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Abstract

A fundamentals based monetary policy rule, which would be the
optimal monetary policy without commitment when private agents
have perfectly rational expectations, is unstable if in fact these agents
follow standard adaptive learning rules. This problem can be overcome
if private expectations are observed and suitably incorporated into the
policy maker�s optimal rule. These strong results extend to the case
in which there is simultaneous learning by the policy maker and the
private agents. Our Þndings show the importance of conditioning
policy appropriately, not just on fundamentals, but also directly on
observed household and Þrm expectations.

1 Introduction
The formulation and performance of monetary policy rules has been analyzed
extensively in the recent literature, for recent surveys see e.g. (Clarida, Gali,
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and Gertler 1999), (Woodford 1999) and (McCallum 1999). Much of the
recent analysis has been conducted using the �New Phillips curve� model,
also known as the optimizing IS-AS model, derived in a number of papers
and reviewed e.g. in (Clarida, Gali, and Gertler 1999) and (Woodford 1999).
This model gives a central role for private sector expectations of inßation
and future output.
The corresponding monetary policy literature includes both the study of

optimal policy, for speciÞed objective functions, and analysis of the perfor-
mance of simple, not necessarily optimal rules, such as Taylor�s interest rate
feedback rule (Taylor 1993). Examination of optimal policy in turn can be
divided into the study of �time consistent� policy, under discretion, and pol-
icy in which the monetary authorities can commit to a rule that constrains
future policy. As is well known, under rational expectations there can be
gains, as measured by the policy maker�s objective function, when a binding
commitment to a rule is possible. However, it may not be considered cred-
ible for policy makers to commit to a rule from which there will be future
incentives to deviate. Optimal rules without commitment have the property
that the monetary authorities have no incentive to change policy even though
they have the discretion to do so.
While almost all of the literature has assessed the design of monetary

policy rules under rational expectations (RE), this may not be an innocuous
assumption. It has been shown that some policy rules can yield indeter-
minacy of equilibria, i.e. multiple RE solutions, see e.g. the discussion in
(Bernanke and Woodford 1997) and (Woodford 1999). Recently, (Bullard
and Mitra 2000) have shown that if agents are instead assumed to follow
adaptive learning rules, then the stability of the Taylor-type rules could not
be taken for granted. An earlier paper by (Howitt 1992) showed the instabil-
ity under learning of interest rate pegging and related rules in both ßexible
price and IS-LM type models. In his conclusions Howitt explicitly warned
that any analysis of monetary policy under RE should be supplemented with
an investigation of its stability under learning.
We take up this issue in the context of optimal policy rules without com-

mitment, and obtain some strong results.1 We begin by showing that, if
the policy makers follow the optimal interest rate rule formulated in terms

1Policy with a limited form of commitment possible is discussed in Section 4.3.2. We
leave for future research a general study of learning stability for optimal monetary policy
rules when commitment is possible.
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of observed fundamental shocks and private agents follow natural learning
rules to form expectations of inßation and future output, then the economy
is invariably unstable. Small expectational errors by private agents become
magniÞed by the policy which assumes RE and the cumulative process drives
the economy away from the rational expectations equilibrium (REE). This
result can be viewed as an extension of Howitt�s results to the New Phillips
curve framework.
A central objective of the paper is to show how this problem can be

overcome. In particular, we seek a monetary policy which both is stable
under learning and implements optimal policy. The key to achieving a stable
optimal monetary policy is to formulate a rule that explicitly takes account of
private sector expectations and the economic structure. We obtain a striking
result. We show that under a suitably designed rule of this type, the economy
will invariably be stable under least squares learning and will converge over
time to the REE corresponding to the optimal policy without commitment.
Furthermore, we show that such rules continue to be stable under learning
even if the policy maker also has to learn the true structural parameters
required to conduct optimal monetary policy.
In practice, monetary authorities appear to base their policy on a variety

of indicators that include consumer and business sentiments. From the strict
RE viewpoint such practices might seem puzzling since with a unique REE
these expectations are functions of the observable fundamentals. Possible
ways to explain the practices of the policy maker include multiplicities of REE
and informational asymmetries. This paper provides a different explanation,
which does not hinge on these factors. The possibility of small deviations
from perfect RE is enough to justify careful attention to the expectations of
private agents.

2 The Key Results

2.1 The Basic Model

We utilize the standard log-linear framework as developed in Section 2 of
(Clarida, Gali, and Gertler 1999). The structural model consists of two
equations:

xt = −ϕ(it − �Etπt+1) + �Etxt+1 + gt (1)
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πt = λxt + β �Etπt+1 + ut, (2)

where xt is the �output gap� i.e. the difference between actual and potential
output, πt is the inßation rate, i.e. the proportional rate of change in the
price level from t − 1 to t and it is the nominal interest rate. �Etxt+1 and
�Etπt+1 denote private sector expectations of inßation and output gap next
period. We will use the same notation without the �^� to denote RE. All
the parameters in (1) and (2) are positive. 0 < β < 1 is the discount rate of
the representative Þrm and is therefore close to one.
(1) is a dynamic �IS� curve which can be derived from the Euler equation

associated with the household�s savings decision. (2) is a �new Phillips�
curve which can be derived from optimal pricing decisions of monopolistically
competitive Þrms facing constraints on the frequency of future price changes.
The essence of the new Phillips curve is the forward-looking character of the
inßation expectations. Finally, gt and ut denote observable shocks following
Þrst order autoregressive processes

gt = µgt−1 + �gt (3)

ut = ρut−1 + �ut, (4)

where 0 < |µ| < 1, 0 < |ρ| < 1 and �gt ∼ iid(0, σ2g), �ut ∼ iid(0, σ2u). gt
represents shocks to government purchases as well as shocks to potential
GDP. ut represents any cost push shocks to marginal costs other than those
entering through xt.
It should be emphasized that the model (1) and (2) is derived by suit-

ably linearizing a nonlinear framework around a nonstochastic steady state.
Any analysis based on linearization must be interpreted as being local in a
neighborhood of the steady state. In particular, the random shocks must
be sufficiently small for the linearization to make sense. We also follow the
standard practice of leaving hidden the government budget constraint and
the equation for the evolution of government debt.2

The policy maker has the following standard objective function deÞned
in terms of the target variables xt and πt:

min
1

2
Et

( ∞X
i=0

βi
£
α(xt+i − x̄)2 + (πt+i − π̄)2

¤)
, (5)

2These would need to be made explicit if we wished to examine the implications of
following explosive price paths. See (Sims 1994) and (Woodford 2000).
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where x̄ allows for a possible deviation of socially optimal output from poten-
tial output and π̄ is the target value for the inßation rate. (If desired, these
can be assumed to be zero.) α is the relative weight for output deviations,
and β is the discount rate. Thus the policy maker discounts the future at
the same rate as the private sector. We note that α = 0 would correspond
to pure inßation targeting.
Optimal policy without commitment reduces to a sequence of static prob-

lems in which the nominal interest rate is chosen to deliver the values xt and
πt which minimize (1/2) [α(xt − x̄)2 + (πt − π̄)2]+Ft subject to πt = λxt+Ft,
where Ft, Ft denote remainder terms which are treated as given under dis-
cretionary policy. This leads to the Þrst order condition

λ(πt − π̄) + α(xt − x̄) = 0, (6)

so that it is set to satisfy (1), (2) and (6). An explicit form will be given
below.
To obtain the optimal interest rate rule under RE we show that there is

a solution of the form

πt = a1 + d1ut

xt = a2 + d2ut.

Under RE we have Etπt+1 = a1 + d1ρut, Etxt+1 = a2 + d2ρut. Inserting into
(1), (2) and (6) yields

ā1 =
λ(λπ̄ + αx̄)

α(1− β) + λ2 , d̄1 =
α

α(1− βρ) + λ2 (7)

ā2 = −λβa1 − λπ̄ − αx̄
(λ2 + α)

, d̄2 = − λ

λ2 + α(1− βρ) (8)

it = ψ0 + ψuut + ψggt, where ψ0 = ā1,ψu =
(1− ρ)λ+ αρϕ
ϕ[α(1− βρ) + λ2] ,ψg = ϕ

−1.

(9)

Under this optimal policy rule the interest rate is adjusted to neutralize any
shock to the IS curve. Price shocks present the policy makers with a trade-off
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since they affect both inßation and output in the same direction. It can be
shown that the policy makers faces a trade-off between the variabilities of
output and inßation and their optimal choice depends on α as is reßected in
the coefficient ψu. We will call (9) the fundamentals form of the RE-optimal
policy rule.
Clearly, the optimal monetary policy without commitment can be char-

acterized in other ways besides (9). In particular, it is immediate from the
above that the optimal interest rate can be written as

it = −(1− ρ)λ
ραϕ

ā1 + (1 +
(1− ρ)λ
ραϕ

)Etπt+1 + ϕ
−1gt, (10)

as pointed out in (Clarida, Gali, and Gertler 1999). Indeed, under RE there
are many equivalent ways of writing the optimal policy as emphasized by
(Woodford 1999). However, if one departs from RE these rules are distinct
and their properties can differ. We begin by examining the fundamentals
form of the RE-optimal rule (9) and later consider the alternative form (10).

2.2 Instability of Fundamentals-Based Policy Rules

We now relax the assumption that private agents have rational expectations
and instead endow them with a standard adaptive learning rule such as least
squares. These learning rules have been widely studied and shown to con-
verge to the usually employed REE in many standard models. This is true
of the stationary solutions of, for example, the Cagan model of inßation,
the Sargent-Wallace IS-LM-PC model, the Samuelson overlapping genera-
tions model and the real business cycle model. Recent overviews of the
literature are provided e.g. in (Evans and Honkapohja 1999) and (Evans and
Honkapohja 2001). In stochastic frameworks least squares and closely related
learning rules are the most widely employed formulation, though other learn-
ing algorithms have occasionally been considered. In this paper we follow the
literature and focus on least squares learning, but we do brießy demonstrate
the robustness of our results to some alternative learning schemes.
A reasonable requirement for a good policy rule is that if private agents

make small expectational errors the economy will converge to the posited
REE as agents correct these errors over time through a learning rule. As we
shall see, this issue turns out to be a major concern in the implementation
of optimal monetary policy.
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Throughout this section we retain the assumption that the policy maker
knows the true structure (1), (2) and the parameter values of the econ-
omy. The policy maker is assumed to follow the fundamentals form of the
RE-optimal rule (9), mistakenly assuming that agents have fully rational
expectations. Combining (1), (2) and (9) we obtain the reduced formµ

πt
xt

¶
=

µ
β + λϕ λ
ϕ 1

¶µ
�Etπt+1
�Etxt+1

¶
+

µ
0

−ϕā1
¶
+

µ
1− λϕψu
−ϕψu

¶
ut.

(11)

The private agents have forecast functions

�Etπt+1 = a1,t + k1,tut (12)

�Etxt+1 = a2,t + k2,tut, (13)

where the parameters a1,t, k1,t, a2,t and k2,t are updated over time according
to least squares. Under rational expectations a1,t = ā1, k1,t = ρd̄1, a2,t =
ā2, ks,t = ρd̄2. The question we investigate is whether, under a least squares
learning rule, the estimated parameters converge to these values over time
when the policy maker conducts monetary policy using the rule (9).3

The preceding formulation of learning is standard in the literature, but
its motivation here requires some comment. First, since the private sector
in the economy is modeled as monopolistically competitive, it is populated
by a large number of �small� agents. It is therefore natural to assume,
as we do, that strategic behavior in expectations formation and learning
is absent and agents simply try to learn the equilibrium processes for the
endogenous variables they need to forecast. We also assume that the policy
maker does not make active use of the learning behavior on the part of agents.
Strategic manipulation by the policy maker of agents� learning rules merits
investigation in future research. Finally, since the forecasts based on learning
will be directly incorporated in the model, it is implicitly assumed that the
Euler equations are used as behavioral rules describing how private agents
respond to their forecasts. This approach has the advantage that the system

3(12)-(13) omit dependence on gt because it does not affect the REE. Agents might also
include gt in the estimated forecast functions. This would not affect any of our instability
or stability results. In particular, in Propositions 3 and 5, part (ii), the coefficients on gt
would converge to 0.
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can be formulated entirely in terms of the linearized reduced form model and
the standard updating equations from the learning literature.4

It is known for learning problems of this type that under fairly general
assumptions convergence to REE obtains if and only if certain stability con-
ditions, known as E-stability conditions, are satisÞed. In this section we ob-
tain the E-stability results and defer the explicit treatment of least squares
learning to the next section.
The E-stability conditions are developed as follows. For given values of

the parameters of the forecast functions, called the perceived law of motion,
one computes the resulting actual law of motion implied by the structure.
E-stability is then determined by a differential equation in which the param-
eters adjust in the direction of the actual law of motion parameter values.
Formally, we proceed as follows.
Inserting the perceived law of motion

�Etπt+1 = a1 + k1ut (14)

�Etxt+1 = a2 + k2ut, (15)

into (1) and (2) and using the rule (9) yields

xt = −ϕ(ā1 + ψut + ϕ−1gt − a1 − k1ut) + a2 + k2ut + gt
= −ϕ(ā1 − a1) + a2 + (k2 − ϕ(ψ − k1))ut

πt = λ(−ϕ(ā1 − a1) + a2) + λ(k2 − ϕ(ψ − k1))ut + β(a1 + k1ut) + ut
= βa1 + λa2 − λϕ(ā1 − a1) + (1 + βk1 + λ(k2 − ϕ(ψ − k1)))ut.

Using (4) we arrive at the actual law of motion, i.e. the implied forecast
functions �E∗t πt+1 = a

∗
1 + k

∗
1ut and �E

∗
t xt+1 = a

∗
2 + k

∗
2ut, where

a∗1 = βa1 + λa2 − λϕ(ā1 − a1)
k∗1 = (1 + βk1 + λ(k2 − ϕ(ψ − k1)))ρ
a∗2 = −ϕ(ā1 − a1) + a2
k∗2 = (k2 − ϕ(ψ − k1))ρ.

4In particular, agents just respond to expectations about the next period, and expec-
tations further into the future are assumed not to affect current decisions. This is another
issue awaiting further study.
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These equations can be collected into the mapping

(a∗1, k
∗
1, a

∗
2, k

∗
2) = TRE(a1, k1, a2, k2).

The TRE mapping gives rise to the differential equation deÞning E-stability,
namely

d

dτ
(a1, k1, a2, k2) = TRE(a1, k1, a2, k2)− (a1, k1, a2, k2). (16)

The REE parameter values are a Þxed point of TRE and hence an equilib-
rium of the differential equation. The equilibrium is said to be E-stable if
it is a locally asymptotically stable point of the differential equation. In-
specting the TRE mapping it is seen that the differential equation breaks up
into two independent subsystems for (a1, a2) and (k1, k2), respectively. The
subsystems are both linear and have slope coefficient matrices

DTRE,a − I =

µ
β + λϕ− 1 λ

ϕ 0

¶
and

DTRE,k − I =

µ
(β + λϕ)ρ− 1 λρ

ρϕ ρ− 1
¶
.

It can easily be veriÞed that the subsystem for (a1, a2) is always unstable
(the other one may or may not be stable). In the appendix we show that
this implies instability of the economy under least squares learning:

Proposition 1 The REE of the economy πt = ā1 + d̄1ut, xt = ā2 + d̄2ut
under the fundamentals form of the RE-optimal monetary policy rule and
least squares learning by private agents is unstable for all parameter values,
i.e. the economy converges to the REE with probability zero.

We have stated this result in terms of least squares learning, but the
instability also holds under alternative learning rules, as we will show below
in Section 4.1. The intuition for the result is straightforward. Assuming
λϕ + β > 1, a deviation of �Etπt+1 above its RE value leads, through the IS
curve, to an increase in xt and through the Phillips curve to a higher πt. Over
time this leads to upward revisions of both �Etπt+1 and �Etxt+1. Nothing in
the interest rate rule offsets this tendency, so that the economy would move
cumulatively away from the REE.5 We remark that the estimated coefficients

5Using (11), a more reÞned intuition can be developed for the case λϕ+ β < 1.
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(with probability one) do not converge to any constant parameter vector, at
least within the region for which the linearization is valid.
In fact, Proposition 1 is a special case of the next proposition which states

that all interest rate rules which depend linearly only on the fundamentals
are unstable:

Proposition 2 Consider a policy rule of the form it = η0+ ηuut + ηggt and
an associated REE of the form πt = a1 + d1ut + n1gt, xt = a2 + d2ut + n2gt.
For all values of the structural parameters, the REE is unstable under least
squares learning by private agents.

The proof of this result follows from the observation that the coefficient ma-
trix of the expectations is the same as in the reduced form (11) for optimal
policy (the coefficients of the policy rule only affect the constant and distur-
bance terms). E-stability depends only on this matrix. A predecessor of this
result is (Howitt 1992) who showed instability under learning of interest rate
pegging in several monetary models.
The instability under learning is a separate difficulty from the indetermi-

nacy of the REE, noted by (Woodford 1999), Section 5.1, under policy rules
that depend solely on the fundamental shocks. The indeterminacy means
that there also exist other types of REE which can, for example, depend on
sunspots i.e. extraneous variables affecting the REE only via expectations.6

This strong instability result raises the question of whether there are
alternative monetary policy rules that are robust to least squares learning
and that implement the optimal policy without commitment.

2.3 An Expectations Based Optimal Rule

The instability problem of the preceding section resulted from the implicit
assumption by the policy maker that private agents have perfectly rational
expectations at every point in time. If there is a chance that they are not
fully rational it would seem natural instead to base policy in part directly
on expectations of private agents. In this section we assume that these ex-
pectations are observable and consider a policy rule that depends partly on

6This is easily seen from the coefficient matrix of the expectations in (11). This matrix
has one root inside and the other root outside the unit circle and there are no predetermined
variables in the model.
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them.7

The relevant policy rule is obtained by solving for it from structural equa-
tions (1), (2) and the optimality condition (6). We obtain

it = δ0 + δπ �Etπt+1 + δx �Etxt+1 + δggt + δuut, (17)

where the coefficients are

δ0 = −(λ2 + α)−1ϕ−1(λπ̄ + αx̄),
δπ = 1 + (λ2 + α)−1ϕ−1λβ
δx = ϕ−1

δg = ϕ−1

δu = (λ2 + α)−1ϕ−1λ.

Since this rule satisÞes the static optimality condition (6), the policy is in
fact optimal taking the expectations of private agents as given.8 We will refer
to (17) as the expectations based optimal rule.
The reduced form isµ

πt
xt

¶
=

µ
βα(λ2 + α)−1 0
−βλ(λ2 + α)−1 0

¶µ
�Etπt+1
�Etxt+1

¶
(18)

+

µ −ϕδ0λ
−ϕδ0

¶
+

µ
1− ϕδuλ
−ϕδu

¶
ut.

We now turn to the question whether the economy will converge to the REE
when private agents follow least squares learning as above. The perceived law
of motion of the private agents is as before, and is thus given by equations
(14) and (15). Using (1), (2) and (17) with the speciÞed coefficients we get

xt = (λ
2 + α)−1(λπ̄ + αx̄− λβa1)− λ(λ2 + α)−1(βk1 + 1)ut (19)

πt = βa1 + λ
2(λ2 + α)−1(λπ̄ + αx̄− βa1) (20)

+(βk1 + 1)(1− λ2(λ2 + α)−1)ut.
7Alternatively, if the policy maker knows the learning rules of private agents, it can

infer the expectations from other observed data.
8Recall that we are ignoring the possibility that the government might attempt to

exploit the learning rule of the private agents.
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Thus the mapping from the perceived to the actual law of motion takes the
form

a∗1 =
λ

λ2 + α
(λπ̄ + αx̄) +

α

λ2 + α
βa1

k∗1 = ρ
α

λ2 + α
(1 + βk1)

a∗2 =
1

λ2 + α
(λπ̄ + αx̄− λβa1)

k∗2 = −ρ λ

λ2 + α
(1 + βk1).

Writing

(a∗1, k
∗
1, a

∗
2, k

∗
2) = TEB(a1, k1, a2, k2),

E-stability is deÞned, as before, by the differential equation

d

dτ
(a1, k1, a2, k2) = TEB(a1, k1, a2, k2)− (a1, k1, a2, k2). (21)

Again there are two independent linear subsystems for (a1, a2) and (k1, k2)
with slope coefficient matrices

DTEB,a − I =

µ
β(α/(λ2 + α))− 1 0
−βλ/(λ2 + α) −1

¶
and

DTEB,k − I =

µ
β(α/(λ2 + α))ρ− 1 0
−βλρ/(λ2 + α) −1

¶
.

It can be readily veriÞed that both of these subsystems are globally stable.
In the appendix we show that this implies convergence under least squares
learning:

Proposition 3 The REE of the economy under the expectations based opti-
mal rule and least squares learning by private agents is stable for all parameter
values, i.e. the economy converges almost surely to the REE that corresponds
to the optimal monetary policy without commitment.9

9In fact, formally the convergence of learning is even global, i.e. it happens for all
initial parameter estimates. Since the economic model is based on a local linearization we
do not emphasize global stability in the proposition.
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A partial intuition for this result is that, for example, an increase in �Etπt+1
leads to an increase in it which more than offsets the direct effect of �Etπt+1
on xt since δπ > 1. In economic terms the real interest is increased which
reduces the output gap. Likewise, the expectations based rule tightens policy
in the face of higher �Etxt+1. The rule (17) with the speciÞed parameter values
succeeds in guiding the expectations of private agents and the economy to
the optimal REE.
It is also be easily veriÞed that the REE is determinate under this policy

rule:

Proposition 4 The REE of the economy under the expectations based opti-
mal rule is determinate.

This result follows from noting that both roots of the coefficient matrix of
the expectations term in (18) are inside the unit circle. This proposition
establishes that under the policy rule (17) there is a unique REE. This result
contrasts sharply with the Þndings of (Bernanke and Woodford 1997) who
also considered policies that depend on private expectations. The key to
our results is that the policy rule (17) uses the economic structure and all
available information.10

Of course, formulating the optimal expectations based rule requires knowl-
edge of the structural parameters. There are two points to be made. First,
if the policy makers follow the rule (17) with parameters deviating from the
speciÞed values by small amounts, the economy will converge over time to
an REE which deviates from the optimum by small amounts. Second, the
policy maker could try to learn the true values of the structural parameters.
This raises the issue of whether simultaneous learning by private agents and
the policy maker can still lead the economy to converge to the optimal REE.
We take this up in the next section. Before doing so, we consider one other
formulation of optimal monetary policy.

2.4 An Alternative Expectations Based Rule

Returning optimal policy under RE discussed in Section 2.1 it was pointed
out that optimal monetary policy (without commitment) can also be written
in the form (10). This form which is often emphasized by (Clarida, Gali, and

10We assume as a simpliÞcation that private agents do not act strategically in forecast-
ing, even though their forecasts enter the rule (17) of the policy maker.
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Gertler 1999), suggests an alternative expectations based policy rule in which
rational expectations Etπt+1 is replaced by observed private expectations
�Etπt+1, i.e.

it = −(1− ρ)λ
ραϕ

ā1 + (1 +
(1− ρ)λ
ραϕ

) �Etπt+1 + ϕ
−1gt. (22)

We note that the derivation of this rule makes use of some rational expecta-
tions assumptions which eliminate the expectations of the output gap. It is
of interest to know the properties of this rule.
The reduced form is nowµ

πt
xt

¶
=

µ
β − (1− ρ)λ2/ρα λ
−(1− ρ)λ/ρα 1

¶µ
�Etπt+1
�Etxt+1

¶
+

µ −ā1(1− ρ)λ2/ρα
−ā1(1− ρ)λ/ρα

¶
+

µ
1
0

¶
ut.

It can be veriÞed that the REE is E-stable, so that optimal monetary policy
would also be obtained asymptotically under this expectations based rule.
This stability result shows the importance of strong positive feedback from
private inßation expectations to interest rates.
Despite the stability result this alternative rule is less appealing than our

proposed rule (17). First, the optimal REE under the alternative rule is not
necessarily determinate. Indeterminacy invariably arises for values of ρ close
to zero. This reßects the very large reaction of the interest rate to inßation
expectations, see (10) or (22). Second, the large coefficient for small |ρ| is
troubling for another reason: if ρ is not known exactly and replaced by an
estimate, then small estimation errors cause large deviations from optimal
REE. Finally, the policy rule (22) lacks the �static� optimality property of
(17). The latter is explicitly obtained as the rule which minimizes the policy
maker�s period objective function for all given private expectations �Etπt+1
and �Etxt+1. For these reasons we focus on (17) in the rest of the paper.

3 Learning by the Policy Maker
We now consider an extension of the analysis in which the key structural
parameter values are unknown. The policy maker is assumed to know the
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structure of the economy but must estimate the parameter values using ob-
served data.11 In order to make the estimation problem more realistic we
introduce unobserved shocks to the model (1), (2).
The IS and Phillips curves thus take the form

xt = −ϕ(it − �Etπt+1) + �Etxt+1 + gt + ex,t (23)

πt = λxt + β �Etπt+1 + ut + eπ,t, (24)

where now xt, πt, ex,t and eπ,t are not observable at time t. gt, ut are observ-
able at t and xt, πt are observed with a lag. ex,t, eπ,t are independent white
noise and gt, ut, ex,t, eπ,t are exogenous and mutually independent. The pri-
vate expectations are assumed to be observable. We also assume that the
discount factor β, a parameter shared by private agents and the policy maker,
is known. α, π̄, x̄ in the objective function are, of course, taken to be known.
However, the key structural parameters ϕ and λ must be estimated.
To complete the description of the extended model we must specify the

behavior of the policy maker. The objective function (5) remains as before,
but with our current informational assumptions the Þrst order condition be-
comes

λ(Etπt − π̄) + α(Etxt − x̄) = 0. (25)

It can be veriÞed that with the unobserved shocks the RE solution takes
the form

πt = ā1 + d̄1ut + λex,t + eπ,t

xt = ā2 + d̄2ut + ex,t,

where the parameter values are given in (7) and (8). The fundamentals form
of the RE-optimal rule remains unchanged, i.e. it takes the form (9) and the
expectations based rule continues to be of the form (17).
We now turn to the formulation of learning. The private agents forecast

functions have the same form as before (12) and (13), where the parameters
are estimated by least squares. At any given time, the agents run regressions
using the available data and therefore they update their parameter estimates

11Thus in contrast to (Sargent 1999) our policy maker estimates a correctly speciÞed
structural model.
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each period as new data become available. In line with the literature on least
squares learning we give the explicit equations in recursive form.12

Let

ξ1,t =

µ
a1,t
k1,t

¶
, ξ2,t =

µ
a2,t
k2,t

¶
, Ut =

µ
1
ut

¶
,

so that the forecasts can be written as �Etπt+1 = ξ
0
1,tUt and �Etxt+1 = ξ

0
2,tUt.

Under recursive least squares (RLS) learning the parameter vectors are up-
dated according to the formulae

ξ1,t = ξ1,t−1 + t
−1R−1U,t−1Ut−2(πt−1 − ξ01,t−1Ut−2)

ξ2,t = ξ2,t−1 + t
−1R−1U,t−1Ut−2(xt−1 − ξ02,t−1Ut−2)

RU,t = RU,t−1 + t−1(Ut−1U 0t−1 −RU,t−1).

This recursion requires starting values for the parameters at time t = 0 and
it is well-known that for appropriate starting values RLS is equivalent to
the standard least squares formula. In the formulation above the parameter
estimates at time t use data through period t − 1.13 The time t forecasts
do, however, use the current observation of the exogenous variable ut. Note
that the procedure used by private agents estimates the parameters of the
reduced form, which is all that is required for forecasting purposes.
The policy maker uses RLS to estimate the structural parameters ϕ,λ

and ρ, which are required for setting optimal monetary policy. Let

y1,t = xt − �Etxt+1 − gt
y2,t = πt − β �Etπt+1 − ut
rt = it − �Etπt+1.

Because rt depends directly only on the variables gt and ut, and xt depends
only on gt, ut and ex,t, consistent estimates of ϕ and λ can be obtained by

12The general approach used here was introduced by (Marcet and Sargent 1989). See
(Evans and Honkapohja 1999) for a recent survey and (Evans and Honkapohja 2001) for
a detailed treatment.
13This is common practice in the literature. Including current data would create a

simultaneity complication which is convenient to avoid and would not alter the central
results.
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regressions of y1,t on rt and y2,t on xt, respectively.14 Thus the policy maker
uses least squares to estimate

y1,t = −ϕ(it − �Etπt+1) + ex,t and

y2,t = λxt + eπ,t.

If required, a consistent estimate of ρ can of course be obtained by a regression
of ut on ut−1.15

In recursive form this becomes16

�ϕt = �ϕt−1 + t
−1R−1r,t−1rt−1(y1,t−1 + �ϕt−1rt−1)

Rr,t = Rr,t−1 + t−1(r2t−1 −Rr,t−1)
�λt = �λt−1 + t−1R−1x,t−1xt−1(y2,t−1 − �λt−1xt−1)

Rx,t = Rx,t−1 + t−1(x2t−1 −Rx,t−1)
�ρt = �ρt−1 + t

−1R−1u,t−1ut−1(ut − �ρt−1ut−1)
Ru,t = Ru,t−1 + t−1(u2t −Ru,t−1).

It remains to specify the monetary policy rules. The fundamentals form
of the RE-optimal rule based on estimated parameters takes the form

it = �a1,t + �ψtut + �ϕ
−1
t gt, (26)

where �a1,t =
�λt(�λtπ̄ + αx̄)

α(1− β) + �λ2t
and �ψt =

(1− �ρt)�λt + α�ρt�ϕt
�ϕt[α(1− �ρtβ) + �λ

2

t ]
.

The expectations based optimal policy rule with estimated structural param-
eters is

it = �δ0,t + �δπ,t �Etπt+1 + �δx,t �Etxt+1 + �δg,tgt + �δu,tut, (27)

14If ex,t and eπ,t were correlated then an instrumental variable estimator would be
needed to obtain a consistent estimator of λ.
15An estimate of ρ is needed for the RE-optimal policy but not for the expectations

based optimal policy.
16The formulations for �ϕt and �λt vary slightly from least squares since we have assumed

that we have introduced an additional lag in the equations for Rr,t and Rx,t. This is
convenient for expressing the system in standard form as a stochastic recursive algorithm.
Note that the regression of y1,t on rt gives an estimate of −ϕ. This explains the plus in
front of �ϕt−1 in the Þrst recursion below.
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where the coefficients are

�δ0,t = −(�λ2t + α)−1�ϕ−1t (�λtπ̄ + αx̄),
�δπ,t = 1 + (�λ

2

t + α)
−1�ϕ−1t �λtβ

�δx,t = �ϕ−1t
�δg,t = �ϕ−1t
�δu,t = (�λ

2

t + α)
−1�ϕ−1t �λt.

Given parameter estimates and forecasts, the temporary equilibrium is de-
termined by (23), (24) and the policy rule (26) or (27), respectively.
In the appendix we demonstrate the following result:

Proposition 5 Suppose that both the policy maker and the private agents are
learning with parameter estimates updated according to the RLS algorithms
speciÞed above. Then
(i) If policy makers follow the fundamentals form of the RE-optimal rule
(26), the REE is unstable for all parameter values.
(ii) If policy makers follow the expectations based optimal rule (27) then,
for all parameter values, the estimates (�ϕt, �λt) converge locally to (ϕ,λ), the
expectations of private agents converge locally to RE values, and the economy
converges locally to the REE that corresponds to the optimal monetary policy
without commitment.

The notion of local convergence has several precise interpretations, as
discussed in the appendix. It is not surprising that convergence is not guar-
anteed unless the policy maker has some a priori information concerning the
possible values of the structural parameters. Proposition 5 shows that the
fundamental contrast between the instability result in part (i) and the sta-
bility result in part (ii) continues to hold when the policy maker is learning
the structure of the economy.
Our results illustrate the potential feasibility of optimal monetary policy

when private expectations are observable and the rule is formulated to react
to these expectations. Even when the structural parameters are unknown to
policy makers and agents are not endowed with rational expectations, the
economy is (locally) stable when both parties follow natural procedures to
estimate the key parameters.
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4 Extensions
In this section we take up several extensions. First we show that our central
results extend to variations in the learning rules used by private agents. Next
we examine the robustness of our results to observation errors. Finally, we
consider a number of variations to the model or the formulation of monetary
policy. For simplicity, in this section we assume the policy maker knows the
true parameter values.

4.1 Alternative Learning Rules

Although the literature on adaptive learning in stochastic models has focused
on least squares learning, a number of alternatives have also been considered.
We here show that our key results are not limited to the least squares frame-
work.17

We Þrst consider learning based on SG (stochastic gradient) algorithms.
These have been proposed by, among others, (Sargent 1993) and (Kuan and
White 1994). This algorithm attempts to minimize the expected sum of
squared forecast errors. In the current context, private agents would update
parameters according to

ξ1,t = ξ1,t−1 + t
−1Ut−2(πt−1 − ξ01,t−1Ut−2)

ξ2,t = ξ2,t−1 + t
−1Ut−2(xt−1 − ξ02,t−1Ut−2).

This algorithm is simpler than RLS in that these updating equations are
not dependent on the matrix of second moments of the regressor Ut. For
regression set-ups with Þxed parameters and standard assumptions, the SG
algorithm will provide consistent estimates of the parameters, though it does
not possess the optimality properties of least squares. It does, however, have
the advantage of being simpler and faster to compute than least squares.
The analysis in (Evans and Honkapohja 1998) can be applied here. It is

shown there that the convergence conditions for SG learning for a class of
models is given by the E-stability conditions that also govern convergence of
least squares learning. (The framework of (Evans and Honkapohja 1998) has

17It can be shown that the stability results in Propositions 3 and 5 also hold for other
stability criteria under learning that have been proposed in the literature. For example,
the REE is both strongly and iteratively E-stable, see e.g. (Evans and Honkapohja 2001),
Chapters 9 and 15 for these concepts.
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expectations of current rather than future variables. However, because here
we consider RE solutions of an analogous form, the same argument can be
applied.) It follows that both our instability and stability results carry over
to SG learning.
As a second example, we consider a simple misspeciÞed learning rule.

Suppose that private agents ignore the dependence of πt and xt on ut and
forecast each variable using simple averages. Formulating this recursively we
have �Etπt+1 = a1,t and �Etxt+1 = a2,t where

a1,t = a1,t−1 + t−1(πt−1 − a1,t−1),
a2,t = a2,t−1 + t−1(xt−1 − a2,t−1).

As in Section 3 this can be set up as a stochastic recursive algorithm. It is
straightforward to show that the system remains unstable under the funda-
mentals based monetary policy rule and that the economy is stable under
the expectations based policy rule. In the latter case private expectations
(a1,t, a2,t) will converge to (ā1, ā2) and the economy converges to a �restricted
perceptions equilibrium.�18 In this equilibrium private sector expectations
are equal to the unconditional mathematical expectations of πt and xt. How-
ever, they are not fully rational (when ρ 6= 0) since they ignore the depen-
dence on ut and are therefore not equal to the conditional mathematical
expectations. Nevertheless, the expectations based policy rule continues to
provide the optimal monetary policy without commitment, given the way
agents form their expectations.

4.2 Observation Errors

We next consider the issue of observation errors, starting with the case in
which the exogenous variables gt, ut are subject to measurement error. We
use the set-up (23)-(24), but assume that policy makers know the values of
the structural parameter.. For simplicity we restrict attention to the case
where gt and ut are serially uncorrelated. Suppose that the policy maker
observes �gt and �ut, where

�gt = gt + εt, where εt ∼ iid(0, σ2ε)
�ut = ut + vt, where vt ∼ iid(0,σ2v).

18This is the terminology we use in (Evans and Honkapohja 2001). The phrase �self-
conÞrming equilibium� is also used, e.g. see (Sargent 1999).
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Provided the variances are known, the policy maker faces a signal extraction
problem with a straightforward solution. The linear projection of gt on �gt is
given by

P [gt | �gt] = ζg�gt, where ζg =
σ2g

σ2g + σ
2
ε

.

Analogously, the linear projection of ut is

P [ut | �ut] = ζu�ut, where ζu =
σ2u

σ2u + σ
2
v

.

The Þrst order condition for optimal policy is again given by (25). Under
optimal policy the REE takes the form

πt = a1 + b1gt + c1εt + d1ut + f1vt + λex,t + eπ,t

xt = a2 + b2gt + c2εt + d2ut + f2vt + ex,t,

where

a1 = ā1, a2 = ā2

b1 = λ(1− ζg), b2 = 1− ζg
c1 = −λζg, c2 = −ζg
d1 = 1− (α+ λ2)−1λ2ζu, d2 = −(α+ λ2)−1λζu
f1 = d1 − 1, f2 = d2.

We note that, under optimal policy, xt and πt now respond to gt as well
as ut shocks because of the measurement error. The analysis of learning is,
however, virtually unchanged and the key results carry through as before:
the economy is unstable under the RE optimal policy rule and stable under
the expectations based optimal rule.
Another potentially important complication arises in connection with the

expectations based rule if private sector expectations are measured with er-
ror. Clearly the optimality properties of our rule would be undermined if
these errors are sizeable, but we can show that our rule is robust to small
measurement errors in private expectations. Thus suppose that the expecta-
tions based policy rule (17) is modiÞed to be

it = δ0 + δπ( �Etπt+1 + wπ,t) + δx( �Etxt+1 + wx,t) + δggt + δuut,
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where wπ,t and wx,t denote white noise measurement errors with Þnite vari-
ances. The parameter values of the rule are unchanged. For private agents
we continue to assume perceived laws of motion of the form (14)-(15). For
the basic model (1)-(2) of Section 2.3, the stochastic processes for xt and πt
generated by these forecast rules and this policy rule are given by (19)-(20)
augmented by additive linear terms in wx,t and wπ,t. The mapping from the
perceived to the actual law of motion is therefore identical to that given in
Section 2.3. Therefore this expectations based policy rule remains stable,
with private agents converging to rational expectations. This result holds
even if the observation errors wx,t and wπ,t are large, though with large obser-
vation errors the resulting equilibrium would be far from optimal. However,
it is easily seen that if wx,t and wπ,t have small variances then the economy
under the expectations based rule is close to the overall optimum.
The preceding paragraph assumed that the policy makers know the true

structural parameters. If instead they estimate structural parameters using
RLS as in Section 3 there is the additional complication that, while �λt re-
mains consistent, the estimator �ϕt becomes inconsistent due to measurement
error in the regressor rt. However, if wπ,t has a small variance then the in-
consistency will be small and the equilibrium will be approximately optimal
asymptotically. Alternatively, policy makers could obtain a consistent esti-
mate of ϕ using recursive instrumental variables with lagged measured rt as
instrument.
In summary, although observation errors of the fundamental shocks or

private expectations introduce complications for our proposed policy rule,
we have seen that these difficulties can be largely overcome. The case of sub-
stantial measurement errors in private expectations is sufficiently important
to warrant a separate treatment and is the subject of current research.

4.3 Other Directions

4.3.1 Output Inertia

A number of variations of the new Phillips curve model have been taken up in
the policy literature, including endogenous inßation and output inertia. We
consider brießy the more straightforward case of output persistence due to
costs of adjustment. As shown in (Clarida, Gali, and Gertler 1999), Section
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6, with output persistence the IS curve becomes

xt = −ϕ(it − �Etπt+1) + θxt−1 + (1− θ) �Etxt+1 + gt, (28)

where 0 < θ < 1. The corresponding expectations based policy rule is then

it = δ0 + δπ �Etπt+1 + δx(1− θ) �Etxt+1 + ϕ−1θxt−1 + δggt + δuut, (29)

where the parameters δi for i = 0,π, x, g, u are the same as in (17). We
restrict attention to the case ρ = 0, as do (Clarida, Gali, and Gertler 1999).
In this case the private sector forecasts under rational expectations are ap-
propriate constants.
Under our rule (29) the reduced form is

xt = (λ2 + α)−1(λπ̄ + αx̄)− λβ

α+ λ2
�Etπt+1

πt = (λ2 + α)−1λ(λπ̄ + αx̄) +
βα

α+ λ2
�Etπt+1 + ut.

Assuming now that agents form their forecast �Etπt+1 as the average of past
inßation rates, it is easily veriÞed that forecasts converge to rational expec-
tations and the economy converges to the optimal equilibrium. Thus output
persistence presents no difficulties. The case of inßation persistence is more
complicated and is therefore omitted.

4.3.2 Policy Under Limited Commitment

Our discussion of optimal policies has been under the assumption that the
policy maker does not have commitment power. The ability to commit to a
given rule raises several additional issues, as discussed Section 4 of (Clarida,
Gali, and Gertler 1999). For brevity we assume here that x̄ = 0 = π̄, so that
the classic inßationary bias issue does not arise. Nevertheless, commitment
can still result in gains over the discretionary equilibrium.
(Clarida, Gali, and Gertler 1999), Section 4.2.1 argue that a simple family

of rules yielding an REE of the form

xt = ωut

can dominate the optimum without commitment. (Note that with x̄ = 0 = π̄
the optimal REE without commitment also has this form.) Suppose that
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policy makers have limited commitment power in that they are able only to
commit to policies that take this form. The optimal policy with commitment
in this class is formally identical to the model without commitment when the
relative weight on output α is replaced by a smaller value αc = α(1−βρ). It
is thus apparent that our instability and stability results can be applied for
this family of rules with limited commitment.
Optimal policy under full commitment power does not generally have

this form, as emphasized by (Woodford 1999). The general analysis of issues
raised in this paper for monetary policy with full commitment will require a
separate study.

4.3.3 Rules Based on Inßation and Output Data

A natural question to ask is whether it is possible to devise monetary policy
rules that are based on inßation and output data, rather than on observed
private expectations, and which are stable under learning and lead to the
optimal policy without commitment. That is, can one side-step the apparent
need to observe private expectations in order to implement the optimal policy
rule? There are two separate issues, which we take up in turn.
First, is it possible using observed current data to infer the values of

private expectations and insert them into (17) to obtain an optimal policy
which is stable under learning? There are several problems with this. The
most telling difficulty arises because of the simultaneity implied by using
observations on xt, πt, it, ut, gt to deduce private expectations while setting
it as a function of these private expectations. Consider the basic framework
(1)-(2) with known structural parameters. Under the interest rate rule (17)
we are led to a reductio ad absurdum: it is impossible to infer the value of
�Etxt+1 because under the rule (17) the effects of �Etxt+1 are completely offset
and have no effects on observables.19

We do not wish to overstate this particular argument. With additional
auxiliary assumptions it may be possible to deduce the values of private
expectations from the history of data. For example, if it were known that all
agents form expectations by following the least squares learning rules that
we have analyzed, then it would be straightforward to use this information
to infer �Etπt+1 and �Etxt+1 and implement (17). Such a policy would be
entirely in the spirit of this paper. But whether such an inference is possible

19Other practical difficulties are that the values of structural parameters may be un-
known and that there may be unobserved shocks as in (23)-(24).
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is a delicate matter that depends on details of the model, the information
structure and auxiliary assumptions. It would appear preferable to obtain
direct observations on expectations.
Another question is whether judicious use of the rational expectations

assumption can be used to substitute observations of actual inßation and
output gap for expected inßation and expected output gap in the optimal
interest rate rule. We consider two possibilities within the context of the
basic model of Section 2.1. Under rational expectations and optimal policy
we have πt = ā1 + d̄1ut and xt = ā2 + d̄2ut. From Etπt+1 = ā1 + d̄1ρut
and Etxt+1 = ā2 + d̄2ρut. it follows that Etπt+1 = ā1 + ρ(πt − ā1) and
Etxt+1 = ā2 + ρ(xt − ā2). Using these expressions to replace �Etπt+1 and
�Etxt+1 in the expectations based rule (17) suggests the policy

it = δ
0
0 + δπρπt + δxρxt + δggt + δuut, (30)

where the values of δi, i = π, x, g, u are as in equation (17) and δ00 is an
appropriate constant. Alternatively one could start with the fundamentals
based rule (9) and use the relationship ut = d̄−11 (πt− ā1) to obtain the policy
rule

it = ψ
0
0 +

¡
ϕ−1α−1λ(1− ρ) + ρ¢πt + ϕ−1gt, (31)

where ψ00 is an appropriate constant.
Neither of the policy rules (30) or (31) require observations of private

expectations, but each was obtained making some use of the rational expec-
tations assumption. Will these rules be stable under least-squares learning
by private agents? It is easily established that stability is not guaranteed.
For the case ρ = 0 the rule (30) reduces to it = δ00 + δggt + δuut. But we
have already established in Section 2.2 that any policy that depends linearly
only on the fundamental shocks cannot be E-stable and hence is unstable
under least squares learning. Using continuity of eigenvalues, it follows that
the instability result holds for all nonzero |ρ| sufficiently small. A similar
argument applies to the rule (31) for λ/α and |ρ| sufficiently small. In con-
trast, the expectations based rule (17) is stable under learning for all possible
parameter values.
The rules (30) and (31) are particular cases of rules based on actual

inßation and output gap data. There are a number of simple interest rate
rules along such lines that do not explicitly aim for optimal policy. (Bullard
and Mitra 2000) consider various general classes of such rules and derive
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conditions on policy rule parameter values that yield stability under learning.
Another class of rules is based on controlling the money stock, and one could
also consider the stability under learning of the REE for monetary feedback
rules. See Part III of (Evans and Honkapohja 2001) for examples of the
latter. These examples do not exhaust the list of policy rules that have
been proposed in the recent literature. We emphasize that it is important to
analyze, for any proposed policy rule, whether the RE equilibrium of interest
is robust to expectational errors, i.e. is stable under learning.

5 Conclusions
The central message of the paper is both simple and fundamental. First,
optimal monetary policy should not assume perfectly rational expectations
on the part of private agents: Even if the initial deviations from perfect
rationality are small, the economy will diverge when the fundamentals form
of the RE-optimal policy rule is followed.
Second, the instability problem can be overcome if the set of conditioning

variables is augmented to include observed private expectations. We have
shown how to use the economic structure to devise an expectations based
optimal policy rule. Under this policy rule the economy converges to the
REE corresponding to the optimal policy rule without commitment.
These results hold even when the policy maker is learning the required

values of the structural parameters at the same time that private agents are
following least squares learning. The propositions have been demonstrated
under the standard assumption that private expectations are revised in ac-
cordance with least squares learning as well as under some other natural
learning algorithms.
Our analysis has been conducted under the assumption that accurate data

on private expectations are available. This allows us to present sharp and
powerful results. Appropriately conditioning policy on private expectations
gives due weight to the role of these expectations in determining the dynamics
of the economy, which the assumption of perfect RE suppresses. Obtaining
accurate data on private expectations should therefore be a high priority
for monetary policy makers. Finding the appropriate form of dependence of
policy on private expectations is also crucial, since not all rules that depend
on private forecasts lead to stability under learning.

26



Appendix
In this appendix we give the proof of Proposition 5 and comment on the

modiÞcations for the proofs for Propositions 1 and 3. Consider the case of
the expectations based policy rule (27). Combining this equation with the
IS curve (23) and the private agent forecast rules (12)-(13) we obtain the law
of motion for xt under learning:

xt = −ϕ�ϕ−1t (a2,t + k2,tut)− ϕ�ϕ−1t gt
−ϕ�ϕ−1t (�λ

2

t + α)
−1
³
�λtβ(a1,t + k1,tut)− �λt(ut + π̄)− αx̄

´
+a2,t + k2,tut + gt + ex,t,

which is of the form

xt = x(�ϕt,
�λt, ξ1,t, ξ2,t;ut, gt, ex,t, eπ,t).

Similarly, using also the PC curve (24) and the deÞnitions of rt, y1,t and y2,t
we can obtain

πt = π(�ϕt,
�λt, ξ1,t, ξ2,t; ut, gt, ex,t, eπ,t)

rt = r(�ϕt, �λt, ξ1,t, ξ2,t; ut, gt, ex,t, eπ,t)

y1,t = y1(�ϕt,
�λt, ξ1,t, ξ2,t; ut, gt, ex,t, eπ,t)

y2,t = y2(�ϕt,
�λt, ξ1,t, ξ2,t; ut, gt, ex,t, eπ,t).

DeÞne the parameter vector

θ0t = (�ϕt, �λt, ξ
0
1,t, ξ

0
2,t, Rx,t, Rπ,t, vec(RU,t))

and the state vector

Xt = (ut, ut−1, ut−2, gt−1, ex,t−1, eπ,t−1).

The recursive equations for the parameter estimates can then be written in
the form

θt = θt−1 + t−1H(θt−1,Xt),
so that theorems on the convergence of stochastic recursive algorithms can
be applied, e.g. part II of (Evans and Honkapohja 2001). These results
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state that, under appropriate regularity conditions, convergence of these al-
gorithms is governed by the stability of the associated ordinary differential
equation (ODE)

dθ

dτ
= h(θ) where h(θ) = lim

t→∞
EH(θ, Xt).

For the case of the expectations based optimal policy one can compute
for the policy maker�s parameter estimates

d�ϕ

dτ
= R−1r Ert−1(θ)

2(ϕ− �ϕ),
dRr
dτ

= Ert−1(θ)2 −Rr
d�λ

dτ
= R−1x Ext−1(θ)

2(λ− �λ)
dRx
dτ

= Ext−1(θ)2 −Rx,

where

rt(θ) = r(�ϕ, �λ, ξ1, ξ2, �ρ; ut, gt, ex,t, eπ,t)

and

xt(θ) = x(�ϕ, �λ, ξ1, ξ2, �ρ; ut, gt, ex,t, eπ,t).

For the private agents� parameter estimates we get

dξ1
dτ

= R−1U (EUt−2U
0
t−2)λ"

−ϕ�ϕ−1
µ
a2
k2ρ

¶
− ϕ�ϕ

−1�λ
�λ
2
+ α

Ã
βa1 − π̄ − �λ−1αx̄
(βk1 + 1)ρ

!
+

µ
a2
k2ρ

¶#

+R−1U (EUt−2U
0
t−2)

·µ
βa1

(βk1 + 1)ρ

¶
−
µ
a1
k1

¶¸

dξ2
dτ

= R−1U (EUt−2U
0
t−2)"

−ϕ�ϕ−1
µ
a2
k2ρ

¶
− ϕ�ϕ

−1�λ
�λ
2
+ α

Ã
βa1 − π̄ − �λ−1αx̄
(βk1 + 1)ρ

!
+

µ
0

k2(ρ− 1)
¶#
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dRU
dτ

= EUt−2U 0t−2 −RU .

It can be veriÞed that this system has a unique equilibrium point θ∗ at which

�ϕ = ϕ, �λ = λ, ξ1 = ξ̄1 ≡ (ā1, k̄1)0, ξ2 = ξ̄2 ≡ (ā2, k̄2)0,
Rr = Ert−1(θ∗)2, Rx = Ext−1(θ∗)2, RU = EUt−2U 0t−2.

It can be shown that local stability is governed by the following �small�
ODE

d�ϕ

dτ
= ϕ− �ϕ

d�λ

dτ
= λ− �λ

dξ1
dτ

= λ

"
−ϕ�ϕ−1

µ
a2
k2ρ

¶
− ϕ�ϕ

−1�λ
�λ
2
+ α

Ã
βa1 − π̄ − �λ−1αx̄
(βk1 + 1)ρ

!
+

µ
a2
k2ρ

¶#

+

·µ
βa1

(βk1 + 1)ρ

¶
−
µ
a1
k1

¶¸

dξ2
dτ

= −ϕ�ϕ−1
µ
a2
k2ρ

¶
− ϕ�ϕ

−1�λ
�λ
2
+ α

Ã
βa1 − π̄ − �λ−1αx̄
(βk1 + 1)ρ

!
+

µ
0

k2(ρ− 1)
¶
.

Clearly the subsystem in (�ϕ, �λ) is stable with �ϕ → ϕ, �λ → λ. Hence local
stability of the REE is determined by the ODE

dξ1
dτ

= − λ

λ2 + α

µ
βa1 − π̄ − λ−1αx̄
(βk1 + 1)ρ

¶
+

µ
βa1

(βk1 + 1)ρ

¶
−
µ
a1
k1

¶

dξ2
dτ

= − λ

λ2 + α

µ
βa1 − π̄ − λ−1αx̄
(βk1 + 1)ρ

¶
−
µ
a2
k2

¶
which is identical to the E-stability equation (21) which was shown in section
2.3 to be asymptotically stable.
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The standard results from the learning literature can be now applied.
The regularity conditions on the function H(θ, Xt), and bounded moment
conditions for the exogenous innovations, required for the local convergence
results in Chapter 6 of (Evans and Honkapohja 2001), are easily seen to be
satisÞed. Above we saw that the equilibrium of the large ODE θ∗ is locally
asymptotically stable. Hence the basic local convergence theorems apply.
There are various senses of local probabilistic convergence. For example,
almost sure convergence obtains if the algorithm is augmented to have a
projection facility constraining estimates to a neighborhood of the REE.
For details see Chapter 6 of (Evans and Honkapohja 2001) or (Evans and
Honkapohja 1999). This proves part (ii) of Proposition 5.
The proof of part (i) of Proposition 5 follows a similar sequence of steps,

but with the alternative policy rule to obtain law of motion for xt, πt, rt, y1,t
and y2,t. For this rule the parameter vector θt must be augmented to include
�ρt and Ru,t. The stability properties of the associated ODE can be shown to
be depend on the E-stability property of the small ODE. The latter is locally
unstable and the nonconvergence results found in Chapter 6 of (Evans and
Honkapohja 2001) or (Evans and Honkapohja 1999) can be applied. These
results state that θt converges to θ

∗ (or to any other point) with probability
zero.
Turning to Propositions 1 and 3 the parameter vector θt is now

θ0t = (ξ
0
1,t, ξ

0
2,t, vec(RU,t)).

For the expectation based rule the associated ODE is

dξ1
dτ

= R−1U (EUt−2U
0
t−2)−

λ

λ2 + α

µ
βa1 − π̄ − λ−1αx̄
(βk1 + 1)ρ

¶
+

µ
βa1

(βk1 + 1)ρ

¶
−
µ
a1
k1

¶

dξ2
dτ

= R−1U (EUt−2U
0
t−2)−

λ

λ2 + α

µ
βa1 − π̄ − λ−1αx̄
(βk1 + 1)ρ

¶
−
µ
a2
k2

¶

dRU
dτ

= EUt−2U 0t−2 −RU .
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It can be seen that for this system the equilibrium point

(θ∗)0 = (ξ̄01, ξ̄
0
2, vec(EUt−2U

0
t−2))

is globally asymptotically stable. It can be veriÞed that the assumptions
are satisÞed for the global stability result found in Chapter 6 of (Evans and
Honkapohja 2001) or (Evans and Honkapohja 1999), which should be con-
sulted for further technical details. It follows that θt → θ∗ with probability
one, proving Proposition 3. For the fundamentals form of the RE-optimal
rule we obtain a differential equation system in (dξ1

dτ
, dξ2
dτ
, dRU
dτ
), which is locally

unstable at θ∗. Thus θt → θ∗ with probability zero, establishing Proposition
1.
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