ1x̄

Q − δ2
1Σ

2

2κQ

)
(B(τ)− τ)− δ2

1Σ
2

4κQ
B(τ)2 and B(τ) =

1− e−κQτ

κQ .

From the loadings A(τ) and B(τ), we can compute

1. the n-period zero coupon bond yield: Rn
t = A(n)

n
+ B(n)

n
rt;

2. the one-period forward rate with settlement date n periods hence:

fn
t = [A(n + 1)− A(n)] + [B(n + 1)−B(n)] rt;

3. The conditional expectation of one-period spot rate prevailing at t + n:

Et[R
1
t+n] = A(1) + B(1)

[(
1− e−κn

)
r̄ + e−κn rt

]
.

It follows that the linear projection coefficient of the forward premium, fn
t − Et[R

1
t+n], onto

the forward spread, fn
t −R1

t , is given by

αn =
e−κn − [B(n + 1)−B(n)]/B(1)

1− [B(n + 1)−B(n)]/B(1)
≈ e−κn − e−κQn

1− e−κQn
≈ κQ − κ

κQ =
λ1

κ + λ1

,

where the approximation holds if κQ, κ, and the observation internal are sufficiently small.
If κ > 0 and λ1 > 0, then 0 < αn < 1. If β = 0, then λ1 = 0 and αn = 0. Thus, the forward
premium is predictable by the forward spread if and only if the habit stock is stochastic
(β 6= 0).

Backus, Foresi, Mozumdar, and Wu (2001) show that the predictability of forward pre-
mium by forward spread and the expectations puzzle are two sides of the same coin. We can
confirm this by computing the linear projection coefficient βn of the yield change, Rn−1

t+1 −Rn
t ,

onto the scaled term spread, 1
n−1

(Rn
t −R1

t ), i.e.,

βn =
cov

(
Rn−1

t+1 −Rn
t ,

Rn
t −R1

t

n−1

)
var

(
Rn

t −R1
t

n−1

) = (n− 1)×
cov

(
Rn−1

t+1 −Rn
t , Rn

t −R1
t

)
var (Rn

t −R1
t )

,

which are the population counterparts of βTn . It is easy to show that if 0 < αn < 1 and
roughly constant, then βn becomes negative and increases in magnitude with n at sufficiently
large n – capturing the essence of the expectations puzzle. Furthermore, the speed at which
|βn| increases with n is controlled by the value of λ1 or equivalently the volatility of the habit
shock β. These results will be illustrated graphically in the next section.
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2.8 Stochastic Habit and the Expectations Puzzle

We will now close the loop by showing that the extended one-factor Gaussian model (32)–
(34) emerges as an approximation to the two-factor term structure dynamics implied by
our model of stochastic internal habit. As a by-product, we will derive the reduced-form
parameters (δ0, δ1, κ, x̄, Σ, λ0, λ1) in terms of the structural parameters (ρ, γ, b, κ, β, δ, z̄, ε).
The mean-reversion coefficient κ that appears in both parameter vectors is indeed the same:
mean reversion of the interest rate comes directly from habit persistence in this model.

An one-factor approximation of the structural model is obtained by shutting down the
effect of the production shock on the term structure. This is done by setting z∗ to its long-
run mean z̄ in the dynamics of the habit stock x (21), and by integrating out the production
shock in (27). The resulting model is given by

Dt,T = EQ
[
e−

R T
t r(xs) ds

∣∣∣ xt

]
, r(x) =

1− κf ′(x)

f(x)/x
, f(x) = η

1− e−εx

ε
,

dx =

(
bz̄ − κx +

εβ2

2
z̄2

)
dt + βz̄dBx,

dQ
dP

= e−
1
2

R T
0 λx(xs)2 ds−

R T
t λx(xs) dBx

s , λx(x) = δΛw(x).

The one-factor extended Gaussian model (32)–(34) is then obtained by linearizing the riskfree
rate and the market price of risk around the long-run mean of x.15 This procedure provides
a mapping between the reduced-form parameters and the structural parameters:

δ0 = r̄ − δ1x̄, δ1 = r̄

[
−κf ′′(x̄)

1− κf ′(x̄)
+

f(x̄)− x̄f ′(x̄)

x̄f(x̄)

]
, r̄ =

1− κf ′(x̄)

f(x̄)/x̄
, (36)

x̄ =
b

κ
z̄ +

εβ2

2κ
z̄2, Σ = βz̄, λ0 = δβz̄Λ(x̄)− λ1x̄, λ1 = δβz̄Λ′(x̄). (37)

The sign restrictions κ > 0, δ1 > 0, and λ1 > 0 in the reduced-form model can now be
explained in terms of the theoretical properties of the structural model. First, κ > 0 because
habit is persistent. Second, δ1 > 0 because r(x) is monotonically increasing in x. Finally,
λ1 > 0 because the habit shock Bx is negatively correlated with the production shock Bw,
namely δ < 0, and the Sharpe ratio Λ(x) is monotonically decreasing in x under very general
conditions.16

15The one-factor Quadratic-Gaussian (QG) model is obtained by a quadratic approximation of r(x) and
a linear approximation of λ(x). Dai and Singleton (2002b) report that when calibrated to the observed
forward rates, this model has virtually the same performance as the one-factor extended Gaussian model in
explaining the expectations puzzle. The multi-factor versions of the QG model are extensively studied by,
e.g., Lu (1999), Leippold and Wu (2001), and Ahn, Dittmar, and Gallant (2002).

16The structural model does not always have the properties r′(x) > 0 and Λ′(x) < 0. The requirement
that the model possesses these properties amounts to an extra assumption that characterizes implicitly a
region in the parameter space in which the model is consistent with the expectations puzzle (at least in
terms of the direction in which the expectations hypothesis is violated). As we shall see in the next section,
this is not a strong restriction.
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3 Calibration

The preceding sections have laid out the theoretical model and its term structure implica-
tions, and have established a close linkage between the expectations puzzle and the volatility
of the habit shock. However, we have left open the question of whether there exist reasonable
values of the structural parameters under which the model can match the Campbell-Shiller
regression coefficients computed from the observed data. In this section, we answer this ques-
tion by calibrating the model to observed macro and asset return moments, and compute
Campbell-Shiller regression coefficients explicitly under different volatility levels of the habit
shock. To facilitate comparison with extant models, we will calibrate our model to both
sample moments used by Campbell and Cochrane (1999) and those used by Constantinides
(1990). In particular, we will force our model to fit the average level of the riskfree rate and
the Sharpe ratio. Thus, the riskfree rate puzzle and the equity premium puzzle are absent
in the model, no matter which set of sample moments are used.

We begin by calibrating the model to sample moments used by Campbell and Cochrane
(1999): the historical mean of consumption growth rate is G = 1.89%, volatility of con-
sumption growth rate is σc = 1.5%, historical mean of riskfree rate is R = 0.94%, and the
the historical average of the equity Sharpe ratio is Λ̄ = 0.4341. To calibrate the correlation
between the habit shock and the production shock, we use the historical average Sharpe
ratio of real bonds is Λ̄P = 0.374 from Campbell and Viceira (2001).

In linking the model to the sample moments, we need to make three assumptions. First,
we assume that the population growth rate (perhaps augmented by technology growth) is
the same as the aggregate consumption growth rate, and is equal to G. This means that
the subjective discount rate in the per capita economy is equal to that in the aggregate
economy plus G, the mean reversion coefficients of the per capita variables are equal to
those of the aggregate variables plus G, the annual returns and interest rates in the per
capita economy are equal to equal to those in the aggregate economy minus G, and the
contemporaneous ratios, volatilities, correlations in the per capita economy are the same as
those in the aggregate economy. This implies, for an example, that the long-run value of the
riskfree rate r(x), defined by r̄ = r(x̄), is equal to R−G = −0.95%. Second, since the habit
process is not observed, the parameters b, κ, and β can not be calibrated directly. What we
will do is to fix them at some plausible values, and calibrate the preference parameters from
moments of asset returns and consumption growth. Finally, it is easy to check that, if we
don’t care about the absolute scale of the economy, then ε is not identified. Thus, without
loss of generality, we will set ε = 1. Consequently, f(x) = η (1− e−x).

The rest of the subsection gives a detailed illustration of the calibration procedure and
the performance of the resulting model in explaining the expectations puzzle. Initially, we
fix γ = −2, κ = 0.0232, and β = 0.5, which is equivalent to fixing b = 0.201, κ = 0.0232,
and β = 0.5. The benefit of fixing γ rather than b is that it allows us to calibrate the rest of
the parameters one by one using an associated moment in a sequential manner, rather than
calibrate several parameters jointly. We will then tabulate and discuss calibration results for
other parameter configurations.
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The Subjective Discount Rate
The subjective discount rate ρ can be obtained by imposing the restriction (for station-

arity) that the expected growth rate of z∗ is equal to 0 at z∗ = z̄ and x = x̄. Ignoring terms
associated with β, we have

ρ ≈ r̄ +
2− γ

2(1− γ)
Λ̄2 = 0.116.

Correlation between Production and Habit Shocks
It is straight-forward to show that under the one-factor Gaussian approximation, the

average Sharpe ratio of the real bonds is equal to −δΛ(x). Thus,

δ = −Λ̄P

Λ̄
= −0.8615 < 0.

Habit Parameter
Since c∗ = z∗ + x, and the volatility of z∗ is approximately g(x) = Λ(x)

1−γ
, we have

σc ≈
z̄

z̄ + x̄

Λ(x̄)

1− γ
≈ κ

b + κ
× Λ̄

1− γ
= 1.5%.

It follows that b = 0.201.

Long-run Means of Habit Stock and Surplus Consumption
First, we assume that the riskfree rate is equal to 0% at zero habit, i.e., R0 = r(0)+G =

0%, or r(0) = −1.89%. Thus,

η =
1

r(0) + κ
=

1

−1.89% + 0.0232
= 230.947.

Next, equating the long-run mean of the riskfree rate with the historical mean of the riskfree
rate yields

r̄ = r(x̄) =
1− κf ′(x̄)

f(x̄)/x̄
= −0.95%, (38)

which implies x̄ = 0.745.
It follows that f(x̄) = 121.310, f ′(x̄) = 109.637, and f ′′(x̄) = −109.637, which will be

used to compute the reduced-form parameters δ0 and δ1. Furthermore, assuming that the
expected growth rate of the habit stock is zero at the long-run means, we obtain

z̄ ≈ κ

b
x̄ = 0.0862.

State-dependence: r′(x̄) and Λ′(x̄)
Differentiating (12) with respect to x, we have

r′(x̄) =
1− κ(f ′(x̄) + x̄f ′′(x̄))

f(x̄)
− f ′(x̄)

f(x̄)
r̄ = 0.0115 > 0.
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Equation (19) implies that Λ′(x) ≈ (1− γ)g′(x). Differentiating equation (18) yields

Λ′(x̄) ≈ −(1− γ)
r′(x̄)− bf ′′(x̄)h(x̄)

Λ(x̄)
= −0.432 < 0,

where we have used equations (19) and (18), respectively, to obtain

g(x̄) ≈ Λ(x̄)

1− γ
= 0.145, h(x̄) ≈ −

γ
2
g(x̄)2 + γ

1−γ

[
r(x̄)− ρ

γ

]
1 + bf ′(x̄)

= 0.232%.

Reduced-form Parameters
Now that we have all the information we need to compute the reduced-form parameters,

we can use equations (36) and (37) to obtain

δ0 = −0.0181, δ1 = 0.0115, κ = 0.0232, x̄ = 0.745, Σ = 0.043, λ0 = −0.028, λ1 = 0.016.

Implications for the Expectations Puzzle
Based on the reduced-form parameters, we can compute the model-implied expected

excess return en
t , and then compute the linear projection coefficient φn of en

t on the term
spread Rn

t −R1
t :

φn =
cov (en

t , R
n
t −R1

t )

var (Rn
t −R1

t )
.

If the model is correct, then for each n, equation (30) implies that 1 − φn is equal to βn,
i.e., φn represents the population value of the negative bias from 1 in the Campbell-Shiller
“long-rate” regression. With sample length T , the sample counterpart 1 − φTn should be
close the Campbell-Shiller regression coefficients βTn . Figure 1 plots 1 − φTn implied by the
model (solid line) against βTn . Since the model has only one factor, it misses some details
near the short end (less than 2 years) and then overcompensates slightly in the long-end.
Overall, however, the model does a fine job of capturing the broad trend and magnitude of
the regression coefficients across the entire maturity spectrum.

Table 1 reports the parameter values calibrated above in column I, and 7 additional
parameter configurations calibrated in the same way under different fixed values of γ, κ,
and β. In columns II to VII, the values of γ, κ, or β are relatively small variations of those
used in column I. In column VIII, the risk aversion coefficient is much larger (1 − γ = 9)
and the volatility of the habit shock is much smaller (β = 0.1) compared to those in column
I, but the two models are almost indistinguishable in their ability to fit the Campbell-
Shiller regression coefficients. The model-implied Campbell-Shiller regression coefficients for
all eight parameter configurations are reported in the top half of Table 2 and plotted in
Figure 2, together with the actual Campbell-Shiller regression coefficients (the last column
in Table 2 and the “cross” line indicated by “C-S”).

The last row of Table 1, which is the ratio of κ and λ1, predicts how well each model
captures the expectations puzzle. When κ

λ1
is around 1.45, as in columns I and VIII, the
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model replicates nicely the biases in Campbell-Shiller regression coefficients. This value of
κ/λ1 represents some sort of a “magic number” for the U.S. nominal term structure, it
implies that

αn ≈
λ1

κ + λ1

=
1

1.45 + 1
= 0.41,

which is roughly the average level of predictability of the forward premiums documented by
Fama and Bliss (1987) and Backus, Foresi, Mozumdar, and Wu (2001). When κ

λ1
> 1.45, as in

columns II, V, and VI, the model does not generate enough biases, because the predictability
(or state-dependence) of market prices of risk is not strong enough against mean reversion
of the interest rate. In contrast, when κ

λ1
< 1.45, as in columns III, IV, and VII, the model

generates too much biases.
Table 1 also indicates that, keeping everything else the same (adjusting calibrated pa-

rameters if necessary so that the model remains free of the equity premium puzzle and the
riskfree rate puzzle), a larger risk aversion coefficient, or a smaller mean reversion coefficient,
or a larger volatility of the habit shock helps generates larger biases from the expectations
hypothesis and therefore can be helpful in explaining the expectations puzzle. The effects of
varying κ and β are easy to understand. It is a bit more subtle why the risk aversion coeffi-
cient also affects the model’s ability to explain the expectations puzzle. The reason is that
the model is required to explain both the equity premium puzzle and the riskfree rate puzzle.
A larger risk aversion parameter implies that the equity premium puzzle can be explained at
a higher level of surplus consumption ratio. Since the riskfree rate puzzle pins down the level
of the per capita habit stock, a larger risk aversion parameter therefore implies a higher level
of per capita surplus consumption, which in turn implies that the expected bond returns or
forward premiums are more predictable (λ1 is larger – c.f. columns II and III).17

The above results indicate that the model has a great deal of flexibility in explaining
simultaneously the expectations puzzle, the equity premium puzzle, and the riskfree rate
puzzle. Another useful illustration of this point is to calibrate the model to sample moments
used by Constantinides (1990). Table 3 reports the result of this exercise. In each column, the
values of 1− γ, a = b + κ, and b are fixed at one of six set of values used by Constantinides
(1990), and two new parameters are added to account for stochastic nature of the habit
stock: the correlation coefficient is fixed at δ = −0.8615 as before, and the volatility of
the habit shock is fixed at either of the following two values: 0.1 or 0.5. Note, however,
that we do not take as given the subjective discount rate ρ used by Constantinides (1990),
because it would imply that the long-run growth rates of consumption and habit are different.
Instead, we calibrate ρ so that both growth rates are zero in the per capita or detrended
economy. Columns I and VII show that when a or b is too small (the ratio of a and b
is fixed), the model is incapable of explaining the expectations puzzle: the riskfree rate is
decreasing in x, the Sharpe ratio is increasing in x, consequently λ1 is negative. Since λ1 6= 0,

17The bottom half of Table 2 reports and Figure 3 plots the “risk-premium adjusted Campbell-Shiller
regression coefficients”, defined as the linear projection coefficients of Rn−1

t+1 − Rn
t + en

t

n−1 on Rn
t −R1

t

n−1 . If the
model captures the time-varying risk premium correctly, then equation (30) implies that these projection
coefficients should be close to 1 for all n (see Dai and Singleton (2002a)). This is just a different way of
viewing the same results reported above.
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the expectations hypothesis is violated, but the biases are in the wrong direction. For all
other parameter configurations, the expectations hypothesis is violated in the right direction.
Quantitatively, however, only column VIII comes close to matching the observed Campbell-
Shiller regression coefficients, which is seen clearly by the fact that κ/λ1 is the closest to
1.45 in column VIII. This is also illustrated in Figures 4 and 5, which plot, respectively, the
model-implied Campbell-Shiller regression coefficients and risk-premium adjusted regression
coefficients against the observed Campbell-Shiller regression coefficients. Only the curve
labeled VIII comes close to matching the data. (The cases I and XII are excluded in the
plot because they are in the wrong direction.) Clearly the model is capable of fitting the
Campbell-Shiller regression coefficients closely by adjusting β upward by an appropriate
amount.

4 Conclusion

This paper presents an economic explanation for the violation of the expectations hypothesis
based on a consumption based asset pricing model with stochastic internal habit. In our
model, habit persistence gives rise to mean reversion in real interest rates, and habit shocks
give rise to a time-varying risk premium or predictability of expected bond returns. We show
how the competition between mean reversion and time-varying risk premium determines the
degree in which the expectations hypothesis is violated.

The model explains the expectations puzzle without affecting its ability to explain both
the equity premium puzzle and the riskfree rate puzzle. Even when the model is required
to explain all three puzzles simultaneously, it is still left with ample degrees of freedom to
potentially explain additional features of asset returns and macro-economic aggregates.

Although our model allows the long-run growth rate of the economy to be persistent or
mean-reverting, it is calibrated under the assumption that the long-run growth rate economy
be constant. An autonomous mean-reverting long-run growth rate amounts to adding an
additional factor to the real riskfree rate, but does not affect the market prices of consumption
and habit risk. To the extent that the long-run risk is correlated with the consumption or the
habit risk, it is priced in the equilibrium and represents an additional source of variation in
the expected bond returns. Thus, our model is complimentary to (and in some sense nests)
the model of Wachter (2001), who extends Campbell and Cochrane (1999) by introducing
a mean-reverting long-run growth rate to the economy, and Bansal and Yaron (2000), who
consider the joint effect of the long-run risk and a non-state-separable preference.

We end the paper by raising some outstanding theoretical and empirical questions that
are beyond the scope of this paper. First, McCallum (1994) shows that if a monetary policy
aimed at interesting rate smoothing induces mean reversion in the nominal interest rates and
the risk premium associated with monetary shocks is an AR(1) process, then the expectations
hypothesis is violated in the nominal term structure. Furthermore, his model predicts that
the degree in which the expectations hypothesis is violated can vary across countries with
different type of monetary policies and within a country if monetary regimes changes over
time. Such variations are indeed found by Kugler (1997) and Hsu and Kugler (1997). Our
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model captures very much the same intuition that the competition between mean reversion
and time-varying risk premium lies at the heart of the expectations puzzle. However, in
our model, mean reversion of the real interest rates arises from habit persistence rather
than monetary policy, and the time-varying risk premium arises from real shocks (habit
shocks) rather than nominal shocks. To the extent that the degree of habit persistence and
the volatility of the habit shock may vary across different countries and over time, the real
effect captured by our model may also help explain cross-country and/or temporal variation
in the violation of the expectations hypothesis. Obviously, the nominal and real effects
are complimentary to each other and both can be accommodated in a richer model. An
interesting empirical question is whether and how the two effects can be disentangled.

Second, for the purpose of explaining the expectations puzzle, our relatively simple
continuous-time specification of the habit process is sufficient, and the Markovian struc-
ture imposed on the investment opportunity set facilitates the development of the economic
intuition. However, in order to address more general asset pricing questions such as the
econometric rejection of parametric models with deterministic habit by Euler-equation based
tests and the difficulty of such models to explain the Hansen-Jagannathan volatility bounds
for the intertemporal marginal rate of substitution, it may very well be necessary to con-
sider more general specifications of the habit and endowment processes. Our discrete-time
formulation of a stochastic habit stock (see equations (2) and (3)) are amendable for such
extensions. For examples, (i) the distributed lag B(L) may contain arbitrary weights, re-
laxing the assumption of uniformly positive and geometrically declining weights; this allows
the model to accommodate both habit formation and local substitution along the line of
Dunn and Singleton (1986), Gallant and Tauchen (1989), Ferson and Constantinides (1991),
Eichenbaum and Hansen (1990), Hansen and Jagannathan (1991), and Heaton (1995); (ii)
the conditional distribution of yt+1 may depend on the entire history of zt, rather than the
current zt alone; (iii) the habit shock vt+1 may have an autocorrelation structure of its own
rather than being an i.i.d. shock; and (iv) the Markovian assumption may be relaxed by
considering more flexible endowment specifications.

Finally, the model begs a rather intriguing question: where do the habit shocks come
from? Do they arise from unobservable taste shocks? Can they be linked to or interpreted
as observed macro-economic shocks?

21



T
ab

le
1:

C
al

ib
ra

te
d

P
ar

am
et

er
s

P
ar

am
.

I
II

II
I

IV
V

V
I

V
II

V
II

I

1
−

γ
3.

00
00

2.
00

00
4.

00
00

3.
00

00
3.

00
00

3.
00

00
3.

00
00

9.
00

00
κ

0.
02

32
0.

02
32

0.
02

32
0.

02
00

0.
03

00
0.

02
32

0.
02

32
0.

02
08

β
0.

50
00

0.
50

00
0.

50
00

0.
50

00
0.

50
00

0.
10

00
1.

00
00

0.
10

00
δ

-0
.8

61
6

-0
.8

61
6

-0
.8

61
6

-0
.8

61
6

-0
.8

61
6

-0
.8

61
6

-0
.8

61
6

-0
.8

61
6

b
0.

20
09

0.
31

29
0.

14
48

0.
17

29
0.

25
94

0.
20

09
0.

20
09

0.
04

62
ρ

0.
11

61
0.

13
18

0.
10

83
0.

11
61

0.
11

61
0.

11
61

0.
11

61
0.

09
52

x̄
0.

74
50

0.
74

50
0.

74
50

1.
05

40
0.

47
46

0.
74

50
0.

74
50

0.
94

77
z̄

0.
08

62
0.

05
53

0.
11

95
0.

12
19

0.
05

49
0.

08
62

0.
08

62
0.

42
77

r′
(x̄

)
0.

01
15

0.
01

15
0.

01
15

0.
00

73
0.

01
91

0.
01

15
0.

01
15

0.
00

85
Λ
′ (
x̄
)

-0
.4

31
8

-0
.4

32
1

-0
.4

31
8

-0
.4

12
6

-0
.4

76
5

-0
.4

31
8

-0
.4

31
8

-0
.3

90
0

δ 0
-0

.0
18

1
-0

.0
18

1
-0

.0
18

1
-0

.0
17

2
-0

.0
18

6
-0

.0
18

1
-0

.0
18

1
-0

.0
17

5
δ 1

0.
01

15
0.

01
15

0.
01

15
0.

00
73

0.
01

91
0.

01
15

0.
01

15
0.

00
85

κ
0.

02
32

0.
02

32
0.

02
32

0.
02

00
0.

03
00

0.
02

32
0.

02
32

0.
02

08
x̄

0.
74

50
0.

74
50

0.
74

50
1.

05
40

0.
47

46
0.

74
50

0.
74

50
0.

94
77

Σ
0.

04
31

0.
02

77
0.

05
97

0.
06

09
0.

02
74

0.
00

86
0.

08
62

0.
04

28
λ

0
-0

.0
28

0
-0

.0
18

0
-0

.0
38

9
-0

.0
45

6
-0

.0
15

6
-0

.0
05

6
-0

.0
56

1
-0

.0
29

6
λ

1
0.

01
60

0.
01

03
0.

02
22

0.
02

17
0.

01
13

0.
00

32
0.

03
21

0.
01

44
κ
/λ

1
1.

45
00

2.
25

60
1.

04
50

0.
92

32
2.

66
30

7.
24

80
0.

72
48

1.
45

00

In
ea

ch
p
ar

am
et

er
co

n
fi
gu

ra
ti

on
,

1
−

γ
,

κ
,

an
d

β
ar

e
fi
x
ed

.
T

h
e

re
st

of
th

e
st

ru
ct

u
ra

l
p
ar

am
et

er
s
ar

e
ca

li
b
ra

te
d

to
th

e
fo

ll
ow

in
g

m
om

en
ts

:
th

e
lo

n
g-

ru
n

gr
ow

th
ra

te
G

=
1.

89
%

,
th

e
ri

sk
fr

ee
ra

te
R

=
0.

94
%

,
vo

la
ti
li
ty

of
co

n
su

m
p
ti
on

gr
ow

th
ra

te
σ

c
=

1.
5%

,
th

e
eq

u
it
y

S
h
ar

p
e

ra
ti

o
Λ̄

=
0.

43
41

,
th

e
re

al
b
on

d
S
h
ar

p
e

ra
ti
o

Λ̄
P

=
0.

37
4.

W
e

al
so

im
p
os

e
th

e
fo

ll
ow

in
g

re
st

ri
ct

io
n
s:

th
e

lo
n
g-

ru
n

m
ea

n
of

th
e

gr
ow

th
ra

te
fo

r
p
er

ca
p
it

a
su

rp
lu

s
co

n
su

m
p
ti

on
an

d
th

at
of

h
ab

it
st

o
ck

ar
e

0
an

d
th

e
ri
sk

fr
ee

ra
te

at
ze

ro
h
ab

it
le

ve
l
is

0%
.

22



T
ab

le
2:

M
o
d
el

-i
m

p
li
ed

C
am

p
b
el

l-
S
h
il
le

r
R

eg
re

ss
io

n
C

o
effi

ci
en

ts

Y
ea

r
I

II
II

I
IV

V
V

I
V

II
V

II
I

C
-S

O
ri
gi

n
al

C
am

p
b
el

l-
S
h
il
le

r
R

eg
re

ss
io

n
s

1
-0

.9
88

5
-0

.4
97

9
-1

.3
82

2
-1

.5
37

8
-0

.3
30

0
0.

40
95

-1
.8

27
9

-0
.9

94
5

-1
.3

66
4

2
-1

.4
62

8
-0

.8
55

2
-1

.9
50

4
-2

.1
46

3
-0

.6
43

9
0.

26
86

-2
.5

02
3

-1
.4

72
2

-1
.6

92
1

3
-1

.8
29

9
-1

.1
31

8
-2

.3
90

1
-2

.6
18

6
-0

.8
85

1
0.

15
95

-3
.0

24
1

-1
.8

42
8

-1
.8

82
1

4
-2

.1
75

9
-1

.3
92

6
-2

.8
04

5
-3

.0
64

8
-1

.1
11

4
0.

05
67

-3
.5

15
6

-2
.1

92
6

-2
.1

23
9

5
-2

.5
19

5
-1

.6
51

5
-3

.2
15

9
-3

.5
08

5
-1

.3
35

3
-0

.0
45

5
-4

.0
03

5
-2

.5
40

5
-2

.4
07

5
6

-2
.8

65
3

-1
.9

12
1

-3
.6

29
8

-3
.9

55
7

-1
.5

59
9

-0
.1

48
3

-4
.4

94
4

-2
.8

91
0

-2
.7

20
7

7
-3

.2
13

7
-2

.1
74

8
-4

.0
46

8
-4

.4
07

0
-1

.7
85

5
-0

.2
52

0
-4

.9
88

6
-3

.2
44

7
-3

.0
55

0
8

-3
.5

63
9

-2
.4

38
9

-4
.4

65
9

-4
.8

61
4

-2
.0

11
4

-0
.3

56
2

-5
.4

85
2

-3
.6

00
6

-3
.4

04
5

9
-3

.9
15

1
-2

.7
03

8
-4

.8
86

1
-5

.3
17

7
-2

.2
37

2
-0

.4
60

8
-5

.9
82

9
-3

.9
58

1
-3

.7
65

6
10

-4
.2

66
6

-2
.9

69
0

-5
.3

06
5

-5
.7

75
2

-2
.4

62
4

-0
.5

65
6

-6
.4

80
7

-4
.3

16
4

-4
.1

36
4

R
is

k
-p

re
m

iu
m

A
d
ju

st
ed

C
am

p
b
el

l-
S
h
il
le

r
R

eg
re

ss
io

n
s

1
0.

62
20

0.
13

14
1.

01
58

1.
17

13
-0

.0
36

4
-0

.7
75

9
1.

46
14

0.
62

81
-1

.3
66

4
2

0.
77

07
0.

16
32

1.
25

83
1.

45
42

-0
.0

48
2

-0
.9

60
7

1.
81

02
0.

78
01

-1
.6

92
1

3
0.

94
78

0.
24

98
1.

50
81

1.
73

66
0.

00
30

-1
.0

41
6

2.
14

20
0.

96
07

-1
.8

82
1

4
1.

05
20

0.
26

86
1.

68
06

1.
94

09
-0

.0
12

5
-1

.1
80

6
2.

39
17

1.
06

87
-2

.1
23

9
5

1.
11

20
0.

24
40

1.
80

83
2.

10
10

-0
.0

72
2

-1
.3

62
0

2.
59

60
1.

13
29

-2
.4

07
5

6
1.

14
45

0.
19

14
1.

90
91

2.
23

50
-0

.1
60

8
-1

.5
72

4
2.

77
36

1.
17

03
-2

.7
20

7
7

1.
15

86
0.

11
98

1.
99

18
2.

35
20

-0
.2

69
6

-1
.8

03
1

2.
93

36
1.

18
96

-3
.0

55
0

8
1.

15
94

0.
03

44
2.

06
14

2.
45

69
-0

.3
93

1
-2

.0
48

3
3.

08
07

1.
19

61
-3

.4
04

5
9

1.
14

96
-0

.0
61

7
2.

12
05

2.
55

22
-0

.5
28

3
-2

.3
04

7
3.

21
74

1.
19

25
-3

.7
65

6
10

1.
13

03
-0

.1
67

3
2.

17
02

2.
63

89
-0

.6
73

9
-2

.5
70

8
3.

34
44

1.
18

00
-4

.1
36

4

23



F
ig

u
re

1:
M

o
d
el

-i
m

p
li
ed

an
d

A
ct

u
al

C
am

p
b
el

l-
S
h
il
le

r
R

eg
re

ss
io

n
C

o
effi

ci
en

ts

0
20

40
60

80
10

0
12

0
−4

.5−4

−3
.5−3

−2
.5−2

−1
.5−1

−0
.50

M
on

th

Campbell−Shiller Long−Rate Regressions

M
od

el
 Im

pl
ie

d
C

am
pb

el
l−

S
hi

lle
r

T
h
e

so
li
d

li
n
e

p
lo

ts
th

e
m

o
d
el

-i
m

p
li
ed

C
am

p
b
el

l-
S
h
il
le

r
re

gr
es

si
on

co
-

effi
ci

en
ts

,
i.
e.

,
1

-
φ
T n
,
w

h
er

e
φ
T n

is
th

e
li
n
ea

r
p
ro

je
ct

io
n

co
effi

ci
en

t
fr

om
m

o
d
el

-i
m

p
li
ed

ex
p
ec

te
d

ex
ce

ss
re

tu
rn

en t
on

th
e

te
rm

sp
re

ad
R

n t
−

R
1 t
.

T
h
e

m
o
d
el

p
ar

am
et

er
s
ar

e
re

p
or

te
d

in
co

lu
m

n
“I

”
in

T
ab

le
1.

T
h
e

y
ie

ld
d
at

a
co

m
es

fr
om

th
e

sm
o
ot

h
ed

F
am

a-
B

li
ss

d
at

a
se

t
co

ve
ri

n
g

J
an

u
ar

y,
19

70
to

D
ec

em
b
er

,
19

95
(T

=
32

0
m

on
th

s)
.

24



F
ig

u
re

2:
O

ri
gi

n
al

C
am

p
b
el

l-
S
h
il
le

r
R

eg
re

ss
io

n
C

o
effi

ci
en

ts

0
20

40
60

80
10

0
12

0
−7−6−5−4−3−2−101

M
on

th

Campbell−Shiller Coefficients

I

II

III

IV

V

V
I V

IIV
III

C
−S

E
ac

h
so

li
d

li
n
e

p
lo

ts
th

e
m

o
d
el

-i
m

p
li
ed

C
am

p
b
el

l-
S
h
il
le

r
re

gr
es

si
on

co
-

effi
ci

en
ts

,
i.
e.

,
1

-
φ
T n
,
w

h
er

e
φ
T n

is
th

e
li
n
ea

r
p
ro

je
ct

io
n

co
effi

ci
en

t
fr

om
m

o
d
el

-i
m

p
li
ed

ex
p
ec

te
d

ex
ce

ss
re

tu
rn

en t
on

th
e

te
rm

sp
re

ad
R

n t
−

R
1 t
.

T
h
e

la
b
el

at
ta

ch
ed

to
ea

ch
li
n
e

in
d
ic

at
es

th
e

co
lu

m
n

in
T
ab

le
1

fo
r

th
e

as
so

ci
at

ed
m

o
d
el

p
ar

am
et

er
s.

T
h
e

li
n
e

in
d
ic

at
ed

b
y

“C
-S

”
ar

e
th

e
ac

tu
al

C
am

p
b
el

l-
S
h
il
le

r
re

gr
es

si
on

co
effi

ci
en

ts
.

25



F
ig

u
re

3:
R

is
k
-p

re
m

iu
m

A
d
ju

st
ed

C
am

p
b
el

l-
S
h
il
le

r
R

eg
re

ss
io

n
C

o
effi

ci
en

ts

0
20

40
60

80
10

0
12

0
−5−4−3−2−101234

M
on

th

Risk−premium Adjusted Campbell−Shiller Coefficients

I

II

III
IV

V

V
IV

II V
III

C
−S

26



T
ab

le
3:

C
on

st
an

ti
n
id

es
M

o
d
el

R
ec

al
ib

ra
te

d

P
ar

am
.

I
II

II
I

IV
V

V
I

V
II

V
II

I
IX

X
X

I
X

II
1
−

γ
2.

20
00

2.
20

00
2.

20
00

2.
20

00
2.

20
00

2.
20

00
2.

20
00

2.
20

00
2.

20
00

2.
20

00
2.

20
00

2.
20

00
κ

0.
00

70
0.

02
80

0.
05

00
0.

07
20

0.
09

50
0.

10
80

0.
00

70
0.

02
80

0.
05

00
0.

07
20

0.
09

50
0.

10
80

β
0.

10
00

0.
10

00
0.

10
00

0.
10

00
0.

10
00

0.
10

00
0.

50
00

0.
50

00
0.

50
00

0.
50

00
0.

50
00

0.
50

00
δ

-0
.8

61
5

-0
.8

61
5

-0
.8

61
5

-0
.8

61
5

-0
.8

61
5

-0
.8

61
5

-0
.8

61
5

-0
.8

61
5

-0
.8

61
5

-0
.8

61
5

-0
.8

61
5

-0
.8

61
5

b
0.

09
30

0.
17

20
0.

25
00

0.
32

80
0.

40
50

0.
49

20
0.

09
30

0.
17

20
0.

25
00

0.
32

80
0.

40
50

0.
49

20
ρ

0.
08

79
0.

08
79

0.
08

79
0.

08
79

0.
08

79
0.

08
79

0.
08

79
0.

08
79

0.
08

79
0.

08
79

0.
08

79
0.

08
79

x̄
-0

.7
17

0
0.

55
53

0.
24

71
0.

15
97

0.
11

67
0.

10
13

-0
.7

17
0

0.
55

53
0.

24
71

0.
15

97
0.

11
67

0.
10

13
z̄

-0
.0

54
0

0.
09

04
0.

04
94

0.
03

51
0.

02
74

0.
02

22
-0

.0
54

0
0.

09
04

0.
04

94
0.

03
51

0.
02

74
0.

02
22

r′
(x̄

)
0.

01
81

0.
01

72
0.

04
01

0.
06

24
0.

08
55

0.
09

85
0.

01
81

0.
01

72
0.

04
01

0.
06

24
0.

08
55

0.
09

85
Λ
′ (
x̄
)

-0
.4

42
4

-0
.3

89
3

-0
.5

12
2

-0
.6

40
2

-0
.7

75
7

-0
.8

57
0

-0
.4

42
4

-0
.3

89
3

-0
.5

12
2

-0
.6

40
2

-0
.7

75
7

-0
.8

57
0

δ 0
-0

.0
08

3
-0

.0
17

8
-0

.0
18

2
-0

.0
18

3
-0

.0
18

3
-0

.0
18

3
-0

.0
08

3
-0

.0
17

8
-0

.0
18

2
-0

.0
18

3
-0

.0
18

3
-0

.0
18

3
δ 1

0.
00

00
0.

01
72

0.
04

01
0.

06
24

0.
08

55
0.

09
85

0.
00

00
0.

01
72

0.
04

01
0.

06
24

0.
08

55
0.

09
85

κ
0.

00
70

0.
02

80
0.

05
00

0.
07

20
0.

09
50

0.
10

80
0.

00
70

0.
02

80
0.

05
00

0.
07

20
0.

09
50

0.
10

80
x̄

-0
.7

17
0

0.
55

53
0.

24
71

0.
15

97
0.

11
67

0.
10

13
-0

.7
17

0
0.

55
53

0.
24

71
0.

15
97

0.
11

67
0.

10
13

Σ
-0

.0
05

4
0.

00
90

0.
00

49
0.

00
35

0.
00

27
0.

00
22

-0
.0

27
0

0.
04

52
0.

02
47

0.
01

75
0.

01
37

0.
01

11
λ

0
0.

00
02

-0
.0

04
5

-0
.0

02
1

-0
.0

01
4

-0
.0

01
1

-0
.0

00
9

0.
00

11
-0

.0
22

6
-0

.0
10

4
-0

.0
07

0
-0

.0
05

4
-0

.0
04

3
λ

1
-0

.0
02

1
0.

00
30

0.
00

22
0.

00
19

0.
00

18
0.

00
16

-0
.0

10
3

0.
01

52
0.

01
09

0.
00

97
0.

00
91

0.
00

82
κ
/λ

1
-3

.4
04

0
9.

23
60

22
.9

30
0

37
.2

30
0

51
.9

20
0

65
.7

70
0

-0
.6

80
7

1.
84

70
4.

58
60

7.
44

60
10

.3
80

0
13

.1
50

0

T
h
e

m
o
d
el

is
ca

li
b
ra

te
d

to
th

e
fo

ll
ow

in
g

m
om

en
ts

u
se

d
b
y

C
on

st
an

ti
n
id

es
(1

99
0)

:
th

e
m

ea
n

co
n
su

m
p
ti

on
gr

ow
th

ra
te

G
=

1.
83

%
;

th
e

m
ea

n
S
h
ar

p
e

ra
ti
o

Λ̄
=

0
.0

6
1
6
.5

%
=

0.
36

36
,

th
e

m
ea

n
ri

sk
fr

ee
ra

te
R

=
1%

.
T

h
e

p
ar

am
et

er
s

γ
,
a

=
κ

+
b,

an
d

b
ar

e
al

so
ta

ke
n

fr
om

C
on

st
an

ti
n
id

es
(1

99
0)

.
H

ow
ev

er
,
ρ

is
ca

li
b
ra

te
d

h
er

e,
ra

th
er

th
an

ta
ke

n
fr

om
C

on
st

an
ti

n
id

es
(1

99
0)

.
T

h
e

va
lu

e
of

ρ
=

0.
03

7
u
se

d
in

C
on

st
an

ti
n
id

es
(1

99
0)

w
ou

ld
im

p
ly

th
at

th
e

lo
n
g-

ru
n

gr
ow

th
ra

te
s

of
th

e
co

n
su

m
p
ti

on
an

d
th

e
h
ab

it
st

o
ck

ar
e

d
iff

er
en

t.
T

w
o

p
ar

am
et

er
s

as
so

ci
at

ed
h
ab

it
sh

o
ck

s
ar

e
n
ew

:
δ

=
−

0.
86

15
an

d
β

=
0.

1
or

0.
5.

.

27



F
ig

u
re

4:
O

ri
gi

n
al

C
am

p
b
el

l-
S
h
il
le

r
R

eg
re

ss
io

n
C

o
effi

ci
en

ts

0
20

40
60

80
10

0
12

0
−5−4−3−2−101

M
on

th

Campbell−Shiller Coefficients

II

III
IV

V
V

I

V
IIIIX

X

X
IX

II

C
−S

E
ac

h
so

li
d

li
n
e

p
lo

ts
th

e
m

o
d
el

-i
m

p
li
ed

C
am

p
b
el

l-
S
h
il
le

r
re

gr
es

si
on

co
-

effi
ci

en
ts

,
i.
e.

,
1

-
φ

n
,
w

h
er

e
φ

n
is

th
e

li
n
ea

r
p
ro

je
ct

io
n

co
effi

ci
en

t
fr

om
m

o
d
el

-i
m

p
li
ed

ex
p
ec

te
d

ex
ce

ss
re

tu
rn

en t
on

th
e

te
rm

sp
re

ad
R

n t
−

R
1 t
.

T
h
e

la
b
el

at
ta

ch
ed

to
ea

ch
li
n
e

in
d
ic

at
es

th
e

co
lu

m
n

in
T
ab

le
3

fo
r

th
e

as
so

ci
at

ed
m

o
d
el

p
ar

am
et

er
s.

T
h
e

li
n
e

in
d
ic

at
ed

b
y

“C
-S

”
ar

e
th

e
ac

tu
al

C
am

p
b
el

l-
S
h
il
le

r
re

gr
es

si
on

co
effi

ci
en

ts
.

28



F
ig

u
re

5:
R

is
k
-p

re
m

iu
m

A
d
ju

st
ed

C
am

p
b
el

l-
S
h
il
le

r
R

eg
re

ss
io

n
C

o
effi

ci
en

ts

0
20

40
60

80
10

0
12

0
−5−4−3−2−101

M
on

th

Risk−premium Adjusted Campbell−Shiller Coefficients

II

III
IV

V
V

I

V
III IX

X

X
I X

II

C
−S

29



References

Ahn, D.-H., Dittmar, R. F., Gallant, A. R., 2002. The extended saints model of the term
structure of interest rates: Theory and evidence. Review of Financial Studies 15, 243–288.

Backus, D., Foresi, S., Mozumdar, A., Wu, L., 2001. Predictable changes in yields and
forward rates. Journal of Financial Economics 59(3), 281–311.

Bansal, R., Yaron, A., 2000. Risks for the long run: A potential resolution of asset pricing
puzzles. .

Breeden, D., 1979. An intertemporal asset pricing model with stochastic consumption and
investment opportunities. Journal of Financial Economics 7, 265–296.

Campbell, J., Cochrane, J., 1999. By force of habit: A consumption-based explanation of
aggregate stock market behavior. Journal of Political Economy 107(2), 205–251.

Campbell, J. Y., Shiller, R. J., 1991. Yield spreads and interest rate movements: A bird’s
eye view. Review of Economic Studies 58, 495–514.

Campbell, J. Y., Viceira, L. M., 2001. Who should buy long-term bonds?. American Eco-
nomic Review 91(1), 99–127.

Constantinides, G., 1990. Habit formation: A resolution of the equity premium puzzle.
Journal of Political Economy 98(3), 519–543.

Dai, Q., Singleton, K., 2000. Specification analysis of affine term structure models. Journal
of Finance LV, 1943–1978.

Dai, Q., Singleton, K. J., 2002a. Expectations puzzles, time-varying risk premia, and dynamic
models of term structure. forthcoming, Journal of Financial Economics.

, 2002b. Term structure dynamics in theory and reality. Review of Financial Studies,
forthcoming.

Duffee, G. R., 2002. Term premia and interest rate forecasts in affine models. Journal of
Finance 57, 405–443.

Dunn, K. B., Singleton, K. J., 1986. Modeling the term structure of interest rates under
non-separable utility and durability of goods. Journal of Financial Economics pp. 27–55.

Eichenbaum, M. S., Hansen, L. P., 1990. Estimating models with intertemporal substitution
using aggregate time series data. Journal of Business and Economic Statistics 8, 53–69.

Fama, E., 1984. Term premiums in bond returns. Journal of Financial Economics 13, 529–
546.

30



Fama, E., Bliss, R., 1987. The information in long-maturity forward rates. American Eco-
nomic Review 77(4), 680–692.

Ferson, W. E., Constantinides, G. M., 1991. Habit formation and durability in aggregate
consumption: Empirical tests. Journal of Financial Economics 29, 199–240.

Fleming, M. J., Remolona, E. M., 1999. The term structure of announcement effects. FRB
New York Staff Report No. 76.

Gallant, R., Tauchen, G., 1989. Seminonparametric estimation of conditionally constrained
heterogeneous processes: Asset pricing applications. Econometrica 57, 1091–1120.

Hansen, L. P., Jagannathan, R., 1991. Implications of security market data for models of
dynamic economies. Journal of Political Economy 99(2), 225–262.

Heaton, J., 1995. An empirical investigation of asset pricing with temporically dependent
preference specifications. Econometrica.

Hsu, C., Kugler, P., 1997. The revival of the expectations hypothesis of the us term structure
of interest rates. Economic Letters pp. 115–120.

Kugler, P., 1997. Central bank policy reaction and expectations hypothesis of the term
structure. International Journal of Financial Economics 2, 217–224.

Leippold, M., Wu, L., 2001. Design and estimation of quadratic term structure models.
Working paper, Fordham University.

Litterman, R., Scheinkman, J., Weiss, L., 1988. Volatility and the yield curve. Unpublished
working paper. Goldman Sachs.

Lu, B., 1999. An empirical analysis of the constantinides model of the term structure. Work-
ing paper, University of Michigan.

McCallum, B. T., 1994. Monetary policy and the term structure of interest rates. NBER
working paper No. 4938.

Mehra, R., Prescott, E. C., 1985. The equity premium: A puzzle. Journal of Monetary
Economics 15, 145–161.

Merton, R. C., 1969. Lifetime portfolio selection under uncertainty: The continuous-time
case. Review of Economics and Statistics 51, 247–257.

Piazzesi, M., 2001. An econometric model of the term structure with macroeconomic jump
effects. Working Paper, UCLA.

Singleton, K. J., 1993. Econometric implications of consumption-based asset pricing models.
in Advances in Econometrics, Sixth World Congress, ed. by J. J. Laffont, and C. A. Sims.
Cambridge University Press.

31



Sundaresan, S. M., 1989. Intertemporally dependent preferences and the volatility of con-
sumption and wealth. Review of Financial Studies 2, 73–88.

Wachter, J., 2001. Habit formation and returns on bonds and stocks. Working paper, NYU.

Weil, P., 1989. The equity premium puzzle and the riskfree rate puzzle. Journal of Monetary
Economics 24, 401–421.

32


	Introduction
	A Model of Stochastic Internal Habit
	Discrete-time Formulation of Stochastic Habit
	Stochastic Internal Habit and MRS
	Continuous-time Formulation of Stochastic Habit
	The Markovian Solution
	Pricing Contingent Claims
	Model-implied Properties of the Real Term Structure
	The Expectations Hypothesis and the Puzzle
	Stochastic Habit and the Expectations Puzzle

	Calibration
	Conclusion

