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Abstract. We develop models of robust decision-making and pricing when there are

contemporaneous big and small shocks. We illustrate these models using a stochastic-

growth economy. Large shocks are infrequent changes in the technological growth rate,

and small shocks are continuous movements in the technology process. Large shocks

evolve as a Markov jump process whereas small shocks are a Brownian motion. Robust

decision-making is formalized as a two-player game. In contrast to rational expectations

agents, our investors are decision-makers who treat models as approximations and fear

misspeci�cation. As an algorithmic device to enforce robustness, investors imagine a

second, malevolent player, who has the ability to perturb the baseline model. We study

two economies, each of which decentralizes a robust resource allocation problem with

hidden growth rates. The economies di�er in the manner in which the the model is viewed

as an approximation. We compare the pricing implications to those that emerge from

an economy in which the growth state is fully revealed, and we study the time-series

implications for the measured risk-return tradeo� and the price-dividend ratio.

1 Introduction

This paper illustrate how decision makers' concerns about the robustness of their

decisions can a�ect prices and quantities in dynamic economies. Speci�cally, we

show how investor fears about model misspeci�cation in a stochastic growth model

inuence security prices. We use the familiar stochastic growth model of Brock and

Mirman (1972) and Merton (1975) as a starting point for examining implications
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of these robustness concerns in the context of a dynamic economic model. For-

mally, technology is speci�ed as a continuous-time hidden, Markov model (HMM).

Investors must make inferences about the growth rate, which is subject to large

jumps dictated by a Markov process. Their views regarding this growth rate are

based on current and past information on technology but are clouded by concur-

rently evolving small shocks that are Brownian motion movements in productivity.

Therefore, observations of the technology level give the agents only imprecise mea-

surements of the growth rates in technology. Agents must make inferences about

growth rates. We show how the investors' desire to make their decision rules robust

to misspeci�cation of the evolution of technology alters the evolution of security

prices and intertemporal resource allocation.

Following the control theory literature, we formulate the robust decision-making

process as a two-player game. For a discussion of a game-theoretic approach to ro-

bust decision-making see Basar and Bernhard (1995) and for the development of the

recursive speci�cation used here see Cagetti, Hansen, Sargent, and Williams (2000).

An investor maximizes a discounted utility function, but fears that the baseline

model that he uses to forecast the evolution of future technology is misspeci�ed. A

second player is introduced as an algorithmic device to make the decisions perform

well under a variety of possible model misspeci�cations. The second player mini-

mizes the decision maker's objective function by distorting the baseline model. In

order to restrict the available distortions, we introduce a penalty in the objective

function of the second player. This penalty can be interpreted as a measure of the

discrepancy between the baseline model and the perturbed model; we consider per-

turbations that are small and hard to detect statistically. Formally, this leads us to

a log-likelihood-based (relative entropy) penalty modi�ed to account for the HMM

structure. We refer to the �ctitious second agent as the malevolent agent.

The role of the second player can be a source of confusion because he exists only

in the decision maker's head. The two player, zero sum game is the decision maker's

a device to express a concern about robustness. While even the �rst player in a

dynamic decision-problem is arguably a �ction in economic models, the second one

is needed to explore the role of model misspeci�cation. As argued by Huber (1981)

in his discussion of an optimal robust statistical procedure:

... as we de�ned robustness to mean insensitivity with regard to small de-

viations from assumptions, any quantitative measure of robustness must

somehow be concerned with the maximum degradation of performance

possible for an �-deviation from the assumptions. The optimally robust

procedure minimizes this degradation and hence will be a minimax pro-

cedure of some kind.

Economists use a max-min formulation when they use Lagrange multipliers. La-
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grange multipliers are a tool that allow us to convert a constrained maximization

problem into an unconstrained max-min problem. The constraint is imposed by sup-

posing there exists a �ctitious malevolent agent whose aim it is to punish the original

decision-maker when a constraint is violated. This device for imposing a constraint

is algorithmically convenient as is our two-agent formulation of robustness.

Although we use ideas from standard robust control theory, we modify them

because, as is common in economic theory, our baseline models are stochastic and

the two-player games are formulated in a fully recursive manner.2 A stochastic

baseline is essential for our application to �nance. In emphasizing this structure, we

follow Hansen, Sargent, and Tallarini (1999), Anderson, Hansen, and Sargent (2000)

and Maenhout (1999).

We apply the games to a continuous-time version of a stochastic growth econ-

omy. In this economy there is a technology shock process that serves as a stochastic

forcing process, modeled as an HMM. This speci�cation reects the post war US

experience, characterized by Hamilton (1989) and others, of short recessions and

sustained booms. Since it may at times be diÆcult to distinguish these two move-

ments from the observed technology level, we explore what happens when we make

the growth state hidden from the decision-maker. Our speci�cation of the technol-

ogy shock process formally follows the analyses of Wonham (1964), David (1997)

and Veronesi (1999). The latter two papers study pricing in production economies

with linear technologies and dividend growth processes that are hidden.3 The intro-

duction of hidden information alone does not enhance the market price of risk and

the price-dividend ratios into ranges that accord to data. For this reason we turn

to robustness as means of distorting the beliefs of the decision-makers.

For the purposes of deciding how to confront an uncertain future, a robust

decision-maker uses an endogenously-determined pessimistic assessment of the un-

derlying probability model. This pessimism formally captures Fellner (1965)'s con-

jecture that the probabilities used in actual decision-making should not match up

precisely with those implied by a tractable model used to quantify risks. Instead

there may be a conservative adjustment made in a context speci�c way. In our

model, investment decisions can appear to be based on a model in which the du-

ration of low growth states is longer than those quanti�ed by looking at historical

time series data (as is done when imposing rational expectations). This motive acts

2Among the few examples of stochastic robust control models are James (1992), who studies

deterministic di�erential games of robust decision-making as small noise limits, and Dupuis, James,

and Petersen (1998). Examples of robust control of deterministic systems with partial observations

are James, Baras, and Elliott (1994) and James and Baras (1996).
3In particular, David (1997) studies a model in which production is linear in the capital stocks

with technology shocks that have hidden growth rates. Veronesi (1999) studies a permanent income

type model with a riskless linear technology. Dividends are modeled as an additional consumption

endowment.
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in addition to the usual precautionary mechanism coming from the baseline stochas-

tic model. As in Hansen, Sargent, and Tallarini (1999), the robust mechanism for

precautionary savings can be o�set (at least approximately) by a change in the sub-

jective rate of discount. Introducing robustness into the stochastic growth model

can leave the aggregate quantity implications largely unchanged provided that the

subjective discount rate is increased appropriately.

We decentralize the robust version of the stochastic growth model by computing

shadow prices from a robust resource allocation problem. Given the continuous-time

nature of the model, we can build up asset prices for intervals of time from local

or instantaneous prices. These local prices include both the instantaneous interest

rate and the risk price of the Brownian motion increment. In our models, what is

usually referred to as the factor risk price has an additional component attributable

to a concern about model misspeci�cation. This same term occurs in previous

continuous-time papers of Anderson, Hansen, and Sargent (2000) and Chen and

Epstein (1999), and as an approximation in the discrete-time analysis of Hansen,

Sargent, and Tallarini (1999). The hidden growth state puts an extra source of

variation into the risk premia. Risk premia uctuate in part because of changes in

the beliefs about the mean rate of growth.

The paper is structured as follows. In section 2 we present the setup of our

economy. In section 3 we present the information structure and discuss the signal

extraction problem. The model distortions and measures of model misspeci�cation

are described in section 4. Section 5 presents the value function di�erential equations

that must be solved for the hidden information games. Section 6 discusses the

implications for the time series of capital stocks; section 7 uses the link between

statistical detection and robustness to restrict the degree of robustness in the asset

calculations; section 8 shows how risk-return tradeo�s change over time; and section

9 displays the implied dividend-price ratios.

2 The economy

We use a continuous-time formulation of a Brock and Mirman (1972) economy

with production, capital accumulation, and stochastic productivity growth. There

are two types of technology shocks: Brownian motion increments, and infrequent

changes in the drifts of the Brownian motion modeled as a jump process. Investors

observe productivity levels but the drift is hidden. The technology process is thus

a special case of a HMM, confronting investors with a signal extraction problem.

Current and past data must be used to make inferences about technological growth.

We use this model to study:

� the precautionary motive for savings induced by a concern about robustness;
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� the evolution of the measured market price of `risk';

� the evolution of price-dividend ratios.

2.1 Previous literature

The quantitative component of our investigation is designed to show how robustness

alters the implications of the simple growth model familiar to economists. In the

absence of robustness, the implications of this model for consumption and invest-

ment are known to be defective (e.g. see Watson (1993)) and the implied return to

capital shows very little variation relative, for instance, to valued-weighted returns

on equity (e.g. see Cochrane (1991) and Rouwenhorst (1995)). The absence of re-

turn variability is even more stark in the continuous-time embedding of this of the

model. As noted by Merton (1975), the return to capital becomes locally riskless.

One approach to the conundrum is to make capital locally risky. While this

will enhance return variability, it may also result in excessive volatility in aggregate

quantities. In addition, we might follow Boldrin, Christiano, and Fisher (1999) and

others by introducing additional technological frictions and temporal nonseparabili-

ties in preferences. Instead of mixing robustness with these other ways to complicate

the short run dynamics, we study the role of robust decision-making in a simpler

framework.

When looking at the asset pricing implications, we will be less ambitious than

Boldrin, Christiano, and Fisher (1999) and Hansen and Singleton (1983),4 and will

study only the implied local or instantaneous risk-return relation and the time series

behavior for dividend price ratios. Even the risk-return relation looks puzzling

for a model without robust decision-making because the implied market price is

too small to be plausible from the vantage point of aggregate models (Hansen and

Jagannathan (1991) and Cochrane and Hansen (1992)). As in Hansen, Sargent, and

Tallarini (1999), Anderson, Hansen, and Sargent (2000), Chen and Epstein (1999)

and Maenhout (1999), we explore the e�ects of a concern about model uncertainty

on the measured risk premium in security market returns. We add to this literature

by looking at the time series variation both of risk prices and of model uncertainty

prices. We show how making mean growth rates disguised from investors can alter

the time series properties of the risk premia.

To study dividend-price ratios we will eventually posit an exogenous dividend

claim that is distinct from the marginal product of capital. In this we imitate

Veronesi (2000) and David and Veronesi (1999) except that we have an additional

state variable (capital) and we also explore implications for robustness.

4We are less ambitious in the sense of looking only at a subset of the restrictions that they

studied.
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2.2 Technology

We assume a Cobb-Douglas production function

f(K;L) = K
�(Y L)1��

where K is the capital stock, L is the labor supply and Y is the labor-augmenting

technology parameter. For simplicity, we �x the total labor supply L at 1. Y evolves

exogenously according to the continuous-time process

dyt = st � �̂ dt+ �ydBt (1)

where B is a standard Brownian motion, y = logY , and s evolves according to

a �nite-state Markov chain. It can assume n possible values, U1; U2; :::; Un, where

(without loss of generality) Uj is a vector containing 1 in position j and zero every-

where else. �̂ is an n-dimensional vector that contains all possible values of the mean

growth rate of the technology shock; sj � �̂ is therefore the growth rate in state j.

The model of the technology shock can be viewed as a continuous-time embedding

of the regime-shift models of Baum and Petrie (1966), Sclove (1983) and Hamilton

(1989).

Let Æ be the depreciation rate of capital. The evolution equation for capital is

given by:

dKt = [(Yt)
1��(Kt)

�
� Ct � ÆKt]dt (2)

where Ct is the instantaneous consumption ow. By construction, capital is locally

predictable.

The technological process has a unit root in logarithms and is therefore nonsta-

tionary. As we show later, the ratio of capital to e�ective labor, kt = Kt=Yt and

that of consumption to e�ective labor, ct = Ct=Yt, are stationary. We will therefore

represent the problem in terms of the variables kt and yt.

Applying Ito's lemma, we get

dkt = �k(c; k; s)dt+ �k(k)dBt (3)

where the drift of (3) is

�k(c; k; s) � k
�
� c�

�
s � �̂+ Æ �

(�y)
2

2

�
k

and the local standard deviation is:

�k(k) = ��yk:
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2.3 Evolution of technology growth states

The �nite-state Markov chain for s has an intensity matrix

A = N(Q� I)

where N is a diagonal matrix of jump intensities, each of which dictates the jump

frequency conditioned on the current state. We let �i denote the jump intensity for

state i. The matrix Q is a transition matrix. Each row speci�es the probability

distribution of the jump location conditioned on a jump taking place. We normalize

the transition matrix Q so that its fi; ig entry is zero. That is, conditioned on a

jump from state i taking place, there is no chance that the state will remain the

same.5 The element fi; jg of A will be denoted by aij, and ai;i = �
P

j;j 6=i
aij.

The transition probabilities over any interval of time can be constructed from

the intensity matrix A via the exponential formula:

T� = exp(�A) (4)

and the intensity matrix can be deduced from the transition matrices by computing

the right derivative of T� at � = 0.

3 The hidden information problem

We consider models in which the mean growth rate st � �̂ is hidden to investors. Thus

they must solve a signal extraction problem by using past levels of technology shock

increments to forecast mean growth rates. Before solving the stochastic growth

model under the alternative games, we display the solution to the signal extraction

problem. A separation property of recursive prediction and control in our resource

allocation games allows us to �rst solve the signal extraction problem using the

approximating model and then to use the �ltering equations as an input into the

solution of the games. In this paper, we will not describe the details of the decision

problem. The reader is referred to Cagetti, Hansen, Sargent, and Williams (2000)

for a discussion.

3.1 General formulation

Since the state variable s is not observed, the decision maker has to infer information

about the current state of the system by using the current and the past observations

5There are other normalizations that might be adopted. For instance, we could make the

jump intensity constant across states, provided that conditioned on a jump taking place, there

is a positive probability of remaining in the same state. The constant intensity speci�cation is

sometimes used because it simpli�es the characterization of the stationary distribution.
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of y. This hidden state model is due to Wonham (1964), and is described in Liptser

and Shiryayev (1977) and in Elliott, Aggoun, and Moore (1995). It has been used in

asset-pricing models by David (1997), Veronesi (1999), Veronesi (2000) and David

and Veronesi (1999).

The expected value of the drift of y, st � �̂, given the current information is

�̂t = �̂ � p̂t. The n-dimensional vector p̂t contains the probabilities of being in each

of the states, given the information set at time t fYt : t � 0g. These conditional

probabilities evolve according to the linear stochastic di�erential equation:

dp̂t = A
0

p̂tdt+ �p̂(p̂t)dB̂t (5)

�p̂(p̂) =
1

�y

bP (I � 1np̂
0)�̂

where bP is a matrix with the elements of p̂ on the diagonal. The normalized inno-

vation process dB̂t containing the new information used to generate Yt is:

dB̂t =
1

�y
(dyt � �̂ � stdt) = dBt +

�̂ � (st � p̂t)

�y
dt: (6)

The evolution of the technology shock under the innovation process B̂ is:

dyt = �̂ � p̂tdt+ �ydB̂t (7)

and the evolution of k is:

dkt = �̂(ct; kt; p̂t)dt+ �k(k)dB̂t (8)

where

�̂(c; k; p̂) = k
�
� c� �̂ � p̂+ Æ �

(�y)
2

2
:

3.2 The two-state case

We consider in particular the case in which the state st can assume two values,

corresponding to a positive growth rate �̂1 in expansions and a negative growth

rate �̂2 in recessions. The technology shock process is shown in the top panel of

Figure 1, and the bottom panel plots the estimated probabilities of being in the

low growth state computed using our baseline estimates. Under our baseline model,

the post WWII experience was one characterized by sharp recessions and extended

expansions. Although we use this speci�cation as a model of the technology process,

it mirrors that used by Hamilton (1989) in his study of output growth.
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Figure 1: The top panel displays the logarithm of the technology level (the cumulation of the

Solow residual) and the bottom panel displays the probability of being in the low growth state.
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Parameter Description Quarterly Value

�̂1 high growth 0.0114

�̂2 low growth -0.0290

�y technology shock standard deviation 0.0192

1=a12 mean duration of the high growth state 13.58

1=a21 mean duration of the low growth state 2.84

Table 1: This table contains the HMM model parameters. The parameter values

were obtained by estimating the HMM model using time series data on the Solow

residual.

In constructing Figure 1, we used data on the cumulative Solow residual y from

Citibase, following the construction of Stock and Watson (1999). These residuals

are scaled so that they can be interpreted as labor-augmenting technology. These

data are quarterly from 1959:Q1 to 1999:Q2 and are constructed from output (GDP

less farm, housing and government), capital (interpolation of annual values of �xed

non-residential capital stock using quarterly investment), and labor (hours of em-

ployees on non-agricultural payrolls). As in Stock and Watson, we then construct

the technology shock process using a labor's share value of 0.65.

To construct probabilities for a two growth state model, we estimated the HMM

using an EM algorithm to compute maximum likelihood estimates applied to discrete

time data, as described by Hamilton (1990). We used the estimated transition

probabilities over quarterly intervals to set the intensity matrix A as in (4). Since

there are only two states, 1=a12 is the average length of expansions, and 1=a21 that

of recessions. The intensities and growth rates are reported in Table 1. The time

series of probabilities of �gure 1 were computed using both a discrete-time �lter

and a continuous-time approximation to the �lter applied to discrete-time data.

Cagetti, Hansen, Sargent, and Williams (2000) give comparisons between the two

methods and show that the discretization bias is small. As the table shows, under

the approximating model the recessions are perceived to be short lived and the

expansions are thought to be persistent.6

4 Model Distortions and Approximation Measures

We describe two decision problems with hidden information and a full information

benchmark. The hidden information problems share one common feature. The vec-

6While the HHM model could accommodate the longer term productivity slowdowns that are

often used to describe the seventies and early eighties, the maximum likelihood estimation features

instead a recession-expansion classi�cation, as is consistent with the related empirical literature in

macroeconomics.

10



tor p̂t constructed by updating probabilities with past data is used as an exogenous

state vector for the decision problem. It is constructed using the �ltering equation

implied by the approximating model. Hence p̂t becomes an integral part of the

approximating model around which we consider perturbations.

Our formulation di�ers from others in the robust control theory, such as Basar

and Bernhard (1995). In their framework, the backwards-looking �ltering of data

to estimate the current state depends on past utility rewards. In our formulation,

the date t decision-makers use past data to make inferences without regard to past

contributions to utility. Instead they are forward-looking in a recursive manner.

The decision-makers in the current date care only about utility contributions in

the current and future time periods. This perspective is familiar from derivations

of Hamilton-Jacobi-Bellman equations for control problems and is at the heart of

the recursive formulations of preferences. Robustness, however, adds an extra wrin-

kle because it requires a form of probability slanting that depends in part on the

objective of the decision-maker. The date t perspective used here leads us to a

criterion function for the decision maker and the malevolent agent solution than

is typically used in the literature on robust control with hidden information. See

Cagetti, Hansen, Sargent, and Williams (2000) for justi�cation and elaboration of

the approach taken here.7 The outcome of our formulation is that p̂t formed us-

ing the approximating model is a reference point in making robust adjustments to

beliefs.

Our two hidden information games di�er in the form of the perturbations that

are entertained. The speci�cation of each game requires a statement of the pertur-

bations that are admitted and a discrepancy measure that speci�es the magnitude of

the perturbations. For each game we describe a limited array of structured pertur-

bations. In each case this structure can be justi�ed from a more primitive starting

point, although we send readers elsewhere for that development.8

4.1 Hidden Information, Representation I

We follow Anderson, Hansen, and Sargent (2000) in formulating our �rst robust

resource allocation problem. The state vector for the hidden Markov game is (k; p̂; y),

which evolves according to (8) and (5). The stochastic evolution of these state

7This date t perspective is best conceived as a dynamic game with di�erent decision-makers at

each date that have overlapping objectives. The standard robust control theory is premised on a

form of commitment to an initial way of slanting probabilities that depends on the initial (date

zero) objective.
8Thus our speci�cation di�ers from the literature on structured uncertainty which imposes

limits on the perturbations from the outset. Our structured perturbations arise as the outcome of

an analysis of more general unstructured uncertainty. See Cagetti, Hansen, Sargent, and Williams

(2000) for details.
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vectors is governed by a single Brownian motion technology shock dB̂t. We disguise

model misspeci�cation within the Brownian motion shock. This makes the statistical

discrimination between the the approximating model and its competitors diÆcult.

Thus we replace: dB̂t by dB̂t+htdt where the process ht is a process adapted to the

�ltration Yt, and we alter evolution equations (5) and (8) to be:

dkt = [�̂k(ct; kt; p̂t) + �k(k)ht] dt+ �k(k) dB̂t

dp̂t = [A0

p̂t + �̂p̂(p̂)ht] dt + �̂p̂(p̂t) dB̂t

dyt = [�̂ � p̂t + �yht] dt+ �y dB̂t (9)

There will now be two control variables in the decision problem: c and h chosen by

two di�erent agents. The maximizing agent will select c and the minimizing (malev-

olent) agent chooses h. The chosen h will be used in the design of a robust decision

for consumption. As noted by Fellner (1965), probability slanting in this way should

not be interpreted as the beliefs of the decision-maker de�ned independently of the

context of the decision problem.

To dictate the amount for robustness we requuire a quantitative measure of model

misspeci�cation as function of h. Following Anderson, Hansen, and Sargent (2000),

we use a likelihood ratio or conditional entropy penalty. A drift hdt appended to

a Brownian motion contributes
(ht)

2

2
to the systematic part of the instantaneous

log-likelihood ratio.

Anderson, Hansen, and Sargent (2000) motivated their analysis by treating the

composite state vector as observable. In this application the component p̂t is ob-

servable, but it conveys no new information beyond current and past values of the

technology process. Instead p̂t is a variable constructed to make the decision prob-

lem Markovian. Because it is constructed by the agent as a function of the history

of the observations, it seems to have a di�erent status than the technology process

yt, which is constructed by nature. Our next representation of the hidden state

recognizes this di�erence and thereby prepares the way for a richer class of model

perturbations when we eventually compose our zero-sum two player game to pro-

mote robust decisions.

4.2 Hidden Information, Representation II

We now consider a second representation of the hidden information that was devel-

oped in Cagetti, Hansen, Sargent, and Williams (2000) and that is the nonlinear

counterpart to one explored by Hansen, Sargent, and Wang (2000). Instead of hiding

perturbations in the reduced information Brownian motion dB̂t, we consider pertur-

bations in the original Brownian motion dBt, in the growth rate vector �̂ and in the

evolution of the state st. We now suppose that there is a vector gt with the same

dimension as the number of states. This vector adds a drift to the full information
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Brownian motion. The increment dBt is replaced by gt �stdt+dBt. This same vector,

gt also alters the forward evolution of p̂t. The drift Ap̂t of the probability updating

equation is modi�ed to be:

A
0

p̂t dt+ �(gt; p̂t) dt

where

�(g; p̂) =

266664
p̂
1[1

2
(g1)2 � ent(g; p̂)]

:

:

:

p̂
n[1

2
(gn)2 � ent(g; p̂)]

377775
and

ent(g; p̂) =
1

2

X
i

(gi)2p̂i:

Superscripts on p̂ and g are used to denote entries of the respective vectors and

subscripts are used to denote time. Note that the drift perturbation � satis�es

1n��(g; p̂) = 0. Thus the local mean of 1n�p̂t is zero, as it should be since probabilities

must add up to one. Whenever gi is large relative to the other components of g, the

resulting drift in dp̂
i

p̂i
is increased through the term: 1

2
(gi)2 � ent(g; p̂).

Altering the underlying growth states by replacing �̂ with �̂ + g changes the

accuracy of the probability estimates. Highly dispersed growth states should be

easier to detect. This shows up in our analysis by replacing �̂p̂(p̂) with

�p(g; p̂) =
1

�y

bP (I � 1np̂
0)(�̂+ g)

in the stochastic contribution to the probability evolution. Thus in solving these

games we use the forward evolution:

dkt = [�̂k(ct; kt; p̂t) + �k(k)gt � p̂t] dt+ �k(k) dB̂t

dpt = [A0

p̂t + �(gt; p̂t) + �p(g; p̂)gt � p̂t] dt+ �p(g; p̂) dB̂t

dyt = (�̂ + �ygt) � p̂t dt+ �y dB̂t (10)

where the probability vector pt is initialized at pt = p̂t.

To formalize robustness, we require measures of model misspeci�cation. If s were

fully observed, appending a drift to Brownian motion implies a predicted likelihood

increment of
(gi)

2

2
. Since this measure conditions on the unknown state, we average

it using the p̂ probabilities to obtain the overall measure ent(g; p̂). Averaging the
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Game dB distortion dB̂ distortion A
0
p̂ distortion �̂ distortion

Hidden I dB̂ + h dt �̂+ �yh1n

Hidden II dB + g � s dt dB̂ + g � p̂ dt A
0
p̂+ �(g; p̂) �̂+ �yg

Table 2: Distortions for two representations with hidden information.

full information likelihood in this way imitates the EM construction of maximum

likelihood estimates of HMM's, as in Dembo and Zeitouni (1986).

In summary, a change in the vector g does two things. It alters the vector �̂

of potential growth rates, and it simultaneously changes the probability evolution.

This dual role for g emerges as the solution to a speci�cation-error minimization

problem in which a richer class of perturbations is entertained. In particular, A,

�̂ and p̂ can be altered in distinct ways. The restrictions imposed on the relation

between distortions can be defended from a more primitive starting point. (See

Cagetti, Hansen, Sargent, and Williams (2000) for a formal treatment.)

Table 2 summarizes the di�erences between the two representations of informa-

tion under a potential distortion. Notice that the perturbations in Representation I

make no explicit reference to the evolution of the hidden state s. A drift distortion

h dt (independent of s) is appended to the Brownian motion increment for the Brow-

nian motion associated with investors' information. In contrast, the counterpart to

h, denoted by g, in Representation II can depend on states and hence can capture

changes in the hidden growth rates.

We will subsequently de�ne two HMM games associated with the two represen-

tations of information. These games are designed to deliver forms of robustness by

having a �ctitious agent choose perturbations in a malevolent way. Thus the decision

variable for this �ctitious agent is h for HMM Game I and g for HMM Game II. We

limit the malevolence by adding quadratic penalties to the objectives of decision-

makers scaled by �. We use the statistical discrepancy measures described earlier as

penalities. These penalties are h
2

2
for Game I and

P
i

(gi)
2

2
for Game II. The resulting

two-agent decision games, described later in equation (12), will be Markov, which

gives computationally tractable alternatives to the Markov decision problem that

makes no reference to robustness.
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4.3 A Full Information Benchmark

For comparisons, we will also consider a model in which st is directly observed. Like

Hidden Information Game I, this game is formulated as in Anderson, Hansen, and

Sargent (2000), except with a di�erent vector of state variables. The actual state

s replaces vector p̂ of state probabilities. We use p̂ to form a time series for s by

assigning s to the low growth state when p̂ exceeds one half and to the high growth

state when p̂ is greater than one.

5 Value Functions

We have now described representations of information for a HMMmodel and another

full information benchmark. We now use these representations of information to

solve resource allocation problems that incorporate a concern about robustness.

These model speci�cation games are all Markov and have a single value function.

In this section we report the partial di�erential equations for these functions, which

are known as Hamilton-Jacobi-Bellman (HJB) equations. To study these games, we

will solve these di�erential equations numerically as described in Appendix C.

5.1 Preferences and Discounting

As described earlier, it is convenient to scale consumption and capital by the technol-

ogy level. This will eventually allow us to derive HJB equations that do not depend

on y, but only on (k; p̂), thus simplifying our numerical analysis. This scaling, how-

ever, has the e�ect of introducing stochastic discounting into the preferences. We

will use this same discounting to evaluate model misspeci�cation.

Let U(C) be the instantaneous ow of utility, which we parameterize using a

constant elasticity of substitution. The time t contribution to the discounted power

utility function is:

exp(��t)U(Ct) = exp(��t)(Ct)
1�

=(1� )

= exp[(1� )yt � �t] (ct)
1�

=(1� )

= Y
�

t

(ct)
1�

1� 

where � is the subjective rate of discount and

Y
�

t
� exp[(1� )yt � �t]:

We now view Y
�

t
as a stochastic discount factor, and c = C

Y
as a decision variable.
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Notice that

dY
�

t
= Y

�

t

�
(1� ) dyt +

�
(1� )2(�y)

2

2
� �

�
dt

�
: (11)

In the robustness games, Y �

t
is used to discount instantaneous utilities and dis-

crepancy measures.

5.2 Hamilton-Jacobi-Bellman Equations

Let x be a composite state vector that includes (k; p̂; Y �). The stochastic evolution

(9) and (11) for Game I can be written as:

dxt = �
1
x
(ct; ht; xt)dt+ �

1
x
(xt)dB̂t

where ht is a scalar perturbation and �
1
x
is a column vector. This column vector

depends on x not on h. As explained in appendix B, the HJB equation for Game I

is:

0 = max
c

min
h

Y
�

�
c
1�

1� 
+ �

h
2

2

�
+ �

1
x
(c; h; x)0 � rW 1(x) +

1

2
[�1

x
(x)]0

@
2
W

1(x)

@x@x0
[�1

x
(x)]:

(12)

where r is the gradient. This equation formalizes the fact that the value function

W
1 should have a local mean given by negative of the discounted instantaneous

contribution:

Y
�

�
c
1�

1� 
+ �

h
2

2

�
:

appropriately optimized. The � parameter controls the degree of robustness that

is sought. Setting � to 1 gives the eÆcient resource allocation without concerns

about model misspeci�cation.

For Game II we replace (9) with (10). Write the stochastic evolution as:

dxt = �
2
x
(ct; gt; xt)dt+ �

2
x
(gt; xt)dB̂t

where gt is an n-dimensional perturbation and �
2
x
(gt; xt) is a column vector. In

contrast to Game I, this volatility vector depends on the perturbation g. The HJB

equation is of the same form as Game I, but with a di�erent stochastic evolution:

0 = max
c

min
g

Y
�

"
c
1�

1� 
+

�

2

X
i

(gi)2p̂i

#
+ �

2
x
(c; g; x) � rW 2(x)
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+
1

2
[�2

x
(g; x)]0

@
2
W

2(x)

@x@x0
[�2

x
(g; x)]:(13)

Under Game II, the local mean of the value function W
2 is the negative of

Y
�

"
c
1�

1� 
+

�

2

X
i

(gi)2p̂i

#

appropriately optimized. We again nest a decision problem without concern for

robustness by setting the tuning parameter � to in�nity.

5.3 Computations

The value functions for both of these games with hidden information will be linear

in the stochastic discount factor. That is, they will satisfy W (k; p̂; Y �) = Y
�
V (k; p̂),

and as a consequence we can focus our computations on determining V . This scaling

property follows because di�erential equations (12) and (13) are both linear in Y
�.

For both games, consumption will satisfy:

c
� =

�
@V

@k
(k; p̂)

��1


: (14)

Moreover, objective (12) is quadratic in the scalar h and (13) is quadratic in the

vector g. Thus for given value functions, the control laws for c, g and h are easy to

compute. The solution algorithm is described in Appendix C.

We solve the complete information game in an entirely analogous fashion, except

in this case we eliminate the dependence on p̂ and carry along a vector of value

functions (one for each growth state) that only depend on k.

6 An Illustrative Growth Economy

As we have seen, the HMM version of the stochastic growth model separates as

follows. We can �rst solve a signal extraction problem and deduce the hidden state

probabilities. We can then use these hidden state probabilities in conjunction with

the directly observed technology shock process as a multivariate stochastic forcing

process for a robust resource allocation problem. In particular, our solution to

Game I (and of course the solution to the growth model without robustness) could be

reinterpreted as a full information game with a singular multivariate di�usion model

for the technology shock. In this section we take the time paths for the technology

process and the hidden state probabilities as inputs into our calculations. These

are the exogenous forcing processes for our models. The robust resource allocation
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Figure 2: This �gure displays the observed time series of the capital/technology ratio k and the

ratio implied by a HMM benchmark model with � =1 (i.e., no preference for robustness).

problems imply trajectories for capital, consumption and investment. We now study

these quantity implications to understand better the precautionary motive induced

by robustness.

6.1 Implications for Capital Accumulation

To illustrate the impact of robustness, we compute the implied time series for k and

compare them to actual data. To make this comparison, we must fully parameterize

preferences. Initially we set the power utility parameter  = 2, subjective discount

rate � = :04 and depreciation rate Æ = :07. We initialize the initial capital to

technology ratio to the corresponding level in the data in 1959:Q1, and then compute

the solution for the various decision problems by using the trajectories of y and p̂

shown in Figure 1.

Figure 2 shows the evolution of our endogenous state variable k, which can be

interpreted as the capital/e�ective labor ratio. The �gure reports the evolution of
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k for the data and for the hidden information decision problem without robustness

(� =1). The time path for k implied by the � =1 model mimics the actual data,

although the model generates a higher trajectory early on and a lower one later.

The overall similarity to the data should come as no surprise since the parameter

con�gurations were selected in part to match the growth features of the model.9

The e�ect of robustness on the evolution of k is depicted in Figure 3. The �gure

shows that the robustness games imply a higher level of capital than the corre-

sponding non-robust decision problems. After starting with the same initial capital,

a decision-maker endowed with a concern about model misspeci�cation builds up the

capital stock more quickly. Robustness acts as an additional precautionary motive

for saving, and generates a higher bu�er stock of capital.

In the standard expected utility framework, precautionary savings are generated

by the possibility of bad shocks coming from a given and prespeci�ed probability

distribution. These e�ects are known to be small when calibrated to macroeconomic

measures of uncertainty. In our robust setup, the decision-maker considers also the

potential misspeci�cation of his approximating model. This induces an additional

precautionary mechanism that may not be quantitatively small. The robust social

planner will save more to build up a higher capital level. He fears that the future

growth rates will be lower than those implied by the baseline model, and as a

consequence will keep a larger bu�er stock of capital. Figure 3 shows that this

additional precautionary motive can be very important quantitatively.

Macroeconomic calibrations of parameters based on mean growth rates and aver-

age returns typically ignore the impact of precautionary savings.10 When robustness

is introduced, these calibrations must be modi�ed. Decreasing the robustness pa-

rameter � increases this robust precautionary motive, and increases the average level

of capital. A similar e�ect can however be obtained by decreasing the discount rate �

instead. A more patient decision maker will also want to hold more capital. Hansen,

Sargent, and Tallarini (1999) and Hansen, Sargent, and Wang (2000) show that for

a discrete time linear-quadratic permanent income model, the extra precautionary

e�ect due to robustness can be o�set fully by increasing the subjective discount rate.

In our setup, with power utility and nonlinear state evolutions, this is not exactly

true. However, Figure 3 shows that this result does hold as a remarkably good

approximation. The �gure plots the implied capital stock time series for alternative

values of � and �, and we see that by simultaneously lowering � and increasing � we

9Moreover, the technology process was itself extracted from aggregate quantity data.
10Even when the macroeconomic model justi�es a quantitatively small amount of precautionary

savings, macroeconomic calibrators face the dilemma of which average return to use in pinning down

parameters. As emphasized by Cochrane and Hansen (1992), the same macroeconomic model that

is used to explain the evolution of capital is poorly suited for accounting for the observed risk

premia. This is just a restatement of the so-called equity-premium puzzle.
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Figure 3: This �gure displays the capital technology trajectories implied by di�erent values of

the subjective discount rate (�) and the robustness parameter (�). Introducing robustness results

in additional capital accumulation holding �xed the discount rate. This is seen by comparing the

(�; �) = (1; 0:04) trajectory to the � = 4; � = 0:04) trajectory. This increase in savings can be

o�set by simultaneously increasing the subjective rate of discount. This is seen by comparing the

(� = 4; � = 0:04) trajectory to the (� = 4; � = 0:058) trajectory.

can preserve the quantity implications of the non-robust (� =1) model. Therefore,

the same quantity data can be generated by various con�gurations of � and �, and

in our pricing calculations below we will look at those con�gurations that leave the

quantity data unchanged, as in Hansen, Sargent, and Tallarini (1999).

6.2 Other Quantity Implications

The baseline model fails to capture some aspects of the data. In addition to ab-

stracting from labor supply, the model is known to imply too much consumption

volatility. The ratio of the standard deviation in consumption growth to that in

output is approximately one in our model, but it is a half in the data. The excess

consumption volatility implied by model suggests that the risk premia are likely to
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be larger than in a model with more plausible consumption variability. The aim

of these exercise is to explore how a concern about robustness changes the implica-

tions of a well known and pedagogically valuable model. Unfortunately, we inherit

some empirical de�ciencies of the baseline stochastic growth model that can only

be �xed by exploring other complications in the economic environment. While the

HMM framework provides us with an interesting laboratory to study how robustness

alters the dynamic equilibrium models, it does not repair some of the well known

empirical de�ciencies in macroeconomic and �nancial models.

7 Tuning Robustness

The parameter � is used to govern the extent of robustness in both Games I and II.

Thus we have two families of hidden information games, each of which is indexed

by �. Since the asset pricing implications we will report are numerical in nature, we

are compelled to focus on a limited number of parameter con�gurations including

con�gurations of �. Moreover, the parameter � does not necessarily have the same

meaning across games.

In our calculations, we specify � for each game based on detection-error consider-

ations. A link between robustness and dectection is described in Anderson, Hansen,

and Sargent (2000) for robust decision-problems in which the Markov state is fully

observed. Their analysis is directly applicable here for Game I but not Game II.

Here we adopt a more informal approach. Consider �rst HMM Game I and the

pairwise comparison between the h = 0 model and the h = h
� model. The entropy

penalization term 1
2
h
2 can be viewed as the conditional expectation of the instan-

teous contribution to a log-likelihood ratio. Thus cumulating this measure over the

sample interval provides a statistical measure of discrimination.

For HMM Game II, matters are more complicated. Our measure of discrepancy

is based on an averaging conditional entropy over the hidden states: 1
2

P
i
(gi)

2
p̂i.

An analogous approach is used in likelihood estimation based on the EM algorithm.

This algorithm is commonly used because of its computational convenience and its

known relation to likelihood ratios. Thus the discrepancy measure is distinct, but

closely related to, a conditional expectation of a log-likelihood ratio.

Based on detection-error considerations, we employed the � and � pairs reported

in Table 3 in our subsequent calculations. These choices make the sample mean

of the entropy remain about the same across games. We report the time series of

entropy measures for both HMM games in Figure 4. To get a rough idea of statistical

discrimination, the sample mean can be multiplied by the number of time periods of

available data for discrimination. The implied time unit for this �gure is one quarter.

Notice that there is more variability in the discrimination measures for HMM Game
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Game � �

Hidden I 4.0 .058

Hidden II 6.5 .046

Full Information 4.4 .055

HMM Benchmark 1 .040

Table 3: This table reports the values of the robustness parameter � and the sub-

jective discount rate � that are used in our subsequent calculations. These con�g-

urations leave the time path for the capital/technology ratio virtually the same as

that for the � = 1 economy with hidden information. The sample average of the

conditional entropies are: .00368 for HMM Game I, .00372 for HMM Game II, and

.00375 for the full information benchmark.

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
0

0.005

0.01

0.015

0.02

0.025
Game I 
Game II

Figure 4: The top panel gives the time series for the conditional relative entropies for the two

HMM games. For HMM Game I we report
(h�)2

2
and for HMM Game II we report

P
i
(g�

i
)2p̂i

2
.
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II than for Game I. A more formal analysis of discrimination could be based on large

deviation calculations similar to those in Anderson, Hansen, and Sargent (2000) or

on simulation as in Hansen, Sargent, and Wang (2000). We view our choice of

robustness as only a rough guide and as a way to get rough comparability across

games. There are other potential approaches for tuning robustness. While detection

error analysis is designed to eliminate candidate models that should be easy to

uncover, it considers only a very highly stylized model selection problem. The

utility consequences of being robust and the costs of active learning arguably should

also come into play.

8 Local Risk and Uncertainty Prices

One common way of studying the dynamic implications of a model is to report the

implied impulse response functions. Since our model is explicitly nonlinear, impulse-

response functions based on linear approximations seem ill-suited to characterize the

implications of these models. Instead we report plots of prices as functions of the

state variables in the model and the time series implied by the historically observed

technology levels.

The HMM formulations imply a particular Markov evolution for the technology

shock process where the Markov chain state probabilities become an additional state

variable. As we showed in Figure 1, a time series of these state probabilities may be

constructed from the observed data on the technology level. For both HMM games

we solve numerically for the law of motion for the capital stock. Using this solution

and a given time series for the state probabilities, we generate recursively a time

series for the implied capital stock. Thus from a given time series trajectory for the

technology shock process, we may compute time series for the state probabilities

and the capital stock implied by the model. These time series will be used in some

of the calculations that follow.

As we noted above, the e�ect of robustness on the capital evolution can be

o�set by increasing the rate of discount.11 In the calculations in this subsection

we experiment with di�erent robustness levels, and we simultaneously increase � in

order to maintain the quantity implications. Given that the capital stock trajectory

remains essentially the same across games, the instantaneous risk-free rate measured

by the marginal product of capital also remains the same. The shadow prices of the

Brownian motion increments, however, will di�er.

We study the (local) pricing of dB̂ for our two decision-models in the presence of

hidden information. Consider the local relation between the instantaneous return

on a security �r, its di�usion coeÆcient (or factor loading) �r, and the risk free rate

11Also see Hansen, Sargent, and Tallarini (1999).
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�f :

�r � �f = �r�:

Then � is the factor risk price and j�j is the absolute slope of the mean standard

deviation frontier. In our model so far, there is a single Brownian motion factor dB̂.

Anderson, Hansen, and Sargent (2000) and Chen and Epstein (1999) show that the

factor price of the Brownian increments dB̂ can be decomposed into two prices: the

usual price for risk, and a price of model uncertainty.12 Thus the factor price � is

the sum

� = �m + �u:

The price of risk �m is obtained by applying a formula from Breeden (1979)'s analysis

of a consumption-based asset pricing model. This risk price is given by (minus) the

weighting coeÆcient on B̂t in the evolution for the process of the log marginal utility

of consumption:

�(k; p̂; y) = log(C�)

= � log c� y

= logVk(k; p̂)� y

where we have used formula (14) for the consumption-technology ratio c. The coef-

�cient on dB̂ is computed as the sum of partial derivatives with respect to y, p̂ and

k:

�m = �y + �yk
Vkk

Vk
� (1� p̂)p̂

�1 � �2

�y

Vkp̂

Vk
:

The model uncertainty price is �u = �h
� for Game I and �u = �p̂�g

� for Game II

where h� and g
� are the malevolent agent's solutions in the respective games. As we

will see the extra dependence on the underlying state alters the time series properties

for �u for Game II by making it more sensitive to the hidden state probability.

Figure 5 gives the price functions for model uncertainty and for risk. It shows

how these prices vary with the probability of being in the low state holding the cap-

ital/technology ratio at its median level. These price functions are highly nonlinear,

with peak e�ects occurring near probability one-half. Peak e�ects are associated

12Anderson, Hansen, and Sargent (2000) and Chen and Epstein (1999) di�er in the way the

beliefs that dictate prices are deduced. The local prices for Game I can be viewed as a special

case of those in Anderson, Hansen, and Sargent (2000). As we have seen, however, the beliefs

that support the local Game II solution exploit more details of the HMM structure. Thus Game

II solution and prices are not special cases of those reported in Anderson, Hansen, and Sargent

(2000).
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Figure 5: This �gure shows the prices of risk and uncertainty as functions of the probability of

being in the low growth state. These functions are computed holding k �xed at the sample median.

with having little information about which growth state regime is in place. The

reported risk prices are in a sense too large, because consumption volatility in our

models is about double that in the data. Nevertheless, the uncertainty prices dom-

inate those of the risk prices and display more sensitivity to the probabilities.

Figure 6 shows the prices of model uncertainty as functions of k (the capi-

tal/technology ratio) for the two hidden information games and for two values of the

probability of being in the low growth state. The dependence of this price on k is

mostly linear and relatively at in comparison to the dependence on the probability.

As a consequence, the implied time series for the uncertainty prices are dominated

by movements in the state probabilities. The implied time series trajectories are

reported in Figure 7. These uncertainty prices do display cyclical uctuations, with

the peak e�ects occurring at the beginning and end of recessions. These e�ects

are associated with points in time in which the state probabilities are each about

a half. The prices are lower in Game I than Game II for probabilities near one

half but higher for probabilities close to zero or one. (See also Figure 5.) Thus the
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Figure 6: This �gure shows the market price of uncertainty as a function of k for Games I and

II and for two di�erent values of the probability of being in a low growth state.

model produces substantial cyclical uctuations in what �nancial econometricians

might mistakenly call risk premia. The high market prices of uncertainty occur not

because of con�dence in low growth but rather because of ambiguity about which

growth regime is currently in play.

9 Price-Earnings Ratios

To study price-earnings ratios, we use HMM model applied simultaneously to the

technology shock process and the earnings process. Growth rates in the technology

and earnings respond to the same two-state hidden Markov chain. For the pur-

poses of pricing, we treat the earnings process as a stream of dividends: claims to

consumption to be priced. These dividends are not extra sources of consumption

endowments, but a speci�cation of an interporal payo� stream to be priced. Pro-

duction takes place as before, but the growth rate in earnings and technology both
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Figure 7: This �gure shows the time series for the market price of uncertainty for Games I and

II. The market price of uncertainty is measured as �h� for Game I and as �g� � p̂ for Game II.
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Figure 8: In this �gure we report the time series for the cumulative Solow residual and S & P

earnings.

respond to the same two-state Markov chain. The two Brownian motions that dis-

guise this state are independent. Investors use data on earnings and technology to

make inferences about the common hidden growth state. This formulation follows

closely David and Veronesi (1999) except that the state variable k comes into play

in our analysis and our aim is to study how a concern about robustness changes the

prices.

The time series for technology and earnings are plotted in Figure 8. We used

data on reported earnings on the Standard and Poors Stock Price Index divided by

the price deator for �xed investment. The earnings data were obtained from DRI.

9.1 Earnings Evolution

In our robust resource allocation problems we used the following model for log

technology and log earnings:�
dyt

det

�
=

�
�̂11 �̂12

�̂21 �̂22

�
stdt+

�
�y 0

0 �e

�
dBt
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Parameter Description Quarterly Value

�̂11 high technology growth 0.0114

�̂21 high earnings growth 0.0205

�̂12 low technology growth -0.0290

�̂22 low earnings growth -0.0612

�y technology shock std. dev. 0.0192

�e earnings shock std. dev. 0.1291

1=a12 mean duration of the high growth state 13.58

1=a21 mean duration of the low growth state 2.84

Table 4: In this table we report the HMM parameters for the technology-earnings

model. These parameters were estimated using time series data on the Solow residual

and earnings on the S & P 500 stock index. Since the estimated evolution parameters

for technology in the technology-earnings model were essentially the same as those

estimated without earnings, we used the same values for the common parameters in

our calculations.

where dBt is now a two-dimensional Brownian motion. We used the parameter val-

ues reported in Table 4. These parameters were obtained by estimating a discrete-

time counterpart HMM model using an EM algorithm. While we used a two-state

speci�cation to compute prices, we were actually compelled to �t a more compli-

cated model to capture the seasonality in the earnings data.13 The estimates of the

parameters that govern the technology evolution were very close to those obtained

when we estimated the HMM model using only the technology data. In our calcu-

lations we used the same parameters for the technology evolution for both models.

(Compare Table 1 to Table 4). Since the standard deviation for the earnings process

is substantially higher than that for technology, the implied state probability esti-

mates for the technology-earnings model are very close to those reported previously

in Figure 1. The technology process is the primary source of information about the

hidden growth state.

9.2 Price calculation

To compute the price function for the HMM games, we use the familiar implication

that the local mean of the marginal-utility scaled price should be minus the marginal-

13An independent, two-state seasonal Markov chain was introduced in the estimation. This

seasonal chain only altered the growth rates for earnings. According to our estimates, in one

seasonal state growth is reduced by .0836 and in the other it is enhanced by this same amount.

The quarterly transition from reduced growth seasonal state to high seasonal state is essentially

one while the transition in the other direction is .986.
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utility scaled dividend. The solutions to the respective robustness games provide us

with the formula of the local mean of the marginal-utility scaled dividends.

To formalize this idea, we form a state vector z that contains (k; p̂; Y �
; e). Let

�
1
z
denote the drift implied by the Markov solution to HMM Game I and �1

z
the

corresponding di�usion matrix for the bivariate Brownian motion dB̂t associated

with the investors' information set. Let �1 denote the marginal utility scaled pricing

function, a function that maps the composite state z into the marginal utility scaled

price. This function satis�es the partial di�erential equation:

�
1
z
� r�1 +

1

2
trace

�
�1
z

@
2�1

@z@z
0

�
= � exp(e)(C1)�Y �

: (15)

where C
1 the consumption function implied by the Markov solution to Game I.

The left-hand side of this equation is the local mean of the marginal-utility scaled

price and the right-hand side is the negative of the marginal-utility scaled dividend

(measured by earnings). There is an analogous pricing equation for HMM Game II.

For computational purposes, it is convenient to transform partial di�erential

equation (15). The price-dividend ratio in this economy can be shown to depend

only on k and p̂ and not on Y
� and e.14 We exploit this reduced dependence in

solving for the equilibrium price of an earnings claim. In the �gures that follow we

report the price-dividend ratio as a function of k and p̂ without the marginal-utility

scaling.

9.3 Results and Figures

We solved for price-earnings functions for the HMM robustness games. For compar-

isons, we also computed the full information prices and the � = 1, HMM prices.

The former prices presume the growth state is known to investors and the latter

prices abstract from robustness.

Figure 9 shows how price-earnings ratios vary with the probability of being in the

low growth state. These functions decrease with that probability and are essentially

linear. When investors are con�dent they are in the low growth state, the price is

lower. The HMM robustness games imply a lower price-earnings ratio than the HMM

benchmark without robustness. A concern about model misspeci�cation makes the

security less attractive to investors. The corresponding prices for the full information

robustness game are 16.43 for the high state and 14.25 for the low state.

Figure 10 shows how the price/earnings ratios vary with k (the capital/technology

ratio). The relation is increasing for all of the robustness games. When capital

14The state variables Y � and e can be eliminated by dividing both sides by exp(e)Y � and solving

for �1

Y � exp(e)
instead of for �1.
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Figure 9: This �gure displays the price/earnings ratio as a function of the probability of being in

the low state for HMM Games I and II. For comparison, it also displays the price/earnings ratio for

the HMM economy that abstracts from robustness (� = 1). The functions are plotted by �xing

capital at its median value.
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Figure 10: This �gure displays price/earnings ratios as functions of the capital/technology ratio
k for HMM Games I and II. For comparison, it also reports the corresponding functions for the full

information robustness game. The growth state probabilities p̂ are �xed at the designated values.

is high relative to the technology, the equity asset is more valuable to investors.

Price/earnings ratios are predicted to be more responsive to historical movements in

the capital/technology ratio than to movements in growth state-probabilities. While

both k and p̂ respond to common Brownian motion shocks, the capital/technology

channel is more potent than the signal extraction channel as a source of uctuation

for price-earnings ratios. This implication for the pricing of the in�nite earnings

stream is in contrast to the implied behavior of local prices. Recall that the local

factor prices of the Brownian increments are very responsive to changes in growth-

state probabilities, but in a nonlinear way.

The median price-earnings ratio for our sample is 16.46. As seen in Figures 10

and 9, the robust decision games bring this level more in line with these historical

data. In fact, the hidden information games with the chosen values of � have median

price-earnings ratios that are too low. In contrast, the median price-earnings ratio
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for the � =1 benchmark is much too large.

While robustness delivers an empirically plausible downward shift in the price-

earnings ratio, the model-based time series trajectories do not track well some of

the movements in the actual price-earnings ratios. Movements in the price-earnings

ratios computed from our models are dominated by changes in the capital-technology

ratio k. Recall that the capital/technology ratio declines at the end of our sample

starting in 1992. This leads to the counterfactual prediction of a corresponding

drop in the price-earnings ratio. This predicted decline is displayed in Figure 11,

which plots the price-earnings time series implied by the full information and HMM

robustness games. Moreover, actual price earnings-ratios are much more variable

than those implied by our models.15 Thus these models, even with robustness added,

are not equipped to address the excess volatility puzzle in equity prices. Presumably

movements in other information variables than those modeled here are needed better

to track the historical time series.

10 Conclusion

This paper explores the how a concern about model misspeci�cation is encoded in

the time series evolution for quantities and prices. We considered an environment

in which there are abrupt movements in the time series and decision-makers use

historical data to update their beliefs about these movements. Abrupt movements

are formally changes in the growth rates of technology and earnings in a stochastic

growth model. We �nd the following:

� The robust motive for precautionary savings leads to an increases in the capital

stock. As in previous literature, this motive can be o�set by having investors

discount the future more.

� A robust concern about model misspeci�cation adds a quantitatively impor-

tant component to the conditional risk-return tradeo� measured by �nan-

cial econometricians. The robustness component is particularly sensitive to

growth-state probabilities and is largest when, under the baseline model, in-

vestors are most unsure of what state is in play. There is an intriguing in-

teraction between ambiguity, as reected by state probabilities and model

uncertainty as encoded in the local factor prices.

� A robust concern about model misspeci�cation causes price-earnings ratios to

drop. While the overall level is closer to that in postwar data, the time series

15The volatility in the logarithm of the price-earnings ratio in the data is between four to �ve

times that of our models.
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Figure 11: This �gure plots the time series for the the logarithm of the price/earnings ratio

implied by models of robust decision-making.
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trajectories implied by the model show some important departures from the

data.

In this paper we studied a stochastic growth model familiar to researchers in

macroeconomics and �nance. This stylized model has been an important benchmark

for macroeonomists, and as a consequence it provided a valuable laboratory for un-

derstanding how a concern about misspeci�cation can alter implications. On the

other hand, the stochastic growth model has known empirical de�ciencies. Changing

this model to allow for robustness considerations repairs only some of these limita-

tions. Richer transient dynamics and possibly multiple sectors and consumers are

needed to produce models with better empirical underpinnings. This challenge is

not unique to our study. It is a more general challenge for researchers in macroeco-

nomics.
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A Generators

To represent the robustness games, we will make use of the generator of Markov processes. It is

therefore useful to de�ne it here briey.16 In our applications the Markov state contains either

(k; s; Y �), in the full information benchmark, or (k; p̂; Y �), in the hidden information case.

A Markov process can be speci�ed in terms of the transition probabilities. Associated with

each transition interval is a conditional expectation operator. The family of such operators is a

Feller semigroup. The time derivative of the semigroup at the zero interval gives the generator

of the semigroup. The generator captures the local evolution of the process. Since the family

(semigroup) of conditional expectation operators can be built from the generator, we may model

a Markov process by specifying its generator.

16For a rigorous treatment, see Ethier and Kurz (1986).
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A.1 Full information

In the full information case, the state space is X = R
+
� S� R

+ , where R is the real line, R+ =

(0;+1) and S is the collection of coordinate vectors in Rn . Consider a function f mapping this

state space into the real line R. This function can be thought of equivalently as a � : R+�R+ ! R
n ,

where each coordinate function of � is matched to a state s. If we begin with a function f(k; s; Y �)

we may form

�(k; Y �) =
�������!
f(k; s; Y �)

The~ operation stacks f(k; s; Y �) for the n values of s.

To construct a Feller semigroup of conditional expectation operators we consider the space of

functions that are continuous on the one-point compacti�cation of the state space X. The collection

of the restrictions of these functions to X is denoted by Ĉ. The conditional expectation operator

for interval � can be represented as:

T�f(k; s; Y
�) = E[f(k� ; s� ; Y

�

� )jk0 = k; s0 = s; Y � = Y �

0 ]

for any � � 0 and for any f in Ĉ. The generator of the semigroup is the time derivative computed

using the metric induced by the sup norm in (k; Y �):

Gf = lim
�#0

T�f � f

�

for each of the n values of s.

The generator is composed by two parts, one relative to the di�usion process for k and Y �, and

one relative to the jump process s. The generator of the bivariate process for k and Y � (holding

s �xed) can thus depicted in terms of a drift � and �. � and � are column vectors containing,

respectively, the drifts and the di�usion coeÆcients of k and Y �. The exact forms of � and �

depend on whether we are considering the nonrobust or the robust decision problems, since the

evolution of these processes can be perturbed in the robustness games.

At least on the space C2
K of twice continuously di�erentiable (in k and Y �) functions with

compact support in the interior of R+ � R
+ , the generator is given by a second-order di�erential

operator:

Df = � � rf +
1

2
�04f �

where rf is the gradient and 4f the Hessian matrix (with respect to k and Y �).

The generator for the jump process s can be depicted in terms of the matrix A as:

Af(s) = s0A
��!
f(s)

The composite generator under complete information is formed by adding the two components

Gf = Df +Af:

A.2 Partial information

In the case of partial information, the state variables are x = (k; p̂; Y �). and the state space is

X = R
+
�P�R

+, where P is an n�1-dimensional set of Rn appropriate for a vector of nondegerate
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probabilities. The semigroup is again de�ned using a one-point compacti�cation. Since x is now a

di�usion, the resulting generator, denoted Ĝ, is

Ĝf = �̂ � rf +
1

2
�̂
0
4f �̂

where rf and 4f are the gradient and the Hessian with respect to the composite state vector

(k; p̂; Y �), and �̂ and �̂ are the column vectors containing the drift and the di�usion coeÆcients.

The exact expressions for �̂ and �̂, again, depend on the robustness game, and were denoted in

the paper by �ix and �ix, i = 1; 2 depending on the game.

The domain of the Feller semigroup is suÆciently rich for the purposes of constructing Markov

processes, but it is too con�ning for the purposes of control theory, since the value functions for

our resource allocation games are unbounded. The domain of the generator of a semigroup may

be extended however to unbounded functions f by �nding functions g such that

Mt = f(xt)� f(x0)�

Z t

0

g(xu)du; (16)

x 2 X, is well de�ned and a local martingale. In this case we use the notation Gf or Ĝf to

denote the function g used in this construction. G and Ĝ are called the extended generators of the

corresponding Markov processes (see Ethier and Kurz (1986) and Davis (1993).)

B HJB Equations

In the case of full information and no robustness, using the generator notation previously intro-

duced, the resulting Hamilton-Jacobi-Bellman (HBJ) equation is:

max
c

Y �U(c) + GW (k; s; Y �) = 0:

For the non robust, hidden information case, the equation is:

max
c

Y �U(c) + bGW (k; p̂; Y �) = 0

In the robustness games, we introduce a minimizing player and an entropy penalization. The

corresponding equation for Game II is:

max
c

min
h

Y �[U(c) + �
h2

2
] + bGW 1(x) = 0

By substituting the formula for bG, we get equation 12 in the paper.

For Game II, we have:

max
c

min
g

Y �[U(c) +
�

2

X
i

(gi)2p̂i] + bGW 2(x) = 0

which results in equation 13.

In all the cases, the value functions are linear in Y , W (x) = Y �V (k; p̂). This can be veri�ed

by substituting this guess in the HJB equations, working out the algebra, and noticing that Y �

can be factored out of the resulting equations. Numerically, therefore, one need to solve only for

V , which depends on less state variables than W .

Given V , we can compute the decision rules for c and k, and the prices of risk and uncertainty,

�m and �u, using the formulas presented in the text. Note that while �m only depends on the

derivatives of V , the distortions g and h also depend on the level of V ; therefore, it is important

to compute precisely both V and its derivatives.
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C The algorithm to compute the value functions

The HJB equations are second order partial di�erential equations in V . To solve for V , we adapt

the algorithm described by Candler (1999). The idea is to �x the decision rules, solve the resulting

linear, second order partial di�erential equations, update the decision rules with the new solution

for the value functions, and iterate until convergence.

The algorithm is similar for all the games considered, so we will explain it here in general terms.

Let z denote the arguments of V (k and s for the full information case, k and p̂ for the hidden

information ones), and i the control variables (c for the nonrobust full information case, c and h

for Game I, c and g for Game II) and . Since we consider the case of only two possible values for

the mean rate of growth of the technology, there is only one probability in z, and p̂L = 1� p̂H . Let

HJB(V; i) be the di�erential equations described above, keeping the decision rule i �xed. Following

Candler (1999), we introduce explicitly time, and solve

@V (z; t)

@t
+HJB(V (z; t); i) = 0

This corresponds to the backwards iteration often used to solve dynamic programming problem.

We start at time T with some guess V (z; T ), and then solve the problem backwards one time

period.

The algorithm therefore consists of the following:

� start with a guess V (z; T )

� given V (T; z), compute the optimal decision rules iT

� given iT , solve the second order partial di�erential equation backwards one time interval

�t, obtaining the new value function V (z; T ��t)

@V (z; T ��t)

@t
+HJB(V (z; T ��t); iT ) = 0

The equation is linear, and we use an implicit, upwind, �nite di�erence method.

� given V (z; T ��t), compute the optimal decision rules iT��t, and iterate until the distance

between V (z; t) and V (z; t��t) is small

As mentioned in the previous section, we can use the numerical solution for V to compute the

decision rules and the prices of risk. The derivatives of V necessary to evaluate these variables are

computed numerically using central di�erences. The numerical solution for V is also used as an

input for the pricing equation (15),which is then again solved using a �nite di�erence method.
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