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ABSTRACT. Mean dynamics describe the convergence to self-confirming equilibria of self-
referential systems under discounted least squares learning. Escape dynamics recurrently
propel away from a self-confirming equilibrium. In a model with a unique self-confirming
equilibrium, the escape dynamics make the government discover too strong a version of
the natural rate hypothesis. The escape route dynamics cause recurrent outcomes close to
the Ramsey (commitment) inflation rate in a model with an adaptive government.
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‘If an unlikely event occurs, it is very likely to occur in the most likely way.’
Michael Harrison

1. INTRODUCTION

Building on work by Sims (1988) and Chung (1990), Sargent (1999) showed how a
government adaptively fitting an approximating Phillips curve model recurrently sets
inflation near the optimal time-inconsistent ouctome, although later inflation creeps back
to the time-consistent suboptimal outcome of Kydland and Prescott (1977). The good
outcomes emerge when the government temporarily learns the natural rate hypothe-
sis. The temporary escapes from the time-consistent outcome symptomize a remarkable
type of escape dynamics that promote experimentation and that are induced by unusual
shock patterns that interact with the government’s adaptive algorithm and its imperfect
model. The escapes lead to dramatic changes in the government’s inflation policy as it
temporarily overcomes its inflationary bias. Some simulated time paths of inflation for
different specifications of the model are shown in Figure 1. Inflation starts and remains
near the high time-consistent value for a while, is rapidly cut to zero, but then gradually
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FIGURE 1. Simulated time paths of inflation for different specifications of
the model.

approaches the time-consistent high value again. This paper explains the dynamic forces
that drive these outcomes.

Escape dynamics from self-confirming equilibria can occur in a variety of models with
large agents who use adaptive algorithms to estimate approximating models.1 For con-
creteness, this paper focuses on the Phillips curve model studied by Sargent (1999). The
model has the following features: (1) the monetary authority controls the inflation rate,
apart from a random disturbance; (2) the true data generating mechanism embodies a
version of the natural rate hypothesis in an expectational Phillips curve; (3) as in Kydland
and Prescott (1977), a purposeful government dislikes inflation and unemployment and
a private sector forecasts inflation optimally; but (4) the monetary policy makers don’t
know the true data generating mechanism and instead use a good fitting approximating
model. The fundamentals in the economy are fixed, including the true data generating
mechanism, preferences, and agents’ methods for constructing behavior rules. Changes
in the government’s beliefs about the Phillips curve, and how it approximates the natural
rate hypothesis, drive the inflation rate. Inspired by econometric work about approximat-
ing models by Sims (1972) and White (1982), we endow the monetary authority, not with
the correct model, but with an approximating model that it nevertheless estimates with
good econometric procedures.

We use the concept of a self-confirming equilibrium, a natural equilibrium concept for
behavior induced by an approximating model.2 In a self-confirming equilibrium, beliefs
are correct about events that occur with positive probability in equilibrium. The approxi-
mating model is ‘wrong’ only in its description of events that occur with zero probability
in equilibrium. Among the objects determined by a self-confirming equilibrium are the

1See Williams (2000) for some additional examples.
2See Fudenberg and Levine (1993), Fudenberg and Kreps (1995), and Sargent (1999).
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parameters of the government’s approximating model. While the self-confirming equi-
librium concept differs formally from a Nash (or time consistent) equilibrium,3 it turns
out that the self-confirming equilibrium outcomes are the time-consistent ones. Thus, the
suboptimal time consistent outcome continues to be our benchmark.

Like a Nash equilibrium, a self-confirming equilibrium restricts population objects
(mathematical expectations, not sample means). We add adaptation by requiring the
government to estimate its model from historical data in real time. We form an adap-
tive model by having the monetary authority adjust its behavior rule in light of the latest
model estimates. Thus, we attribute ‘anticipated utility’ behavior (see Kreps (1998)) to
the monetary authority. Following Sims (1988), we study a ‘constant gain’ estimation al-
gorithm that discounts past observations. Called a ‘tracking algorithm’, it is useful when
parameter drift is suspected (see e.g. Marcet and Nicolini (1997)).

Results from the literature on least squares learning (e.g., Marcet and Sargent (1989a),
Woodford (1990), Evans and Honkapohja (1998)) apply and take us part way, but only
part way, to our goal of characterizing the dynamics of the adaptive system. That litera-
ture shows how the limiting behavior of systems with least squares learning is described
by an ordinary differential equation called the ‘mean dynamics’. They describe the (un-
conditionally) average path of the government’s beliefs, in a sense that we shall describe
precisely. For our model, the mean dynamics converge to the self-confirming equilibrium
and the time consistent outcome. Thus, the mean dynamics do not account for the recur-
rent stabilizations in the simulations of Sims (1988), Chung (1990), and Sargent (1999).
We show that these stabilizations are governed by another deterministic component of
the dynamics, described by another ODE, the ‘escape’ dynamics. They point away from
the self-confirming equilibrium and toward the Ramsey (or optimal-under-commitment)
equilibrium outcome. So two sorts of dynamics dominate the behavior of the adaptive
system.

(1) The mean dynamics come from an unconditional moment condition, the least squares
normal equations. These dynamics drive the system toward a self-confirming
equilibrium.4

(2) The escape route dynamics propel the system away from a self-confirming equilib-
rium. They emerge from the same least squares moment conditions, but they are
conditioned on a particular “most likely” unusual event, defined in terms of the
disturbance sequence. This most likely unusual event is endogenous.

The escape route dynamics have a compelling behavioral interpretation. Within the
confines of its approximate model, learning the natural rate hypothesis requires that the
government generate a sufficiently wide range of inflation experiments. To learn even
an imperfect version of the natural rate hypothesis, the government must experiment
more than it does within a self-confirming equilibrium. The government is caught in an
experimentation trap. The adaptive algorithm occasionally puts enough movement into
the government’s beliefs to produce informative experiments.

3It is defined in terms of different objects.
4But as Evans and Honkapohja (2000) point out, the route can be circuitous. In figures 8 and 9, we indicate

how for our model the mean dynamics point in the same direction as the escape dynamics along much of
the escape route.
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1.1. Related literature. Evans and Honkapohja (1993) investigated a model with mul-
tiple self-confirming equilibria having different rates of inflation. When agents learn
through a recursive least squares algorithm, outcomes converge to a self-confirming equi-
librium that is stable under the learning algorithm. When agents use a fixed gain algo-
rithm, Evans and Honkapohja (1993) demonstrated that the outcome oscillates among
different locally stable self-confirming equilibria. They suggested that such a model can
explain wide fluctuations of market outcomes in response to small shocks.

In models like Evans and Honkapohja (1993) and Kasa (1999), the time spent in a
neighborhood of a locally stable equilibrium and the escape path from its basin of at-
traction are determined by a large deviation property of the recursive algorithm. As the
stochastic perturbation disappears, the outcome stays in a neighborhood of a particular
locally stable self-confirming equilibrium (exponentially) longer than the others. This
observation provided Kandori, Mailath, and Rob (1993) and Young (1993) with a way
to select a unique equilibrium in evolutionary models with multiple locally stable Nash
equilibria.

An important difference from the preceding literature is that our model has a unique
self-confirming equilibrium. Despite that, the dynamics of the model resemble those for
models with multiple equilibria such as Evans and Honkapohja (1993). With multiple
locally stable equilibria, outcomes escape from the basin of attraction of a locally stable
outcome to the neighborhood of another locally stable equilibrium. The fact that our
model has a globally unique stable equilibrium creates an additional challenge for us,
namely, to characterize the most likely direction of the escape from a neighborhood of
the unique self-confirming equilibrium. As we shall see, the most likely direction entails
the government’s learning a good, but not self-confirming, approximation to the natural
rate hypothesis.

1.2. Organization. Section 2 describes the model in detail. Section 3 defines a self-confirming
equilibrium. Section 4 describes a minimal modification of a self-confirming equilibrium
formed by giving the government an adaptive algorithm for its beliefs. Section 5 uses re-
sults from the theory of large deviations to characterize convergence to and escape from
a self-confirming equilibrium. Section 6 shows that numerical simulations of escape dy-
namics, like those in Sargent (1999), are well described by the numerically calculated
theoretical escape paths. For the purpose of giving intuition about the escape dynamics,
Section 7 specializes the shocks to be binomial, then adduces a transformed measure of
the shocks that tells how particular endogenously determined unusual shock sequences
drive the escape dynamics. Section 8 concludes. The remainder of this introduction de-
scribes the formal structure of the model and findings of the paper.

1.3. Overview. The government’s beliefs about the economy are described by a vector of
regression coefficients . It chooses a decision rule h() that makes the stochastic process
� for the economy be �(). But for the stochastic process �(), the best fitting model of
the economy has coefficients � = T (). A self-confirming equilibrium is a fixed point of
T (). The orthogonality conditions pinning down the best fitting model can be expressed

(1.1) Eg(; �) � g() = 0:
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We shall show that
g() = (M(T ()� );

where M is the moment matrix of the right side variables in the government’s model
and E is the mathematical expectation with respect to the distribution of �(). Thus, a
self-confirming equilibrium solves

(1.2) g() = 0:

A self-confirming equilibrium is a set of population regression coefficients. We form an
adaptive model by slightly modifying a self-confirming equilibrium. Rather than using
population moments to fit its regression model, the government uses discounted least
squares estimates from historical samples. We study how the resulting adaptive system
converges to or diverges from a self-confirming equilibrium. Each period the govern-
ment uses the most recent data to update a least squares estimate n of its model co-
efficients , then sets its policy according to h(n). This is what Kreps (1998) calls an
anticipated utility model. The literature on least squares learning in self-referential sys-
tems (see Marcet and Sargent (1989a), Marcet and Sargent (1989b), Woodford (1990), and
Evans and Honkapohja (2000)) give conditions under which the limiting behavior of the
government’s beliefs are nearly deterministic and approximated by the following ordi-
nary differential equation (ODE)

_ = R�1g()(1.3)
_R = M �R:(1.4)

Equations (1.3), (1.4) define the mean dynamics. A fixed point of the ODE (1.3), (1.4) is a
self-confirming equilibrium (g() = 0 with R = M ). The least squares learning literature
describes how the convergence of n to  is governed by the uniqueness and stability of
the stationary points of the ODE.

Our model has a unique self-confirming equilibrium. It supports the high inflation
time-consistent outcome of Kydland and Prescott (1977). The ODE (1.3), (1.4), is very
informative about the behavior of our adaptive model. It is globally stable about the
self-confirming equilibrium, and describes how the adaptive system is gradually drawn
to the self-confirming equilibrium. But to understand how the sample paths recurrently
visit the better low-inflation outcome, we need more than the ODE (1.3, 1.4).

Until our work, such ‘escape dynamics’ had not been characterized analytically. This
paper shows that they are governed by the ODE

_ = R�1g() + _v(1.5)
_R = M �R(1.6)
_v = v(;R):(1.7)

We display a model approximation problem whose solution generates (1.5) and use it
to interpret _v as a continuous time limit of the orthogonality conditions (1.1) under a
twisted distribution for the shock process. This twisted distribution is the ‘most likely
unlikely’ shock process. Twisting the orthogonality conditions results in ‘endogenous
experimentation’ that makes the government learn an approximate version of the natural
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rate hypothesis. Thus, like the mean dynamics, the escape dynamics are deterministic.
We verify that these deterministic dynamics do a good job of describing the simulations.

As Sims (1988) and Sargent (1999) emphasize, the evolution of beliefs during an es-
cape is economically interesting because then the government discovers a good enough
approximate version of the natural rate hypothesis to cause it to pursue superior policy
that is supported by beliefs that are ‘wrong’ in the sense that they are not a self-confirming
equilibrium. Nevertheless, in another sense those beliefs are more ‘correct’ than those in
a self-confirming equilibrium because they inspire the government to leave the ‘experi-
mentation trap’ that confines it within a self-confirming equilibrium.

2. SETUP

Time is discrete and indexed by n. LetW 0
n =

�
W1n W2n

�
be an i.i.d. sequence of (2�1)

random vectors with mean zero and covariance matrix I . Let U; �; x̂; x, respectively, be
the unemployment rate, the rate of inflation, the public’s expected rate of inflation, and
the systematic part of inflation determined by government policy. The government sets
x, the public sets x̂, then nature chooses shocks W that determine � and U . The economy
is described by the following version of a model of Kydland and Prescott (1977):

Un = u� �(�n � x̂n) + �1W1n; u > 0; � > 0(2.8)
�n = xn + �2W2n(2.9)
x̂n = xn(2.10)
xn = h()0Xn�1(2.11)

where

(2.12) Xn�1 =
�
Un�1 Un�2 �n�1 �n�2 1

�0
:

Equation (2.8) is a natural rate Phillips curve; (2.9) says that the government sets infla-
tion up to a random term; (2.10) imposes rational expectations for the public; (2.11) is
the government’s decision rule for setting the systematic part of inflation xn. The de-
cision rule h() is a function of the government’s beliefs about the economy, which are
parameterized by a vector .

For some purposes below we consider the simpler model in which the government
only estimates a static regression of unemployment on inflation and a constant (i.e. Xn =
1). We call this the static model. Since there is no temporal dependence in (2.8),(2.9), all of
the temporal dependence in the model comes through the government’s beliefs. Under
the static model specification, the government’s control rule can be calculated explicitly,
allowing some of our characterizations to be sharper.

2.1. The government’s beliefs and control problem. The government’s model of the
economy is a linear Phillips curve

(2.13) Un = 1�n + 0�1Xn�1 + �n;

where the government treats � as a mean zero, serially uncorrelated random term beyond
its control. We shall eventually restrict , but temporarily regard it as arbitrary. The
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government’s decision rule (2.11) solves the problem:

(2.14) min
fxng

Ê

1X
n=0

Æn(U2
n + �2n)

where Ê denotes the expectations operator induced by (2.13) and the minimization is
subject to (2.13) and (2.9).

We call problem (2.14) the Phelps problem. Versions of it were studied by Phelps (1967),
Kydland and Prescott (1977), Barro and Gordon (1983), and Sargent (1999). We identify
three salient outcomes associated with different hypothetical government’s beliefs:

� Belief 1. If 1 = ��; �1 =
�
0 0 0 0 u

�
, then the Phelps problem tells the

government to set xn = �u for all n. This is the Nash outcome of Sargent (1999) ,
i.e., the time-consistent outcome of Kydland and Prescott (1977).

� Belief 2. If 1 = 0 , �1 =
�
0 0 0 0 u�

�
for any u�, the government sets xn = 0

for all n. This is the Ramsey outcome, i.e., the optimal time-inconsistent outcome
of Kydland and Prescott (1977).

� Belief 3. If the coefficients on current and lagged �n’s sum to zero, then as Æ ! 1
from below, the Phelps problem eventually sends xn arbitrarily close to 0.

Under the actual probability distribution generated by (2.8), (2.9), (2.10), the value of the
government’s objective function (2.14) is larger under the outcome xn = 0 than under
outcome xn = �u > 0. Under Belief 1, the government perceives a trade-off between in-
flation and unemployment and sets inflation above zero to exploit that trade-off. Under
Belief 2, the government perceives no trade-off, sets inflation at zero, and accepts what-
ever unemployment emerges. Under Belief 3, the government thinks that although there
is a short-term trade-off between inflation and unemployment when 1 < 0, there is no
‘long-term’ trade-off. Through the workings of an ‘induction hypothesis’ that opens an
apparent avenue by which the government can manipulate the current position of the
Phillips curve (see Cho and Matsui (1995) and Sargent (1999)), the Phelps problem tells
the government eventually to set inflation close to zero when Æ is close to 1.

In a common-knowledge model in which (2.13) is dropped and replaced by the as-
sumption that the government knows the model, the outcome xn = u� emerges as what
Stokey (1989) and Sargent (1999) call the Nash outcome, and xn = 0 emerges as the Ram-
sey outcome. In the common-knowledge model, these varying outcomes reflect different
timing protocols and characterize a time-consistency problem analyzed by Kydland and
Prescott.

The mapping from government beliefs to outcomes is interesting only when the gov-
ernment’s beliefs might be free. Our equilibrium concept, a self-confirming equilibrium,
restricts those beliefs, and thereby narrows the outcomes relative to those enumerated
above. However, the mapping from beliefs to outcomes play a role during escapes from
self-confirming equilibria.
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3. SELF-CONFIRMING EQUILIBRIUM

3.1. Restrictions on government’s beliefs. Define � =
�
W1n W2n X 0

n�1

�0 and

(3.15) g(; �n) = �n

�
�n

Xn�1

�
:

Let W n denote the history of the joint shock process
�
W1n

W2n

�
up to n. Evidently, from (2.8),

(2.9), (2.10), (2.11), Xn�1 and therefore the �n process are both functions of :

(3.16) �n = �(;W n):

Definition 3.1. A self-confirming equilibrium is a  that satisfies

(3.17) Eg(; �n) = 0:

The expectation in (3.17) is taken with respect to the probability distribution generated
by (2.8), (2.9), (2.10), (2.11). Notice that g(; �n) is the time n value of the object set to zero
by the following least squares orthogonality condition:

(3.18) 0 = E

�
�n

�
�n

Xn�1

��
:

Equations (3.18) are the orthogonality conditions that make  in (2.13) a least-squares
regression. Condition (3.17) thus renders the government’s beliefs consistent with the
data.

Condition (3.17) can be interpreted as asserting that  is a fixed point in a mapping
from the government’s beliefs about the Phillips curve to the actual Phillips curve. Thus,
let

(3.19) Mn =

�
�n

Xn�1

� �
�n

Xn�1

�0
; M = EMn:

Let � = T () be the least squares regression coefficients in Un = �0
�
�n

Xn�1

�
+ �n where

�n is a least squares residual orthogonal to the regressors. We write � = T () because
via the government best response mapping h(), � depends on  through the moment

matrices M and EUn

�
�n
Un�1

�
. Then notice that

Eg(; �n) = E

�
�n

Xn�1

�
(Un �

�
�n X 0

n�1

�
)(3.20)

= E

�
Un

�
�n

Xn�1

�
�M

�
(3.21)

= M(�� ):(3.22)

Given a government model in the form of a perceived regression coefficient vector 
and the associated government best response function h(), � = T () is the actual least
squares regression coefficient induced by h(). Thus, T maps government model  to a
best fitting model T (). Equation (3.22) shows that (3.17) asserts that T () = , so that
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the government’s model is the best fitting model. See Marcet and Sargent (1989a) for a
discussion of the T operator in a related class of models.

Elementary calculations show that there is a unique self-confirming equilibrium. It cor-
responds to the beliefs (1) mentioned above. These beliefs support the Nash equilibrium
outcome in the sense of Stokey (1989) and Sargent (1999).

4. ADAPTATION

4.1. Discounted least squares updating of . We modify the model now to consist of
(2.8), (2.9), (2.10) as before, but replace (2.11) with

(4.23) xn = h(n)
0Xn�1

where h() remains the best-response function generated by the Phelps problem, and
n is the government’s time n estimate of the empirical Phillips curve. The government
estimates  by the following recursive least squares algorithm:

n+1 = n + �R�1n g(n; �n)(4.24)
Rn+1 = Rn + � (Mn �Rn)(4.25)

where � is a gain parameter that determines the weight placed on current observations
relative to the past. In this paper we consider the case in which the gain is constant. We
want to study the behavior of system formed by (2.8), (2.9), (2.10), (4.23), (4.24) and (4.25).

4.2. Mean dynamics. We find the first important component of dynamics by adapting
the stochastic approximation methods used by Woodford (1990), Marcet and Sargent
(1989a), and Evans and Honkapohja (2000). We call this component the mean dynamics
because it governs the (unconditionally) expected evolution of the government’s beliefs.
While previous applications of stochastic approximation results in economics have gener-
ally considered recursive least squares with decreasing gain, we consider the case where
the gain is constant.5 Broadly similar results obtain in the constant and decreasing gain
cases, but there are important differences in the asymptotics and the sense of convergence
that we discuss below.

To present convergence proofs, it helps to group together the components of the gov-
ernment’s beliefs into a single vector. Define

(4.26) �n =

�
n

col(Rn)

�
; Zn =

�
R�1n g(n; �n)
col(Mn �Rn)

�
:

Then the updating equations (4.24), (4.25) can be written

(4.27) �n+1 = �n + �Zn:

Now break the “update part” Zn into its expected and random components. Define vn =

Zn � b(�n) where b is the mean of Zn defined as

(4.28) b(�) = EZn =

�
R�1n g(n)

col(M()�R)

�
5See Evans and Honkapohja (2000) for extensive discussion of constant gain algorithms.
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where

(4.29) g() = Eg(; �); M () = EMn:

Then we can write the composite dynamics as

(4.30) �n+1 = �n + �b(�n) + �vn

To determine the expected evolution of the government’s estimates, we study the as-
ymptotic behavior of the difference equation (4.30). Our convergence theorem is about
sequences of economies where the gain goes to zero. This differs from typical applica-
tions of least squares learning, in which the gain sequence decreases (usually as 1

n
) over

time. As in the decreasing gain case, we can show that the asymptotic behavior of (4.30) is
governed by an ODE, but the estimates converge in a weaker sense. Specifically, decreas-
ing gain algorithms typically converge with probability one along a sequence of iterations
as n ! 1, but constant gain algorithms converge weakly (or in distribution) as � ! 0
across sequences of iterations, each of which is indexed by the gain.

Note that we can rewrite (4.30) as

(4.31)
�n+1 � �n

�
= b(�n) + vn

This equation resembles a finite-difference approximation of a derivative with time step
�, but is perturbed by a noise term. The convergence argument defines a continuous
time scale as t = n�, and interpolates between the discrete iterations to get a continuous
process. Then by letting � ! 0, the approximation error in the finite difference goes to
zero, and a weak law of large numbers insures that the noise term vn becomes negligible.
We are left with the ODE:

_ = R�1g()(4.32)
_R = M()�R(4.33)

We need the following set of assumptions. For reference, we also list the original num-
ber in Kushner and Yin (1997). To emphasize the asymptotics, we include the superscript
� on the parameters denoting the gain setting.
Assumptions A.

A8.5.0: The random sequence f��n; �; ng is tight.6

A8.5.1: For each compact set D;
�
Z�
n1f��n2Dg; �; n

	
is uniformly integrable.7

A8.5.3: For each compact set D; the sequence
�
b(��n)1f��n2Dg; �; n

	
is uniformly in-

tegrable.

6 A random sequence fAng is tight if

lim
K!1

sup
n

P (jAnj � K) = 0:

7 A random sequence fAng is uniformly integrable if

lim
K!1

sup
n

E
�
jAnj 1fjAnj�Kg

�
= 0:
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A8.5.4a: The ODE
:

�= b(�) has a point � that is asymptotically stable.8

A8.1.6: The function b(�) is continuous.
A8.1.7: For each Æ > 0; there is a compact setDÆ such that infn;� P (��n 2 DÆ) � 1�Æ:

The following theorem is based on results in Kushner and Yin (1997).
Theorem 4.1. Under Assumptions A, as � ! 0 the parameter sequence ��n converges weakly to
the process �(t) that solves the ordinary differential equations (4.32 , 4.33). Further, Assumptions
A hold for our model when the shocks Wn are i.i.d. normal.

Proof. See Appendix A.

The theorem shows that the trajectories of the estimate sequence converges to the tra-
jectory of the ODE system. Since the ODE has a unique stable point � that is the self-
confirming equilibrium, the estimate sequence converges weakly to the self-confirming
equilibrium. Therefore, with high probability, as �! 0 and n!1 we would expect the
government’s beliefs to be near their self-confirming values, and the economy to be near
the Nash outcome. However, in the next section we shall see that the beliefs can recur-
rently escape the self-confirming equilibrium. Although the impact of noise terms goes
to zero with the gain, for a given �, “rare” sequences of shocks can have a large impact
on the estimates and the economy.

5. ESCAPE

In this section we determine the most likely rare events and how they push the gov-
ernment’s beliefs away from a self-confirming equilibrium. To this end, we first present
some general results from the theory of large deviations, a general method for analyzing
small probability events. We then present results from Williams (2000), who applies these
general results analytically to characterize the escape dynamics.

5.1. Escape dynamics as a control problem. Throughout, we will only be interested in
characterizing the escape problem for the Phillips curve coefficients . This motivates the
following definition.
Definition 5.1. An escape path is a sequence of estimates  that leave a set G containing the limit
point :

fng
N
n=0 ; 0 2 G ( 2 G); n =2 G for some n � N <1:

Following a convention in the large deviation literature, we set the initial point of an
escape path to be the stable point . Given a gain � > 0 and a compact neighborhoodG of
the stable point , let B�(G) be the set of all escape paths. For each fng 2 B�(G), define

� � = � inf fn : 0 = ; n =2 Gg

as the (first) exit time out of G. Because the exit time varies across different escape paths,
B�(G) induces a probability distribution over the exit times. We want to understand the
probability distribution over B�(G) and the probability distribution of exit times when
� > 0 is sufficiently small. In particular, we want to identify the most likely escape paths
in B�(G). Let @G be the boundary of G.

8 A point x is asymptotically stable for an ODE if any solution x(t)! x as t!1; and for each Æ > 0 there
exists an � > 0 such that if jx(0)� xj � �, then jx(t)� xj � Æ for all t:
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Definition 5.2. Let � �(fng) be the (first) exit time associated with escape path fng 2 B�(G).
An absolutely continuous trajectory ' is a dominant escape path if '(0) = , '(��) 2 @G,
and

(5.34) lim
�!0

Pr
�
8n < � �(fng)=�; 9� 0 � ��; j'(� 0)� nj < � : B�(G)

�
= 1:

Roughly speaking, (5.34) states that as the gain � > 0 converges to 0, the set of escape
paths converges to a small neighborhood of ': an escape from  will occur along ' with
very high probability, if an escape ever occurs.

To analyze the escape dynamics, we adapt the general results of Dupuis and Kushner
(1989), which are themselves extensions of the theory of Freidlin and Wentzell (1984)
for stochastic approximation models. After presenting some general results, we apply
results of Williams (2000), who obtains explicit solutions of the escape dynamics that can
be used to interpret the simulations calculated earlier by Sims (1988), Chung (1990), and
Sargent (1999). Given the recursive formula (4.30), define the H-functional as

(5.35) H(; �;R) = lim
n!1

1

n
logE�0 exp

*
�;

nX
i=1

R�1g(; �i)

+
where h�; �i is the inner product of two vectors, and the expectation is conditioned on an
arbitrary initial state �0. This function averages over the time dependence in the shocks
�n to determine the large deviation properties of the  �n parameter sequence. Note that it
depends implicitly on the matrix R. We then define the Legendre transform of H as:

(5.36) L(; �;R) = sup
�

[h�; �i �H(; �;R)] :

The action functional is defined over absolutely continuous trajectories ' = ((t))T0 by:

(5.37) S(T; ') =

Z T

0
L(; _;R)ds

with (0) = , and with the evolution of R following the mean dynamics conditional on
. (We let S = +1 for trajectories that are not absolutely continuous.) In the context
of continuous time diffusions, Freidlin and Wentzell (1984) characterized the dominant
escape path as a solution of a variational problem. Their results have been extended
to discrete time stochastic approximation models by Dupuis and Kushner (1985) and
Dupuis and Kushner (1989). We adapt these results in the following theorem, whose
main object is the solution of the following variational problem:

(5.38) S = min
'

S(t; ')

subject to
_R = M()�R

(0) = ; R(0) = R; (t) =2 G for some 0 < t < T:

The minimized value S is the rate function that determines the (exponential) bound for
the large deviation estimates. The following theorem compiles and applies results from
Dupuis and Kushner (1989), Kushner and Yin (1997), and Dembo and Zeitouni (1998).
Theorem 5.3. Suppose that Assumptions A hold.
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(1) Suppose that the shocks Wi are i.i.d. and unbounded but that there exists a ��algebra
Fn � �(i; i � n) and constants � > 1; B <1 such that for all n and s � 0;

P (
��R�1n g(n; �n)

�� � sjFn) � B exp(�s�) a.s.

Then we have:

lim sup
�!0

� logP (�(t) =2 G for some 0 < t � T j�(0) = ) � �S:

(2) If the shocks Wi are i.i.d. and bounded, and S is continuous as a function of the radius of
the set G then we have:

lim
�!0

� logP (�(t) =2 G for some 0 < t � T j�(0) = ) = �S:

(3) Under the assumptions of part 2, for any escape path with gain �; let �� be the time of first
escape from G. Then for all Æ > 0:

lim
�!0

P
�
exp

�
(S + Æ)=�

�
> � � > exp

�
(S � Æ)=�

��
= 1:

(4) Under the assumptions of part 2, let x = (��) be the terminal point of the dominant
escape path. Then for any �(� �) and Æ > 0:

lim
�!0

P (j�(� �)� xj < Æ) = 1:

Proof. See Appendix B.

This theorem establishes the precise sense in which the solution of the control problem
determines the most likely escape path. In particular, part (1) shows that the probability
of observing an escape episode is exponentially decreasing in the gain, with the rate given
by the minimized value of the cost function S. The next three parts establish stronger
results under the assumption that the errors are bounded. Part (2) shows that under
bounded errors, the asymptotic inequality in part (1) becomes an asymptotic equality.
Part (3) shows that for small � the time it takes beliefs to escape the self-confirming equi-
librium becomes close to exp(S=�). Finally, part (4) shows that with probability approach-
ing one, if the beliefs escape, they escape along the dominant escape path.

5.2. Characterizing the escape dynamics. While Theorem 5.3 offers a characterization of
the dominant escape path, it is difficult to derive useful insights from the minimization
problem itself. Additionally, because of the complicated nature of H and S, analysis of
the escape dynamics and determination of the exponential rate of convergence appear to
be daunting tasks. However Williams (2000) draws on the recent results of Worms (1999)
to simplify the problem, and provide both an analytic characterization of the escape dy-
namics, and a numerical solution. The key step is to recognize that although (5.35) is a
complicated function, we can use some additional results from the applied probability
literature to simplify the analysis.

For example, Varadhan’s theorem (see Dembo and Zeitouni (1998)) shows the duality
between moments of exponential functions and large deviations. Since the H-functional
is an asymptotic exponential moment, if we can identify a large deviation rate function
for the g(; �) process, we can identify H . The large deviation results of Worms (1999)
identify this rate function in terms of the solution of the Poisson equation associated with
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g(; �). It is known (see Benveniste, Metivier, and Priouret (1990) for example) that the
asymptotic distribution of Markov processes can be characterized by the Poisson equa-
tion, so it is natural that it appears here. This analysis then leads to a representation of
the H-functional as a quadratic form in �, with a normalizing matrix Q that depends on
the solution of the Poisson equation associated with g(; �). In general the solution of
the Poisson equation can itself be a difficult problem, as it involves solving a functional
equation. However in the important linear-quadratic-Gaussian case (which includes our
model), the problem can be solved in the space of quadratic functions, and therefore the
Poisson equation reduces to a matrix Lyapunov equation. This provides a tremendous
simplification, as there are efficient numerical methods for solving Lyapunov equations.
We summarize these arguments in the following theorem and remark.
Theorem 5.4. Suppose that Assumptions A hold, that �n follows a stationary functional au-
toregression with a unique stationary distribution and Lipschitz continuous mean and variance
functions, and that the function g(; �) is Lipschitz continuous in �. Then there is a matrix-
valued function Q(;R) such that the dominant escape path and rate function can be determined
by solving the following variational problem:

(5.39) S = inf
_v

1

2

Z t

0
_v(s)0Q((s); R(s))�1 _v(s)ds

subject to

_ = R�1g() + _v(5.40)
_R = M()�R(5.41)

(0) = ; R(0) = R; (t) =2 G for some 0 < t < T:(5.42)

Proof. See Williams (2000).

Remark 5.5. In our model, �n follows a linear autoregression, the Win are i.i.d. normal, and
g(; �) is a quadratic function of �. ThenQ(;R) is a fourth moment matrix that can be calculated
explicitly by solving matrix Lyapunov equations described in Appendix C.

This theorem provides a clearer interpretation and analysis of the variational problem.
The escape dynamics perturb the mean dynamics by a forcing sequence _v. Then S is
a quadratic cost function that measures the magnitude of the perturbations during the
episode of an escape. In particular, we can think of (5.39) as a least squares problem,
where Q plays the role of a covariance matrix. If we had _v � 0 then the beliefs adhere
to the mean dynamics, and the cost would be zero. For the beliefs to escape from ,
requires nonzero perturbations. To find the most likely escape path we want to perturb
the evolution as little as possible. It takes a sequence of unusual events to push  away
from the self-confirming equilibrium. The control problem (5.39) says that to find the
dominant escape path, we need to look for a least cost sequence of shocks that will push
beliefs away from .

To find the dominant escape path, we solve the control problem in (5.39). We form the
Hamiltonian with co-states (a; �) for the evolution of (;R):

H = a �R�1g() +
1

2
a0Q(;R)a� � �M():
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It is easy to verify that the Hamiltonian is convex, so the first order conditions are nec-
essary and sufficient. Taking the first order conditions, we see that the dominant escape
path is characterized by the following set of differential equations:

_ = R�1g() +Q(;R)a(5.43)
_R = M()�R

_a = a �R�1
@g()

@
+

1

2
a0
@Q(;R)

@
a+ � �M()

_� = HR � � � I;

subject to the boundary conditions (5.42), and where HR is the derivative of the Hamil-
tonian with respect to the R matrix.

We have reduced the problem of determining the dominant escape path from a proba-
bilistic problem on a function space of time trajectories to a variational control problem.
Further, we have represented the solution of the control problem as a two-point boundary
value ODE problem with given initial state conditions and terminal state constraints for
an arbitrary time t < T . In other words, if we solve (5.43) as a two-point boundary prob-
lem with the given initial conditions for  and R, a terminal condition  (� e) = b 2 @G,
for some � e < T , we will have an escape path to b. We can then evaluate the cost func-
tion (5.39) for the arbitrary (�e; b) to obtain a value (abusing notation slightly) of S(� e; b).
To find the dominant escape path, we minimize this function over � e 2 (0; T ) and overb 2 @G:

(5.44) S = inf
b2@G

inf
�e2(0;T )

S(� e; b):
The path that achieves the minimum is the dominant escape path. This path characterizes
the evolution of the parameters on the most likely path away from the stable point. The
minimized value S determines the exponential rate of convergence.

6. NUMERICAL ANALYSIS

6.1. Numerical results. In this section we apply the analytic methods from Section 5 to
determine the dominant escape paths. We analyze both dynamic and static versions
of the model, the distinction being in the specification of Xn�1 in the government’s
model. In the static version of the model (2.12) does not contain the lagged variables.
For the numerical analysis and simulations, we set the parameters of the Phillips curve
to � = 1; u = 5, and the government’s discount factor to Æ = 0:98. We assumed Gauss-
ian disturbances, and set (�1; �2) = (:3; :3). A simple calculation shows that the self-
confirming equilibrium is the intersection of the line 1 = � with the parabola determined
by u � �1

1+2
1

= 0. There is a unique self-confirming equilibrium, depicted in Figure 2. It
has �1 = 10; 1 = �1.

To solve the problem numerically, it helps to recast the boundary value problem as
an initial value problem. In the ODE system (5.43) and boundaries (5.42), the only com-
ponents left undetermined are the initial conditions for the co-states. We can solve the
problem by minimizing over these initial conditions, and determine the escape times and
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FIGURE 2. Self-confirming equilibrium with u = 5; � = 1.
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FIGURE 3. Dominant escape path from the dynamic model.

escape points endogenously. For the escape set G, we take circles of varying radius cen-
tered on : In Appendix E we briefly describe the numerical techniques used to calculate
the dominant escape paths. In order to conserve on dimensionality, in our calculations
for the dynamic model we ignore the cross-effects of the covariance matrix R. We enforce
this by setting the second co-state vector � in (5.43) identically to zero. The parameter
vector  is six-dimensional, which means that we optimize over the six-dimensional co-
state vector �. Additionally, we track the evolution of the upper-triangular elements of
R, which is a 21�1 vector. Including the cross-effects would entail optimizing over these
additional 21 dimensions which is numerically intractable. In the static model we did
allow for the cross-effects, which only slightly changed the dynamics in the time domain.
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FIGURE 4. Dominant escape path from the static model.

We turn now to the numerical results. In Figure 3 we report the dominant escape path
from the dynamic model, setting the radius of G at 7 Euclidean units. Here we clearly
see that along an escape path, the sum of the coefficients on inflation rises from its self-
confirming equilibrium value of -1 to (nearly) the induction hypothesis level of zero. By
activating the induction hypothesis, the results of Phelps (1967) described above apply
and it is optimal for the government to set inflation to (near) zero. Thus, along an escape
path the government temporarily learns a version of the theory of the natural rate.

In Figure 4 we plot the escape paths from the static model under the assumptions that
the Wi are distributed normally and binomially, respectively. The escape paths are nearly
identical under the two error distributions. This suggests that for the static model it is
interesting to consider the simple binomial distribution, which motivates the calculations
to be reported in Section 7. In addition, the paths from the static model have many of the
qualitative properties of the dynamic model. The escape paths for all of the parameters
are characterized by a long period of very slow movement, followed by a rapid change
in the same direction. This illustrates the nonlinearity of the differential equations that
determine the dominant path.

In order to determine the frequency of escapes, we need to consider not only the escape
paths, but also the minimized value S: From Theorem 5.3 above, we know that the value
of S determines the exponential rate of decay of the probability of an escape. Table 1
presents the rate of convergence S and the maximum value along the path of the sum of
the coefficients on inflation for different specifications of the model. The table includes
estimates of convergence rates for the dynamic model with different size escape sets and
for the static model with different error distributions.

A feature of Table 1 that draws immediate notice is that in all specifications the rate of
convergence is very slow, which is shown by the low values of S. This slow convergence
rate captures the fact that in our simulations, for any gain setting (no matter how small)
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Table 1: Results for the Escape Problem
Radius Sum of Rate of
of Set Coefficients on � Convergence (S)

Dynamic Model 6:50 �0:0783 9:691 � 10�6

7:00 �0:0084 9:706 � 10�6

7:15 �0:0032 1:040 � 10�5

7:25 �0:0032 2:566 � 10�4

Static Model: Normal 5:00 �0:0254 4:987 � 10�4

Static Model: Binomial 5:00 �0:0257 4:985 � 10�4

we always observed an escape. Also note that, as expected, the rate of convergence in-
creases as we increase the size of the escape set. Clearly the larger the escape set, the
less often do we expect escapes. However note that the rate of convergence is nearly the
same until the radius is about 7 units, after which it increases dramatically. This reflects
the difficulty of pushing beliefs past the Ramsey point, which we discuss more below.
Additionally, we see that in the static model not only are the escape paths in the two
cases (normal and binomial) nearly identical as in Figure 4, but they also converge at a
nearly identical rate.

In the figures and the table, we also note some important differences between the
dynamic and the static model. Although the two specifications share the same self-
confirming equilibrium, they differ out of equilibrium along an escape path. In the table
we see that the rates of convergence differ by an order of magnitude between the dy-
namic model and the static model. This suggests that by allowing more flexibility in the
specification of the government’s beliefs, we enable policymakers more rapidly to detect
the induction hypothesis. The importance of the lags in the escape paths can also be seen
by comparing the paths for the sum of the coefficients on inflation with the coefficient
on current inflation. In Figure 4, we see that the escape paths in the static model cause
the government’s perceived Phillips curve to become vertical. This specification trivially
satisfies the induction property, and it would be possible that the same dynamics would
recur in the full dynamic model. However in Figure 3 we see that along an escape most
of the movement in the sum of the coefficients on inflation is due to the coefficients on
the lags. Thus in the dynamic model, even on an escape there is still a short-run Phillips
curve, but the government comes to believe that the long-run Phillips curve is vertical,
and thus it sets inflation to zero.

Next we compare our predictions on the escape problem to some additional results
from simulations, and we see that our calculations provide an accurate description of the
escape problem. We have shown above that the asymptotic distribution of escape times
is exponential, and this appears to be borne out by the empirical distribution that we
plot in the top panel of Figure 5. The figure shows a histogram of the distribution of the
time of first escape from the self-confirming equilibrium in the dynamic model for 1000
simulated paths, with the gain set at the very low value � = :001: Here we see that the
distribution is clearly skewed and has a long tail, resembling an exponential distribution.
We have also seen that the mean escape times increase (at least) exponentially as the gain
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FIGURE 5. Simulation results from the dynamic and static models.

decreases, and this is shown in the bottom panel of Figure 5. The figure plots the mean
time of first escape from the self confirming equilibrium for 1000 simulated paths in both
the static model (with the radius set at 5) and the dynamic model (with the radius set at
7) for different gain settings. We have also seen in Table 1 that the rate of convergence
is much slower in the dynamic model, and this is also clear from the figure. As the gain
decreases, the escapes become exponentially more rare, but occur much more frequently
in the dynamic model.

The dominant escape paths that we have derived and calculated in this paper also
describe the escape dynamics from simulations like those of Sims (1988), Chung (1990),
Sargent (1999). In Figure 6, we see that our calculations match very closely the direction
in which the government’s beliefs escape the self-confirming equilibrium. In the figure,
we project the escape paths onto a subset of the parameter space, and plot the sum of
the coefficients on inflation versus the constant coefficient. The dominant escape path is
shown by the nearly straight line that leads from the self-confirming values (10;�1) to
the upper left, and also shown is the simulated path from Figure 5 that has the escape
time closest to the sample mean. The figure clearly shows that the mean simulated path
lies within a small neighborhood of the dominant path. Indeed all of the simulated paths
are within a small neighborhood of the dominant path.

In addition to our quite accurate results in the parameter space, our calculations pro-
vide a good description of the escape dynamics in the time domain. In Figure 7 we plot
the dominant path escape paths for the static model, with the time axis scaled to log(t=�):
We also plot some results from the 1000 simulated escape paths with gain at � = :00025.
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FIGURE 7. Dominant and simulated escape paths from the static model.

Here we show the escape paths with the minimum, maximum, and mean escape times.
Also for reference, we plot the escape path that results from the analysis of Section 7, in
which we transform probability measures. The figure clearly shows that the dominant
path lies within the band of simulated outcomes, and that the mean escape path is quite
close to the mean observed path. As we shall discuss, the analysis of Section 7 leads to the
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same direction of escape, but the time dynamics are distorted by the change in measures.
In the figure we see that this escape path is shorter than even the shortest of the 1000 sim-
ulated paths. As the gain decreases, the band of outcomes narrows further and the mean
path gets closer and closer to the dominant path. Thus the numerically implementations
of the analytic characterizations provide very accurate estimates of the convergence and
escape properties of simulations of monetary policymakers’ beliefs.

6.2. Directions of mean dynamics along the escape path. Because the mean dynamics
are locally stable around the unique self-confirming equilibrium, the escape dynamics
are essential in starting departures from the self-confirming equilibrium. However, for
our model the mean dynamics themselves have features that promote rapid movements
toward the Ramsey outcome after the escape dynamics have initiated an escape from a
neighborhood of . Thus, while the mean dynamics are both locally and globally sta-
ble around the self-confirming equilibrium, beyond a particular neighborhood of a self-
confirming equilibrium, they point toward the beliefs supporting a Ramsey outcome. For
the static (Xn�1 = 1) model, we illustrate this feature in Figures 8 and 9, which show
both the mean dynamics and the escape dynamics _v along the dominant escape path.
In Figure 8 we plot the dynamics over the entire dominant escape path, and Figure 9
shows a closeup of the escape, mean, and total dynamics in a neighborhood of the self-
confirming equilibrium. As Figure 9 shows, near the self-confirming equilibrium, the
mean dynamics point toward the self-confirming equilibrium and the escape dynamics
_v point away (toward beliefs that support Ramsey). In this neighborhood, the mean dy-
namics and escape dynamics oppose each other. The mean dynamics prevail under the
natural distribution of shocks. However, outside of this neighborhood, the mean dy-
namics reinforce the escape dynamics by pointing toward Ramsey, as Figure 8 further
illustrates. This figure shows that the magnitude of _v essentially falls to zero after the
first instants, and the mean dynamics start to push toward Ramsey with greater force.
Thus, if we were to initiate government beliefs along the escape path sufficiently far from
the self-confirming equilibrium, the mean dynamics themselves would sweep beliefs to-
ward the beliefs that support the Ramsey outcome. The right panel of figure 8 also shows
the mean dynamics from the Ramsey outcome to the self-confirming equilibrium. They
complete the circuitous path of the mean dynamics which (starting along the escape path)
send the system to the Nash outcome by travelling through the Ramsey outcome. 9

6.3. Escaping the experimentation trap. Within the confines of the government’s ap-
proximating model, detecting the natural rate hypothesis requires that there be sufficient
dispersion in the public’s expected rate of inflation. But within a self-confirming equilib-
rium, there is no variation in the expected rate of inflation because the government does
not vary its setting of the systematic part of inflation xt. Though the outcome is the same,
the structure of this experimentation trap differs from the trap in Kydland and Prescott’s
time consistent equilibrium. Here the government fails to generate the range of experi-
ments needed to detect the natural rate hypothesis within its approximating model. But

9Such behavior of the mean dynamics for this model was noted previously by Evans and Honkapohja
(2000).
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FIGURE 8. The force of escape and mean dynamics along the dominant
escape path, static model.
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FIGURE 9. Detail of the force of escape, mean dynamics, and combined
force in a neighborhood of the self-confirming equilibrium.

only if it detects something approximating the natural rate hypothesis will it want to
generate those experiments.

Along the escape route the government generates those experiments. The experiments
are initiated by an unusual shock process encoded in _v, to be analyzed in more detail in
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Section 7. In the static model, any force that causes the government to experiment by
randomizing xt generates a (yt; Ut) data scatter through (2.8) that steepens (in the (y; U)
plane) the estimated Phillips curve. Through the government’s best response map, any
steepening of the Phillips curve causes the government to lower inflation, generating
influential observations that make the Phillips curve steeper. Overweighting recent ob-
servations helps this process along. This self-reinforcing process comes to a halt when
the estimated Phillips curve becomes vertical. The system cannot remain at the Ramsey
outcome forever, because there is in truth a short-run Phillips curve that the government
will discover and begin to exploit, rekindling the mean dynamics that drive the system
toward the Nash outcome.

7. INTERPRETING _v VIA ORTHOGONALITY CONDITIONS

By studying the special case of the static model (Xn�1 = 1) and binomial shocks, this
section identifies the escape route using a different argument than Section 5. The argu-
ment works directly with the least squares orthogonality conditions that drive the gov-
ernment’s beliefs, and finds the appropriate conditional distribution of the shocks that
gives rise to the escape dynamics.

7.1. Analyzing the orthogonality conditions. The mean dynamics (4.32) come from writ-
ing the recursive least squares orthogonality condition as

(7.45)
n+1 � n

�
= R�1n g(n) +R�1n (g(n; �n)� g(n));

then using a limiting argument and a law of large numbers to replace the term (g(n; �n)�
g(n)) with its unconditional mean of 0 while driving � to zero. The escape dynamics also
originate from (7.45). However, problem (5.39) induces a different average ‘forcing func-
tion’ than the identically zero R�1n (Eg(n; �n) � g(n)). Instead, problem (5.39) averages
not with respect to the unconditional distribution of �n but with respect to a distribution
whose conditional expectation we denote ~E. This makes the limiting escape dynamics
come from

(7.46)
n+1 � n

�
� R�1n g(n) +R�1n

~E (g(n; �n)� g(n))

or

(7.47) _ = R�1g() + _v:

where

(7.48) _v � R�1n
~E (g(n; �n)� g(n)) :

We want to shed light on the probability distribution of shocks inducing ~E. For a W
that is jointly binomial, we can find a transformed measure that gives us a very con-
venient interpretation of _v in (7.47). Our method is to work directly with the time–n
orthogonality conditions (4.24),(4.25) that dictate the movement of n.

Throughout this section, we assume that Win has the binomial distribution with vari-
ance 1 for i = 1; 2:

(7.49) Win =

�
1 with probability 1

2
�1 with probability 1

2 :



24 IN-KOO CHO, NOAH WILLIAMS, AND THOMAS J. SARGENT

For simplicity, we examine the static model in which

Xn�1 = 1 8n � 1

so that the best response mapping of the government is

h(1; �1) = �
1�1
1 + 21

:

Under this specification, we shall find a transformed measure that describes the escape
point10 and according to which

_v = R�1
�
�1�2
0

�
:

We obtain this representation by finding a most likely unlikely shock sequence that moves
the government’s beliefs a given distance away from a self-confirming equilibrium. Our
method of analysis is basically to study the different possible unlikely sequences of shocks
that move the government’s beliefs a given distance away from the self-confirming equi-
librium , and among these to find the most likely sequence. The static model with the
binomial shocks11 is simple enough to let us get our hands on these sequences of shocks.
The heart of the argument is to notice that the most likely such unlikely sequences has
the property that each realization of the shocks must push the learning algorithm in the
same direction away from .

The mean dynamics and the escape dynamics both originate from the same stochastic
difference equation system (4.24),(4.25). Above, we have defined �n as the residual in
the government’s Phillips curve for regression coefficients  and shock vector Wn. Recall
that

g(n; �n) = �n

�
�n

Xn�1

�
;

where �n is the forecasting error. To emphasize the link between the dynamics of n and
the original perturbation Wn, we write

~g(n; �Wn) = g(n; �n);

and
�n = �(n; �Wn)

where �Wn = (�1W1;n; �2W2;n). Let w 2 f�1; 1g2 be a particular realization of Wn. Since
Wn can take four different values, for any  2 <2, f~g(; �Wn)g consists of four vectors.
Let Rn = [Rij;n] and Dn be the determinant of Rn. We can write

(7.50)
�

1;n+1

�1;n+1

�
=

�
1;n
�1;n

�
+

�

Dn

�
�R21;n + (xn + �2W2;n)

R11;n �R21;n(xn + �2W2;n)

�
�n:

For each realization w 2 f�1; 1g2 of Wn it is useful to depict the contour of  satisfying
�(; �Wn) = 0: �

 2 <2 : �(; �w) = 0
	
:

10The transformed measure underestimates the time to escape, as indicated in Section 6.
11And more generally, the static model with multinomial shocks analyzed by Cho and Sargent (1999).
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FIGURE 10. The horizontal axis is 1, and the vertical axis is �1.

A self-confirming equilibrium is a point that in effect is the unconditional average over
these contours. As depicted in Figure 10,  1;e is the intersection of

f : �(; (�1; �2)) = 0g

and
f : �(; (��1;��2)) = 0g :

Note that the stable point  is surrounded by the four curves.
For convenience, we choose the area surrounded by the four curves (including its

boundary) as G. Note that @G is formed by the union of the segments of the four curves
conditioned on four different realizations of Wn. The characterization of the most likely
exit point with respect to a general compact convex neighborhood of  follows from the
same logic.

Since ~E is induced by the probability distribution over the set of escape paths, we
need to examine the probability distribution of the exit points along the boundary of the
neighborhood of . However, the entire set of escape paths from the stable point to a
boundary of G is too complicated to be characterized directly, because there are numer-
ous ways to escape from the stable point to a fixed point in @G as indicated (5.44). Thus,
we proceed by constructing a subset of escape paths that are analytically manageable,
while inducing a probability measure that is absolutely continuous with respect to the
original probability measure over the set of all exit points. Theorem 5.3 indicates that
the probability distribution over exit points collapses to the exit point by the dominant
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escape path as the gain function � converges to 0. Thus, if we can construct an absolutely
continuous probability measure over the set of exit points, then the new measure must
converge to the same exit point.

To construct a transformed measure with the desired property, we begin by noting that
from (7.50)

(7.51)
d�1;n+1

d1;n+1
=
R11;n �R21;n(xn + �2W2;n)

�R21;n + (xn + �2W2;n)

is independent of W1;n, which implies that for any Wn, fR�1n ~g(n; �Wn)g consists of two
pairs of linearly dependent vectors, each pair being indexed by one of the two possible
values for �2W2n. Thus in (7.50), the evolution of 1;n and �1;n is influenced by a com-
mon scalar factor �n. By (7.51), the vector field fR�1

n ~g(; �Wn)g around the stable point 
consists of two pairs of linearly dependent vectors. In particular, (7.51) implies that

9� 6= 0; such that R�1n ~g(; (�1; �2)) = �R�1n ~g(; (��1; �2))(7.52)

9�0 6= 0; such that R�1n ~g(; (�1;��2)) = �0R�1n ~g(; (��1;��2))(7.53)

Under the “usual” event, each element Wn 2 f�1; 1g2 is realized with probability 1=4.
Because  is the stable point of the (unconditional) mean dynamics,X

w2f�1;1g2

1

4
R�1n ~g(; �w) = 0:

Therefore, the two pairs of linearly dependent vectors must point to opposite directions:

(7.54) � < 0 and �0 < 0:

Otherwise, the mean dynamics cannot be zero as required at .
Since we can uniquely identify the sequence of perturbations for each escape path, it

makes sense to say that an escape path is generated by the sequence of perturbations.
Definition 7.1. We say that w;w0 2 f�1; 1g2 satisfies the same half-space condition
ifR�1n ~g(n; �w) andR�1n ~g(n; �w

0) are located in the same open half space. We say that an escape
path with exit time �e satisfies the same half-space condition, if it is generated by perturbations
that satisfy the same half-space condition for all � 2 (0; �e).

The same half-space condition requires that the two vectors R�1
n ~g(n; �w) and

R�1n ~g(n; �w
0) are pointing to the “same” direction. In the case of binomial distributions,

w and w0 satisfy this condition unless R�1
n ~g(n; �w) and R�1n ~g(n; �w

0) are linearly de-
pendent vectors that point in opposite directions.

The law of large numbers says that under the “usual” events, each element in w 2
f�1; 1g2 occurs with 1=4 of frequencies over (0; �) for any � > 0. If so, _v must be 0
over the same interval of time and  moves toward to . Thus, any move away from the
stable point  requires a sequence of “unusual” events ofWn, whose probability is strictly
less than 1. In order to maximize the probability of escape through a particular point
at the boundary of G, the escape path must minimize the number of “unusual” events
to reach the neighborhood of the exit point. In order to reach a particular point on the
boundary in the most economical way, the adjustment termR�1

n ~g(n; �w) associated with
each realization w of Wn must point to the same “direction.” Recall that fR�1

n ~g(n; �w)g
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are two pairs of linearly dependent vectors and that the two vectors in each pair point
in opposite directions. If the same half-space condition is violated, then some moves
cancel others, wasting precious time to escape. Therefore, using the same logic as in
(5.44) above, if (�) is an escape path through a particular point b 2 @G with exit time � e:

(0) =  and (� e) = b 2 @G

that takes the minimum amount of time among all escape paths through b, then the
escape path should be generated by sequence of perturbations satisfying the same half-
space condition for all � 2 (0; �e).
Lemma 7.2. Fix b 2 @G, and let  be the escape path through b that minimizes the exit time
among all escape paths through b.

(1)  must be generated by a sequence of perturbations that satisfy the same half-space condi-
tion.

(2) If an escape path  satisfies the same half-space condition, then no more than two pertur-
bations can be realized along .

Proof. See Appendix D.

Let D� be the set of all escape paths when the gain is � > 0. Instead of all escape
paths, let us consider the set D�

s of all escape paths that satisfy the same half-space con-
dition. Because Wn can take four different values, we can make six different pairs of the
realized values of Wn. Among the six pairs, f(1; 1); (�1; 1)g and f(1;�1); (�1;�1)g in-
duce a pair of R�1n ~g(n; �) that are linearly dependent. The remaining four pairs, namely
(1) f(1; 1); (�1;�1)g, (2) f(1;�1); (�1; 1)g, (3) f(1; 1); (1;�1)g and (4) f(�1; 1); (�1;�1)g;
satisfy the same half-space condition.

The next result is crucial.
Proposition 7.3. Fix a measurable A � @G. If lim�!0 Pr(A : D�) = 0; then

lim
�!0

Pr(A : D�
s) = 0:

Proof. See Appendix D.

Because we know that Pr(� : D�) is concentrated on the exit point of the dominant
escape path, Proposition 7.3 allows us to find the most likely exit point by using D�

s

instead ofD�.
Recall that D�

s admits an escape path that is generated by f(1; 1); (�1;�1)g, for exam-
ple, in which (1; 1) is realized with frequency p and (�1;�1) with frequency 1 � p for
p 2 [0; 1]. As � ! 0, the law of large numbers implies that the most likely frequency of
(1; 1), conditioned on that the path is generated by f(1; 1); (�1;�1)g, is

Pr (Wn = (1; 1) : Wn 2 f(1; 1); (�1;�1)g) =
1

2
:

Thus, if the probability distribution overD�
s is collapsed to a single point, than the point

should be the exit point of the escape path generated by one of the above four combi-
nations of perturbations, in which each element is realized with probability one half. By
using the standard result of the stochastic approximation, we can represent these four
escape paths in terms of an ODE calculated with respect to the conditional probability
distribution of Wn.
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7.2. A ‘race’ of four ODEs. We construct four ODEs associated with the four condi-
tional distributions satisfying the same half-space condition. The one that heads to-
ward the boundary most quickly corresponds to the dominant escape path. First, if
Wn 2 f(1; 1); (�1;�1)g, then the associated conditional ordinary differential equation
is

(7.55) _ = R�1

"
��11

1+2
1

�
u� �1

1+2
1

�
� (� + 1)�

2
2 + �1�2

u� �1
1+2

1

#
which has the stable point

1;e =

 
�� +

�1
�2
; u

�
�� +

�1
�2

�2!
;

depicted in Figure 10. It is important to note that the R matrix also evolves along the
candidate escape paths. Its differential equation is in general given by the conditional
expectation of Mn as in (3.19), conditioned on the half space shock realizations. However,
in the static case, Mn is independent of W1n, and along the four candidate paths the
marginal distribution of W2n is equal to its unconditional distribution. Therefore we
have that, as in the analysis in Section 5, along the escape paths R follows the mean
dynamics (4.33) conditional on . Because our focus is on the escape properties of , we
shall suppress the evolution of the covariance matrix.

If Wn 2 f(1;�1); (�1; 1)g, then the associated conditional ordinary differential equa-
tion is

(7.56) _ = R�1

"
��11

1+2
1

�
u� �1

1+2
1

�
� (� + 1)�

2
2 � �1�2

u� �1
1+2

1

#
which has the stable point

2;e = R�1

 
u

 
1 +

�
�� �

�1
�2

�2!
;�� �

�1
�2

!
:

If Wn 2 f(1; 1); (1;�1)g, then the associated conditional ordinary differential equation is

(7.57) _ = R�1

"
��11

1+2
1

�
u� �1

1+2
1

+ �1

�
� (� + 1)�

2
2

u� �1
1+2

1

+ �1

#
which has the stable point

3;e = ((u+ �1)(1 + �2);��):

IfWn 2 f(�1; 1); (�1;�1)g, then the associated conditional ordinary differential equation
is

(7.58) _ = R�1

"
��11

1+2
1

�
u� �1

1+2
1

� �1

�
� (� + 1)�

2
2

u� �1
1+2

1

� �1

#
which has the stable point

4;e = ((u� �1)(1 + �2);��):
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Notice the relationship between  j;e (j = 1; : : : ; 4) and the perturbations that generate
each ordinary differential equation. For example, (7.55) is generated byWn 2 f(1; 1); (�1;�1)g
which has 1;e as its stable point, which 1;e is the intersection of

f : �(; (�1; �2)) = 0g

and
f : �(; (��1;��2)) = 0g:

Our remaining task is to identify the most likely exit point among f j;e : j = 1; : : : ; 4g,
each of which is located on the boundary of G that is surrounded by the four curves
depicted in Figure 10. Notice that each curve is generated by exactly two perturbations,
each of which has the same probability 1=4 of realization. Thus, if it takes T (�) periods
for the escape path to reach the boundary of G, then the probability that the exits occurs
through the point is proportional to 4�T (�). Moreover, T (�) increases as � ! 0. Thus, the
exit point that can be reached in the shortest periods is the most likely exit point among
fj;e : j = 1; : : : ; 4g. A simple numerical analysis reveals that 1;e is the most likely
exit point, because the velocity vector of (7.55) is substantially larger than that of the
other three ODEs. Then, by invoking Proposition 7.3, we conclude that this is the point
through which the dominant escape exits G. See Cho and Sargent (1999) for additional
details.

In conclusion, under the binomial assumption on Wn, the “unconditional” ODE for 
is

g() = R�1

"
��11

1+2
1

�
u� �1

1+2
1

�
� (� + 1)�

2
2

u� �1
1+2

1

#
;

which implies that (7.55) can be written as

_ = g() +R�1
�
�1�2
0

�
and

_v = R�1
�
�1�2
0

�
:

8. CONCLUDING REMARKS

Fudenberg and Levine (1993), Fudenberg and Kreps (1995), and Fudenberg and Levine
(1998) have recommended the self-confirming equilibrium concept partly because of its
status as the limit point of a class of what Fudenberg and Levine (1998) call ‘eventually
myopic’ learning schemes. We believe that self-confirming equilibria are useful tools for
macroeconomics, where there have always been controversies about whether the gov-
ernment’s model is specified properly, and where there is a long tradition of academics
trying to improve the government’s model specification. The Phillips curve example of
Kydland and Prescott (1977) is just one example in this tradition.

Macroeconomic examples of self-confirming equilibria typically have the structure that
the beliefs of a large player (namely, the government) influence stochastic processes of
outcomes significantly. Where the beliefs of a large players matter, adaptive learning
schemes, like those analyzed here and in Fudenberg and Kreps (1995) and Sargent (1999),
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let escape dynamics occur and have big and recurrent effects on outcomes. For examples
of escape dynamics in adaptive models of oligopoly and production externalities, see
Williams (2000).

In this paper, we have shown that the escape dynamics exhibit the same ‘near deter-
minism’ (in the sense of Whittle (1996)) as the mean dynamics already familiar from the
literature on least squares learning. Our numerical calculations of escape probabilities
closely fit numerical simulations of our model. An interesting feature of the calculations
is how the escape probabilities are larger when the government’s model is more richly
specified, permitting it to discover the subtler ‘induction-hypothesis’ version of the natu-
ral rate hypothesis, despite the fact that the generality of this model relative to the ‘static’
model adds nothing within the self-confirming equilibrium.

APPENDIX A. PROOF OF THEOREM 4.1

The result follows directly from Theorem 8.5.1 in Kushner and Yin (1997), under Assumptions A above.
The theorem requires the additional assumptions (A8.1.9), (A8.5.2) and (A8.5.5) which hold trivially here,
since EnZn = b(��n) . This implies that the limit in (A8.1.9) is identically zero and that the ��n terms
in (A8.5.2) and (A8.5.5) are also identically zero. The theorem is also stated under the weaker condition
(A8.5.4), which is implied by (A8.5.4a) above.

We now verify that Assumptions A hold when when the shocks Wi are i.i.d. normal. For the normal case,
(A8.1.6) clearly holds by inspection. It is clear that there is a unique locally stable point of the ODE, and
furthermore it can be shown that the domain of attraction of the ODE is the entire space, so (A8.5.4a) holds.
For (A8.5.0), notice that by the independence of the shocks, we can write

P (j��nj � K) = P (f(w) � K)P (g(w) � K);

where w has a standard normal distribution and f and g are some quadratic functions. Denoting the roots
of f(w)�K and g(w)�K as (f1; f2) and (g1; g2) respectively, we have

P (j��nj � K) = (�(f1) + 1� �(f2)) (�(g1) + 1� �(g2)) ;

where � is the standard normal c.d.f. Tightness follows by noting that the absolute values of the roots are
increasing in K and taking limits as K ! 1: For (A8.5.1) and (A8.5.3), note that both jZ�

nj
2 and

��b(��n)��2
consist of normally distributed random variables up to the fourth order, and so have finite expectation,
which implies the uniform integrability. Finally (A8.1.7) holds because ��n consists of normally distributed
random variables up to the second order, and thus can be bounded to arbitrary accuracy on an appropriate
compact set.

APPENDIX B. PROOF OF THEOREM 5.3

B.1. Part 1. The result follows from Dupuis and Kushner (1989), Theorem 3.2, which requires that paper’s
assumptions 2.1-2.3 and 3.1. Their assumption 2.2 is satisfied by Assumptions A, and 2.3 is not necessary in
the constant gain case, as we restrict our analysis to a finite time interval. Assumption 3.1 is satisfied by our
definition of S above. All that remains is 2.1. Under the exponential tail condition given in Part 1, Dupuis
and Kushner (1989) Theorem 7.1 (with special attention to the remarks following it) and their Example 7.1
show that 2.1 holds.

B.2. Part 2. The result is a simple application of Kushner and Yin (1997) Theorem 6.10.1, whose assump-
tions follow directly under the boundedness assumption. The identification of the H function follows from
Dupuis and Kushner (1989) Theorems 4.1 and 5.3.

B.3. Parts 3 and 4. After establishing part 2, these results follow directly from Dembo and Zeitouni (1998)
Theorem 5.7.11.
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APPENDIX C. CONSTRUCTING THE Q MATRIX

Recall that in the full dynamic model, the government’s regression equation includes current inflation,
two lags of inflation and unemployment, and a constant. Therefore  is a (6� 1) vector, and so Q is a (6� 6)
matrix. The matrix has the form:

Q(;R) = R�1Q()R�1

where we specify Q() below.
To begin, note that for a fixed vector , we can write each row of g(; �) as a quadratic function:

g(; �) =
h
�0 eV0� �0 eV1� �0 eV2� �0 eV3� �0 eV4� �0 eV5� i0

where the eVi matrices can be written in block form:

eV0 =

24 0 �1�2 0
0 ��22 (1 + �) 0

�1h
0 �2 (d� h (1 + �))0 h0d

35
eVj =

24 0 0 0
0 0 0

�1ej ��2 (1 + �) ej ejd

35 ; j = 1; :::; 5

where ej is a (5� 1) vector with a 1 in row j and zeros elsewhere, and

d = u [0; 0; 0; 0; 1]� 1h()� 0�1:

Note that because of the linearity of our model, we can write the evolution of the vector �n as a (linear)
vector autoregression. We then normalize the variable components of � to be mean zero, but we retain the
constant term. We therefore define the vector z = � � E(�) + e7. We can then rewrite each row of g as
gi = z0Viz + ki for normalized matrices Vi and mean vectors ki for i = 0; :::; 5. Furthermore, we can write
the evolution of the vector z as

zn+1 = Azn +BWn

for some matrices A and B.
In general, the Q matrix depends on the solution of a Poisson equation which can be difficult to solve.

However Williams (2000) shows that when the Wi shocks are normally distributed, �n follows a linear VAR,
and the g function is quadratic, the (i; j) element of Q is given by:

(C.59) Qi;j = E
��
z0Liz

� �
z0Ljz

�
�
�
z0A0LiAz + tr(LiBB

0)
� �
z0ALjAz + tr(LjBB

0)
��
;

where the Li matrices solve the matrix Lyapunov equations:

Vi = Li �A0LiA:

APPENDIX D. PROOF OF LEMMA 7.2 AND PROPOSITION 7.3

Kushner (1984) pointed out that the large deviation properties of a discrete time recursive stochastic sys-
tem may not converge to the continuous time approximation of the same discrete time recursive process,
unless the associated H-functional of the discrete time process converges to that of the continuous time
process. One can show that the H-functional induced by a multinomial distribution of the perturbation
converges as the perturbation converges in distribution to the Gaussian perturbations. Thus, one can ap-
proximate the large deviation parameters associated with a recursive system with Gaussian perturbations
by another process with a multinomial distribution.

The general characterization of the large deviation parameters presented in the text assumes that Wn

has the Gaussian distribution. In order to show how the calculation of the most likely escape point can be
derived from the orthogonality condition of the optimal forecasting problem, we shall prove Lemma 7.2 and
Proposition 7.3 stated in terms of the multinomial distribution.

To simplify notation, we define a new random variable ~Win satisfying �iWin = ~Win: there exist

0 < !i1 < � � � < !i` i = 1; 2
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such that

(D.60) Pr
�
~Win = !ik

�
= Pr

�
~Win = �!ik

�
= pik k = 1; : : : ; `

and X̀
k=1

pik =
1

2
8i 2 f1; 2g:

Let

!i 2 f�!i`; : : : ;�!i1; !i1; : : : ; !i`g

be a generic element in the support of ~Win. Let ! = (!1; !2) be a realization of ~Wn. Since ~Win (i = 1; 2)

takes one of 2` different values, ~Wn = ( ~W1n; ~W2n) can take one of 4`2 different values. We use ~Win in place
of �iWin throughout this proof.

Given b1; : : : ; bL 2 <2, let

C(fb1; : : : ; bLg)

be the cone spanned by b1; : : : ; bL. Given b 2 <2, let

H(b) = fx : b � x = 0g

be the hyperplane with directional vector b. LetH+(b) be the open half space aboveH(b).
Let d�e be the integer part of � 2 <. Let

(D.61) f �s;� (!) =
#fn : d�=�e � n � d �+s

�
e; ~Wn = !g

ds=�e

be the empirical frequency of ! in time interval [�; � + s). Define

(D.62) fs;� (!) = lim
�!0

f �s;� (!)

and

(D.63) f� (!) = lim
s!0

fs;� (!):

Given that ~Wn = ( ~W1n; ~W2n) has the multinomial distribution, let V be the set of all realized values of
~Wn. For each � , define a subset ofV as

(D.64) V(H+(b)) =
�
! 2 V : C(fR�1~g((�); !) : fs;� (!) > 0g) � H+(b)

	
as the set of perturbations that induce fR�1~g((�); !)g contained in an open half space.

We state the same half space condition for the multinomial distribution.

Definition D.1. If !;!0 2 V(H+(b)), then ! and !0 satisfy the same half space condition at � . We say that  satisfies
the same half space condition, if there exists b 2 <2 such that (�) is generated by perturbations inV(H+(b)) for all
� .

Note that V contains exactly 4`2 elements and each hyperplane dividesV into 2 subsets, each of which
has 2`2 elements. For 8� > 0, we can choose b1; : : : ; b2`

2

such that

Hk =

(
H(bk) if k � 2`2

H(�bk�2`
2

) if k > 2`2

and [
b2<2

V(H(b)) =
4`2[
k=1

V(Hk)

and eachV(Hk) contains 2`2 elements.
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Lemma D.2. If e is a dominant escape path with exit time �e < 1, then the same half-space condition must hold
for all � 2 (0; � e) along the trajectory of e. Moreover, there exists k 2 f1; : : : ; 4`2g such that

(D.65) _e(�) =
X
!

R�1~g(e(� ); !)Pr(! : V(Hk)) 8� 2 (0; � e):

If e;k1 is the trajectory induced by (D.65) that has the shortest escape time among 4`2 escape paths induced by (D.65),
then e;k1 is a dominant escape path.

Proof. FixV(Hk) and calculate the “conditional” ODE e;k onV(Hk):

e;k(� ) = e;k(0) + lim
�!0

�

d�=�eX
t=1

R�1~g(n; !n)

where !n 2 V(Hk) for 8n = 1; : : : ; d�=ae and the probability distribution over V(Hk) is the conditional
probability distribution ofV onV(Hk). By the construction of G(�),

e;k(�) = xe;k 2 @G(� ):

Fix e;k , � > 0, and � e. Define

N�(
e;k) =

n
 2 <2 : 9� < � e; j � e;k(� )j < �

o
as the � neighborhood of the trajectory of e;k between 0 and �e. Define

A�(Hk) =
n
� : �(0) = e;k; 9� < � e; �(� ) =2 N�(

e;k)
o

be the set of sample paths generated by perturbations inV(Hk; �), which move away from the neighborhood
of the trajectory sometime between 0 and �e.

The next result is an extension of Cramér’s theorem to the probability distributions over function spaces,
whose proof can be found in Freidlin (1978) and Dupuis and Kushner (1985) under general conditions.

Proposition D.3. For 8� > 0, there exists s� > 0 such that

lim
�!0

� log Pr (A�(Hk) : V(Hk)) � �s�:

Fix � e and define
xe;k = e;k(� e)

for each k = 1; : : : ; 4`2. Define G(� e) as the convex hull of

Xe =
n
xe;1; : : : ; xe;4`

2
o
:

By the construction, G(� e) is a convex polyhedra with extreme points selected from X e. Clearly, if � > � e,
then

G(� e) � G(� ):

Since G(�e) expands as � e increases, we can find the first time when some element of Xe crosses over @G:

� e;1 = inff� : Xe nG 6= ;g:

If Xe \ @G contains more than a single element, we can enumerate them in an arbitrary manner. Let xe;k1

be the element in Xe \ @G when �e = � e;1.
Choose � > 0 sufficiently small such that

N�(x
e;k) \N�(x

e;k0) = ; 8k 6= k0:

Since @G(�e) nN�(X
e) is compact, we can find y1; : : : ; yL 2 @G(� e) nN�(X

e) and �1; : : : ; �L > 0 such that

@G(� e) nN�(X
e) �

L[
k=1

N�k (yk):
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It remains to prove that xe;k1 is the most likely exit point through G. To this end, we choose G a convex
compact neighborhood of the stable point , and choose �e = � e;1 as defined above. Define G(� e) as the
convex hull of Xe. By the construction,

G(� e) \ @G = fxe;k1g:

In order to analyze the probability distribution overG induced by the escape paths, it is necessary to “count”
the escape path through N�(y) \ @G for each y 2 @G and � > 0.

Divide the “arc” N�(y) \ G into smaller pieces, each of which is as long as � and centered around yk.
There are approximately as many as d�=�e such small grids contained in N�(y) \ @G. For convenience, we
abuse the notation by writing the centers of the small grids as y1; : : : ; yd�=�e, and N�(yk) as the small grid
centered around yk (k = 1; : : : ; d�=�e). For each grid N�(yk), we can find the shortest escape path through
N�(yk). Let Ak

0(y; �; �) be the set of all shortest paths through N�(yk). Define

A0(y; �; �) =

d�=�e[
k=1

Ak
0(y; �; �):

For j � 1, let Ak
j (y; �; �) be the set of escape paths through N�(yk) that takes j periods more than the shortest

paths through N�(yk). Define

Aj(y; �; �) =

d�=�e[
k=1

Ak
j (y; �; �):

Note that Ak
j (y; �; �) increases as �! 0 for a fixed G. But, the rate of increase is asymptotically bounded by

��j . Define

�j(y; �; �) =
#Aj(y; �; �)

#A0(y; �; �)

where #A is the number of elements in A. Again, �j(y; �; �) increases as �! 0 asymptotically at the rate of
��j . Let P(y; �; �) be the probability of escape through N�(y) \ @G.

As � ! 0, each element in A0(y; �; �) is the shortest path around a very small neighborhood of yk (k =
1; : : : ; d�=�e). For this reason, we call each element in A0(y; �; �) the pointwise dominant path. Define

p(y; �; �) = Pr(A0(y; �; �))

as the probability of escaping through the pointwise dominant paths.
The next proposition shows that any pointwise dominant path must be generated by perturbations that

satisfy the same half-space condition along its trajectory.

Proposition D.4. As �! 0, almost all escape paths in A0(y; �; �) must satisfy the same half-space condition.

Proof of Proposition D.4. If the conclusion of Proposition D.4 is false, then with a positive probability, we
can find an escape path  with

(� e) 2 @G(� e);

� 2 (0; � e) and fskg
1
k=1 such that

sk # 0

and 8sk > 0,

(D.66) C(fR�1~g((� ); !) : fsk ;� (!) > 0g) = <2

Because the next lemma is a straightforward application of linear algebra, we state the result without the
proof.

Lemma D.5. (D.66) holds, if and only if there exist !1, !2 and !� in the support of fsk ;� such that

(D.67) R�1~g((�); !�) 2 C
��
�R�1~g((� ); !1);�R�1~g((�); !2)

	�
:

If !1, !2 and !� satisfy (D.67), then any permutation of the three vectors satisfies (D.67).
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Proof of Lemma D.5. See Cho and Sargent (1999)

Fix s = sk > 0. Let X
!

R�1~g((� ); !)fs;� (!)

be the mean directional vector at � . By Lemma D.5, we can choose !1, !2 and !� such that

C
��
R�1~g((� ); !1); R�1~g((�); !2); R�1~g((� ); !3)

	�
= <2:

Rename each vector so that

(D.68)
X
!

R�1~g((�); !)fs;�(!) 2 C
��
R�1~g((� ); !1); R�1~g((�); !2)

	�
and let !3 = !� so that there exist �1(!�) > 0 and �2(!�) > 0 such that

R�1~g((� ); !�) = ��1(!�)R�1~g((�); !1)� �2(!�)R�1~g((�); !2):

To simplify notation, let us assume that there is only one such !� in the support of fs;� . The general case
follows from exactly the same logic, while the notation becomes significantly more complicated.

Note that for ! 2 [0; 1],X
!

R�1~g((� ); !)fs;� (!) =
X
!

R�1~g((�); !)fs;�(!) +O(s)

=

2X
j=1

24 X
! 6=!�

�j(!)fs;�(!) + !�j(!�)fs;� (!
�)

35R�1~g((�); !j)

+(1� !)fs;�(!
�)R�1~g((�); !�) +O(s)

Since 24 X
! 6=!�

�j(!)fs;� (!)

35+ �j(!�)fs;� (!
�) > 0 8j = 1; 2;

there exists hj 2 (0; 1) such that

hj

24 X
! 6=!�

�j(!)fs;�(!)

35+ �j(!�)fs;� (!
�) = 0

which implies that

fs;� (!
�) = �

hj

�j(!�)

X
! 6=!�

�j(!)fs;�(!):

Without loss of generality, assume that

�
1

�1(!�)

X
! 6=!�

�1(!)fs;� (!) < �
1

�2(!�)

X
! 6=!�

�2(!)fs;� (!);

which implies that

h1 > h2:

Hence,

h1

24 X
! 6=!�

�2(!)fs;�(!)

35+ �2(!�)fs;� (!
�) > 0:
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We can write the mean dynamics as

X
!

R�1~g((�); !)fs;�(!) =

24(1� !h1)
X

! 6=!�;!2

R�1~g((� ); !)fs;�(!)

35
+
�
(1� !h1)fs;� (!

2) + �2(!�)!(h1 � h2)fs;� (!
�)
�
R�1~g((� ); !2)

+(1� !)fs;�(!
�)R�1~g((�); !�) +O(s):

Note that h
(1� !h1)

P
! 6=!�;!2 fs;� (!)

i
+

�
(1� !)fs;�(!

�)
�

+
�
(1� !h1)fs;� (!

2) + �2(!�)!(h1 � h2)fs;� (!
�)
� ! < 1

and that each term inside the bracket is strictly positive for a sufficiently small ! 2 (0; 1). We can generate
the same mean dynamics through

(D.69) ~f(!) =

8<:
(1� h1)fs;� (!) if ! 6= !�; !2

(1� !h1)fs;� (!
2) + �2(!�)!(h1 � h2)fs;� (!

�) if ! = !2

(1� !)fs;� (!
�) if ! = !�

instead of fs;� . Since
P

!
~f(!) < 1, ~f is not an empirical frequency. After normalization, we have

(D.70) (� + s)� (�) = s

"X
!

~f(!) +O(s)

#"X
!

~f(!)P
!
~f(!)

R�1~g((�); !)

#
+ sO(s)

For a sufficiently small s = sk > 0, X
!

~f(!) +O(s) < 1

which implies that we can construct a path from (�) to (� + s) which takes s[
P

!
~f(!) + O(s)] instead of

s. This contracts the hypothesis that  is the pointwise dominant path to xe 2 @G. Q.E.D.

For each !k 2 V, let
pk = Pr

�
!k
�
> 0

be the probability of the k-th perturbation. Define

p = max
�
p1; : : : ; p4`

2
�

and
p = min

�
p1; : : : ; p4`

2
�
:

Then,
1X
j=0

p(y; �; �)�j(y; �; a)p
j � P(y; �; �) �

1X
j=0

p(y; �; �)�j(y; �; �)p
j :

Note that

(D.71)

PL
k=1 p(yk; �k; �)

P1
j=0 �j(yk; �k; �)p

jP4`2

k=1 p(xk; �; �)
P1

j=0 �j(x
e;k; �; �)pj

�
LX

k=1

1X
j=0

p(yk; �k; �)
P1

j=0 �j(yk; �k; �)p
jP4`2

k=1 p(x
e;k; �; �)

:

Recall that G(�e)(� G) is the convex hull of the points that can be reached in �e by 4`2 escape paths. Thus,
it takes an equal time to reach the boundary of G(�e) as long as the escape path satisfies the same half space
condition. Since yk 62 [4`

2

k=1N�(x
e;k), any escape path  through N�k (yk) must be away from e;k by at least

as much as �: 9� 0 � � e,
(� 0) =2 N�(

e;k) 8k

Thus,

p(yk; �k; �) � Pr

 \
k

n
 : 9� 0 � � e; (� 0) =2 N�(

e;k)
o!
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� Pr
��
 : 9� 0 � � e; (� 0) 62 N�(

e;1)
	�

:

Thus, Proposition D.3 implies that there exists s� > 0 such that

p(yk; �k; �)P
4`2

k=1 p(x
e;k; �; �)

�
p(yk; �k; �)

p(xe;1; �; �)
� e�s

�=�

for any small a > 0. Thus, (D.71) can be bounded by
LX

k=1

1X
j=0

e�s
�=��j(yk; �k; �)p

j :

Let
fa(j : k) = e�s

�=��j(yk; �k; �)

which converges to 0 pointwise as �! 0. Thus,

lim sup
�!0

f�(j : k) = 0 8j; k:

Since
1X
j=0

pj <1;

ff�(j : k)ga is a sequence of integrable functions with respect to the finite measure � where

�(j) = pj 8j:

Hence,

0 � lim sup
�!0

LX
k=1

1X
j=0

e�s
�=��j(yk; �k; �)p

j �
LX

k=1

1X
j=0

lim sup
�!0

h
e�s

�=��j(yk; �k; �)
i
pj = 0

which implies that the probability distribution over G(� e) induced by the escape points is concentrated at
N�(X

e). Since the only intersection between Xe and @G is xe;k1 , this result proves that xe;k1 is the most
likely escape point within � e;1 real time.

For � e > � e;1, the same logic applies. Proposition D.3 implies that the probability distribution induced
by the exit points is concentrated at the intersection of the trajectory of e;k and @G. Note that there are
as many as 4`2 such trajectories. Among 4`2 exit points of the trajectories induced by the “conditional”
ODE, it takes the shortest time to escape through xe;k1 along the trajectory e;k1 induced by the conditional
ODE. Since the longer escape paths requires exponentially more “unusual” perturbations, the probability of
escaping through the shorter path is exponentially higher than that through the longer path. Thus, the exit
probability is concentrated at xe;1 which is the shortest escape paths among the escape paths induced by the
conditional ODEs.

APPENDIX E. NUMERICAL SOLUTION

As mentioned in Section 6, in order to calculate the dominant escape path numerically, it helps to recast
the problem as an initial value problem rather than a two-point boundary value problem. For any arbitrary
(t; b) there may not be a solution to (5.43) such that (t) = b:However, given initial conditions (a(0); �(0)) =
�0, we can determine candidate values of t and b endogenously by integrating (5.43) until the system leaves
G, which gives t = inf fs : (s) =2 Gg, and b = (t): So rather than attempting to directly calculate S by
minimizing over (t; b), which may not be solvable numerically, we can instead define:

S(�0) =

Z t

0

L((s); _(s);R(s))ds;(E.72)

s.t. (5.43), (0) = ;R(0) = R; (a(0); �(0)) = �0

with t defined as in the previous sentence. Minimizing this quantity over the vector �0 will then give us S
and an endogenously determined escape point b and the minimizing path is the dominant escape path.
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In order to compute the dominant escape path, we solve the ODEs using Runge-Kutta methods, and
minimize over �0 numerically, where the integrals in S are also calculated numerically with a trapezoidal
rule. We also compute the derivatives in (5.43) using the central finite differences:

@g

@i
=

g( + ei�)� g( � ei�)

2�
(E.73)

@Q

@i
=

Q ( + ei�; R)�Q ( � ei�; R)

2�
;

for some small � > 0: The dependence of Q and g on  is complex, as both the conditional and invariant
distributions change with , which is why we compute the derivatives numerically. It is straightforward
but tedious to derive the exact expressions for the derivatives, which can be calculated explicitly up to the
solution of matrix Lyapunov equations. In practice, the finite difference method proved slightly faster and
only very slightly less accurate than the explicit calculations.
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