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Abstract

We analyze a model of unsecured consumer loans. We characterize equilibrium
behavior within the confines of U.S. bankruptcy law. Credit suppliers take deposits
from households and offer loans via a menu of credit levels and interest rates in a
competitive industry with free entry and zero costs. Borrowers have the option to
default on their loans but are punished with a version of Chapter 7 U.S. bankruptcy
rules. In our model it is poor people that want to default, and indeed they do so
often. We characterize the circumstances that lead to equilibrium default, and the
steady states for this environment, which requires the specification of credit limits
and interest rates offered by the intermediary, of decision rules for households’ asset
holdings and bankruptcy decisions, and a stationary measure of households, with the
property that firms maximize and have zero profits and households maximize and the
allocation is stationary.

Our theory is motivated by some key facts: (i) unsecured consumer credit is cur-
rently 10% of U.S. disposable personal income, (ii) close to 1% of U.S. households file
for Chapter 7 bankruptcy and (iii) households that go bankrupt are in poor financial
condition.
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1 Introduction

In this paper we analyze unsecured consumer loans in an environment that implements the

main characteristics of U.S. bankruptcy law. We describe optimal behavior of borrowers

and lenders as well as characterize the equilibrium of the lending industry when it is both

competitive and subject to free entry. Our model economies share a list of properties with

the U.S. economy that is

1. 1
2

to 1% of households default each year (Ch 7).

2. There exists a large amount of unsecured credit (10% of GDP).

3. Defaulters are typically in poor financial condition.

4. Default is legal in the U.S. law. Defaulters cannot run away with wealth but they get

to keep future income.

In our environment we prove certain important properties of the solution to the house-

holds problem that include the characterization of default sets as intervals. Furthermore,

we prove existence of equilibrium. We compute the equilibria for some economies that are

calibrated to the U.S. In addition we perform some policy analysis, assessing the implications

of changing certain features of the bankruptcy law. Finally, we assess the welfare value of

credit.

Under U.S. law the process of personal bankruptcy (Chapter 7) involves the following

features

1. At the moment of default, assets can be seized up to a certain level that depends on

which state the bankruptcy process is carried out.1 Once this process is finished the

household is protected from further seizures of assets from previous debts.

2. There is a cost of being delinquent for up to seven years. The law literally states an

upper bound on the length that a household’s bad credit history is recorded. We take

this to be the length of time that a household cannot borrow. We leave for further

research the subtleties of renegotiation that can arise.

1In Iowa this level is just $500, while in Florida and Texas the bankrupt household can keep the house.
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3. With a bad credit history, the household is subject to small hassles such as having worse

access to certain transaction technologies (charge cards have to prepaid for instance).

We model this feature as a small loss of income while delinquent.

There is a large literature that studies optimal contractual arrangements in the presence of

commitment problems. For instance, Kocherlakota (1996) designs state (earnings) contingent

bilateral contracts where the threat of punishment to autarky is sufficient to ensure that a

given household does not default, resulting in zero equilibrium default. We depart from

this literature in fundamental ways. First, we follow a general equilibrium approach rather

than study pairwise arrangements. Second, a contract between the lending institution and

a household is not fully state contingent (it depends on a household’s current debt balance

and its default history as in typical credit card statements) and punishment is defined and

imposed by an outside entity (the U.S. legal system). Partly as a result of our different

approach, we are able to match some important features of the data.

There are several interesting pre-existing papers studying issues of default along lines

similar to ours. In very innovative work, Athreya (1999) poses a model that includes a

default option with stochastic punishment spells. In his economy, competitive credit suppliers

precommit to long-term credit contracts. The credit limit is exogenous. He also poses as

an equilibrium condition that ex-ante expected profits have to be zero. However in his

model economy reducing credit limits increases profits. Also, Lehnert & Maki (2000) have

a model with competitive credit suppliers and borrowers that can both precommit to long-

term credit contracts. In their world ex–ante profits on contracts are zero and there are

numerous periods where firms are committed to making negative profits. Moreover, they

explicitly consider that default has exemptions (not all assets are confiscated) so the gross

portfolio matters. Finally, Kehoe & Levine (2001) use a general equilibrium approach to

characterize allocations when agents cannot commit to pay back. Unlike in our work, it is

the rich agents that want to default and their environment is characterized by no default.

We start by describing the model economy and characterizing the problem of the agent

and the structure of the lending industry in section 2. We show existence of steady states in

section 3. We then turn to describe some key features of the data in section 4. We describe

and discuss our calibration targets in section 5. The calibration of a model economy to

these targets turns out to be quite hard and for this reason we implement two extensions of

the model (demographic turnover and persistence in earnings) that we describe in section 6.

This section has a discussion of the changes to the arguments of section 2 and section 3 that

these extensions require. We then describe the properties of the baseline model economy in

section 7. Next, we pose and answer two quantitative questions, what are the implications of
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changing certain features of the bankruptcy laws in section 8 and assessing the value of credit

in section 9. Section 10 concludes. The proofs of the results of the paper and a description

of the computational procedures are in an Appendix.

2 The model economy

We start describing the problem faced by consumers that includes an option for default

in Section 2.1. At the beginning we will be looking for steady states, and we analyze

the household’s behavior for constant discounted price schedules that, as we will see later,

constitute the main equilibrium object. Later we will turn to non stationary allocations

in section 3.1. Section 2.2 describes the unsecured loan industry. In section 3 we define

equilibrium and prove its existence.

2.1 Households

The economy consists of a large number of infinitely lived households with stochastic unin-

surable earnings. Denote those earnings with e ∈ E = [e, e] ⊂ R++. We assume earnings are

i.i.d. across individuals and time. Let (E,B(E), µ) be a probability space, where B(E) is

the Borel σ− algebra generated by E.

Households can save or borrow by holding assets in set L ⊂ R. We assume that L is a

finite set with smallest element `min and largest element `max. Elements in L are beginning

of period, after-interest assets or liabilities.2 Let L−− = L∩R−− and L+ = L∩R+. Assume

that both L−−and L+ are nonempty. We take that there is a storage technology defined on

L+ that yields a size independent return min`∈L+ ` ≥ y/q̂ for each investment of y units.

We assume that 1 > q̂ > β. We think then of an asset position as a commodity. We denote

the discounted price (in terms of current consumption) of asset position ` ∈ L next period

as q` ∈ [0, q̂]. It is natural to think of the interest rate r as 1/q − 1.

Individual preferences are standard and we write expected utility as

E0

{ ∞∑
t=0

βt u (ct)

}
. (1)

where the utility function u : [0, `max − `min + e] → R is continuous and increasing.

2That is, if a is beginning of period assets or liabilities, then ` = (1+r)a. As will become evident, defining
the problem in the set L simplifies the firms’ problem dramatically.

4



Furthermore, for some results we will make use of the following assumption on preferences

and endowments. The assumption provides a sufficient condition to ensure certain continuity

results for the household problem.

Assumption 1. u(e)− u(0) ≥
(

β
1−β

)
[u (e + `max)− u (e)].

Households can default on their loans. The decision whether or not to default, d ∈ {0, 1},
is a choice variable. The choice to default, that is d = 1, implies that

1. The household’s asset position becomes zero both today and tomorrow. This means

that its debts do not curtail its current consumption and that this period it cannot

save assets for tomorrow.

2. The household’s credit history, h ∈ {0, 1}, changes state. In particular, default from

the state of a good credit history, that is h = 0, changes the household’s history to

h = 1 in the following period.

3. When h = 1, the household cannot borrow in the next period, denoted ` ′ ≥ 0. A

household with a bad credit history may or may not retain its bad credit history the

following period. There is an exogenous probability λ that the household maintains its

bad credit history. This is a parsimonious way of modelling the finite length (7 years)

that the bankruptcy code maintains a household’s bad credit history.

Given these considerations we can write the problem of a household for a given discounted

price schedule q = {q`}`∈L−− . Let the endogenous state space be defined by X = L−−×{0}∪
L+ × {0, 1} with typical element (`, h). Let NX be the cardinality of X. Let W denote

real functions of X . We denote the value under w ∈ W of point (`, h) by w`,h . Then

W ⊂ RNX . The household’s individual state —its earnings shock, its asset position, and

its credit history— thus lies in X × E. Let Y = X × E × {0, 1} with typical element

y = (`, h, e, d).

We define the budget correspondence on Y . We index this budget correspondence by q

since it affects choices even though it is constant over time. That is, B : Y ³ R+ × L can

be defined in three parts:

1. The household has a good credit history (h = 0) and chooses not to default (d = 0).

B(`, 0, e, 0; q) = {c ∈ R+, `′ ∈ L : c + q`′ `′ ≤ e + `}, ∀(`, 0, e, 0) ∈ Y. (2)
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This is the standard case where the household chooses how much to consume and how much

to save given that its resources are its inherited assets and its current earnings. Its only

constraint is that its borrowings or savings lie in the finite set `.

2. The household has a good credit history (h = 0) but chooses to default (d = 1).

B(`, 0, e, 1; q) = {c ∈ R+, `′ = 0 : c ≤ e}, ∀(`, 0, e, 1) ∈ Y. (3)

Inherited debts disappear from its budget constraint, and it cannot save for tomorrow.

3. The household has a bad credit history (h = 1).

B(`, 1, e, 0; q) = {c ∈ R+, `′ ∈ L+ : c + q`′ `′ ≤ e + `}, ∀(`, 1, e, 0) ∈ Y. (4)

With a bad credit history, the household cannot borrow.

Note that (2)-(4) completes the definition of the budget correspondence since (`, 1, e, 1) /∈
Y. Further, it is important to recognize that B(`, 0, e, 0; q) could be empty for some (`, 0, e, 0)

∈ Y . In particular, B(`, 0, e, 0; q) will be empty if ` < 0 and q`′ is very small.

2.1.1 The Household’s Problem

It is easiest to analyze the problem of a household in a series of steps defined in terms of

operators, to which we now turn.3 The first operator, T1, takes elements of RNX and yields

functions χ defined over Y . More formally, for a discounted price schedule q and w ∈ RNX ,

we define the operator T1(w)(y) : Y → R in three parts depending on the type of budget set

by:

1. The household has a good credit history (h = 0) and chooses not to default (d = 0),

T1(w) (`, 0, e, 0) =





maxc,`′∈B(`,0,e,0;q) u(c) + β w`′,0 if B(`, 0, e, 0; q) 6= ∅,

u(0)
1−β

if B(`, 0, e, 0; q) = ∅.
(5)

2. The household has a good credit history (h = 0) but chooses to default (d = 1),

T1(w) (`, 0, e, 1) = maxc,`′∈B(`,0,e,1;q) u(c) + β w`′,1 = u(e) + β w0,1. (6)

3We index the value functions with the price schedule q to remind us that the steady state equilibrum
has yet to be determined.
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3. The household has a bad credit history (h = 1),

T1(w) (`, 1, e, 0) = maxc,`′∈B(e,`,1,0;q) u(c) + β [λ w`′,1 + (1− λ) w`′,0] . (7)

We write χ(`, 0, e, d; q) = T1(w)(y), and sometimes, when we want to stress the depen-

dence of χ on some w we write χ(`, 0, e, d; w, q). Function χ tells us the maximum expected

utility of a household under each of its default options. We now state several properties of

χ that will be useful later.

Lemma 1. χ(`, 0, e, 1; w, q) is continuous, increasing, bounded and Borel measurable in e

for any ` ∈ L. χ(`, 0, e, 0; w, q) is continuous, increasing, bounded and Borel measurable in

e over a restriction of the domain L × E such that the set B(`, 0, e, 0; q) 6= ∅. In addition,

if Assumption 1 holds, then χ(`, 0, e, 1; w, q) ≥ χ(`, 0, e, 0; w, q) for those (`, e) such that the

only feasible consumption is 0, , i.e., {(`, e) : q`min
`min = e + `.}

Proof. Since χ(`, 0, e, 1; w, q) = u(e) + β w0,1, it is obviously continuous, increasing and

bounded in e given that u is a continuous and increasing function on a compact set E and

w0,1 is bounded.

On the other hand, over the entire space L × {0} × E × {0}, χ(`, 0, e, 0; w, q) is not

necessarly continuous in e (the discontinuity may occur when the budget correspondence

becomes empty and χ jumps to u(0)
1−β

). However, if we restrict the domain to be ∆ = {(`, e) ∈
L × E : B(`, 0, e, 0; w, q) 6= ∅},then χ(`, 0, e, 0; w, q) for (`, e) ∈ ∆ is continuous in e. This

follows since the budget correspondence is non-empty, compact-valued, and continuous for

(`, e) ∈ ∆ and then, by the Theorem of the Maximum, χ(`, 0, e, 0; w, q) is continuous in e.

To see this, let b : ∆ ³ [0, `max − `min + e] × L denote the restriction of B(`, 0, e, 0; w, q)

to ∆. The restriction b is non-empty (by definition) and compact. Next we establish that

b is l.h.c. at any (`, e) ∈ ∆. We must show that for every (c, `′) ∈ b(`, e) and every

sequence (`m, em) → (`, e), there exists M ≥ 1 and a sequence {(cm, `′m)}∞m=M such that

(cm, `′n) → (c, `′) and (cm, `′m) ∈ b(em, `m), ∀m ≥ M . But this follows from the fact that ` is

reached in a finite number of steps and b is linear in e.

Finally, we establish that b is u.h.c. at any (e, `) ∈ ∆. We must show that for every

sequence (`m, em) → (`, e) and for every sequence {(cm, `′m)} such that (cm, `′m) ∈ b(`m, em),

∀m, there exists a convergent subsequence of {(cmk
, `′mk

)} whose limit point (c, `′) ∈ b(`, e).

But this follows since {(cm, `′m)} is a bounded sequence in a compact set, so by the Bolzano-

Weierstrass theorem the convergent subsequence exists, and the finiteness of L and linearity

of b in e ensure (c, `′) ∈ b(`, e).
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To see that χ(`, 0, e, 0; w, q) is increasing in e, note that for e ≤ ê, B(`, 0, e, 0; q) ⊆
B(`, 0, ê, 0; q) so that any (c, `′) in B(`, 0, e, 0; q) is also feasible in B(`, 0, ê, 0; q). Boundedness

follows trivially.

Finally, since χ(`, h, e, d; w, q) is increasing in e, then for any ε ∈ R, Eε = {e ∈ E :

χ(`, h, e, d; w, q) ≤ ε} is either empty, E or a set of the form [e, e) or [e, e]. Since Eε ∈ B(E),

then χ is a Borel measurable function of e.

Finally, we show that Assumption 1 is a sufficient condition so that χ(`, 0, e, 1; w, q) ≥
χ(`, 0, e, 0; w, q) for those (`, e) on the “border” such that the budget correspondence turns

empty, {(`, e) : q`min
`min = e+`.} . But χ(`, 0, e, 1; w, q) ≥ χ(`, 0, e, 0; w, q)⇔ u(e)+β w0,1 ≥

u(0) + β w`min,0 or u(e)− u(0) ≥ β(w`min,0 − w0,1). To show this, it’s sufficient to show that

u(e)− u(0) ≥ β(w`min,0 − w0,1). Since e + `max is the maximum a household can consume in

any period, w`,0 ≤ u(e+ `max)/(1−β) for any `. And, since consuming e each period forever

is always feasible when starting with no assets, w0,1 ≥ u(e)/(1 − β). Hence, the inequality

boils down to

u(e)− u(0) ≥
(

β

1− β

)
[u (e + `max)− u (e)] ,

which is just Assumption 1. By choosing u(0) to be sufficiently low, this inequality can

always be satisfied.

Let X be the set of functions that satisfy the requirements of Lemma 1; that is, those

functions that are continuous, increasing, bounded and Borel measurable in e over a restric-

tion of the domain such that the budget set is nonempty, and have the property that when

the only feasible consumption is 0, default is the best option. Then, T1(w) ⊂ X .

The second operator, T2 takes functions χ ∈ X and yields functions v. Formally, for

χ ∈ X , define the operator T2(χ)(`, h, e) : X × E → R by:

1. The household has a good credit history (h = 0) and is in debt,

T2(χ) (`, 0, e) = max {χ(`, 0, e, 0), χ(`, 0, e, 1)} , for ` < 0. (8)

2. The household has a good credit history (h = 0) and has no debt,

T2(χ) (`, 0, e) = χ(`, 0, e, 0), for ` ≥ 0. (9)
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3. The household has a bad credit history (h = 1),

T2(χ) (`, 1, e) = χ(`, 1, e, 0). (10)

The function v(`, h, e; χ) tells us the household’s maximum expected utility while in each

state. We now state a property of v that will be useful later.

Lemma 2. Suppose Assumption 1 holds. Then v(`, 0, e; χ) is continuous, increasing, and

Borel measurable in e.

Proof. That v is continuous, increasing, bounded and Borel measurable in e follows from

those properties of the χ ∈ X functions and from the fact that v is the maximum of two

continuous functions. Assumption 1 guarantees that the points where discontinuities of

χ(`, 0, e, 0; w, q) could arise due to the budget correspondence turning empty occur where

χ(`, 0, e, 1; w, q) dominates it, thereby guaranteeing the continuity of the maximum of the

two functions.

Let V be the set of continuous, increasing, bounded and Borel measurable functions in e.

Then T2(X ) ⊂ V

The third operator, T3, is just integration of v to yield functions w again. That is, for

v ∈ V , define the operator T3(v)(`, h) : X → R by

T3(v) (`, h) =

∫
v(`, h, e) µ(de). (11)

Measurability of v guarantees that this integral is well defined, and that it is bounded.

The next theorem links all three operators and shows households face a well defined

problem. Moreover, successive approximations to the agents problems will yield the required

solution.

Theorem 1. (The household problem is a contraction). Define the operator

T (w) = T3(T2(T1(w))). Then T has a unique fixed point in W a bounded set. Moreover, the

fixed point is the limit of successive approximations for any initial w0.

Proof. First we define a sufficiently large but bounded set W̄ . Let {W̄ = [u(0)
1−β

, u(e+`max)
1−β

]NX}.
Note that this is the interval defined by always consuming the minimum or the maximum.
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This is sufficient to have T (W ) ⊆ W. Next, note that T satisfies Blackwell’s sufficient

conditions for a contraction with modulus less than 1, namely, (i) w, ŵ ∈ (W ), and w`,h ≤
ŵ`,h,∀`, h ∈ X, implies T (w)(`, h) ≤ T (ŵ)(`, h) ∀`, h ∈ X since all of the operators T1, T2, T3

preserve monotonicity and (ii) T (w + κ)(`, h) = T (w) + βκ.

2.1.2 Characterizing Default Sets

Now we turn to characterizing the set of earnings and asset holdings over which a household

chooses to default, taking as given any schedule q.

Definition 1. The default set is D(`; q) = {e ∈ E : v(`, 0, e; q) ≤ u(e)+β w0,1} for ` ∈ L−−,

where v is the function that results from applying T1 and T2 to the unique fixed point of T

given q.

Note also that we index the default set by the discounted price schedule. Note that we define

the default set this way, rather than the set of earnings directly defined by χ(`, 0, e, 0; q) ≤
χ(`, 0, e, 1; q) to avoid any discontinuities associated with χ(`, 0, e, 0; q).

The following lemmas are useful in establishing a theorem that for any given asset position

`, the default set is a closed interval. Lemma 3 simply shows that the default set is a Borel

set. Lemma 4 establishes that if a household chooses not to default (and instead increases

saves positevely) for a given earnings level, then for any higher earnings level it would choose

not to default as well.4 Lemma 5 establishes the converse, namely, that if a household chooses

not to default (and instead borrow more than its current liabilites) for a given earnings level,

then for any lower earnings level it would choose not to default as well. To state this lemmas

we use the convention of using Zc to denote the complement of the set Z .

Lemma 3. D(`; q) ∈ B(E).

Proof. Since v(`, 0, e; q) is increasing in e by Lemma 2, as is u(e) + β w0,1, both are Borel-

measurable functions of e. Hence, D(`; q) ∈ B(E).

Lemma 4. Suppose ` < 0, ê ∈ [D(`; q)]c and e > ê. If c(`, 0, ê) ≤ ê, then e ∈ [D(`; q)]c.

4Recall, that if a household defaults, it does not get to store its current earnings.
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Proof. By hypothesis

u[c(`, 0, ê; q)] + β w`′(`,0,be;q),0 > u(ê) + β w0,1.

Let δ = ê− e and suppose c(`, 0, ê; q) ≥ ê. Then, c(`, 0, ê; q)− δ ≥ ê− δ = e ≥ 0.

Hence, the pair {c(`, 0, ê; q) − δ, `′(`, 0, ê; q)} belongs in B(`, 0, e, 0; q). Hence, utility

obtained by not defaulting when endowment is e must satisfy the inequality

u[c(`, 0, e; q)] + β w`′(`,0,e;q),0 ≥ u[c(`, 0, ê, 0)− δ) + β w`′(`,0,be;q),0.

The utility obtained by defaulting when endowment is e is u(ê− δ) + β w0,1.

Suppose, to get a contradiction, that

u[c(`, 0, e; q)] + β w`′(`,0,e;q),0 ≤ u(ê− δ) + β w0,1.

Then,

u[c(`, 0, ê; q)− δ] + β w`′(`,0,be;q),0 ≤ u(ê− δ) + β w0,1.

Hence

u[c(`, 0, ê; q)− δ] + β w`′(`,0,be;q),0 − u[c(`, 0, ê; q)]− β w`′(`,0,be;q),0 <

u(ê− δ) + β w0,1 − u(ê)− β w0,1,

or,

u[c(`, 0, ê; q)]− u[c(`, 0, ê; q)− δ] > u(ê)− u(ê− δ).

Since u is concave, the last inequality implies c(`, 0, ê; q)− δ < ê− δ, or, c(`, 0, ê; q) < ê. But

this contradicts our supposition that c(`, 0, ê; q) ≥ ê. Hence u[c(`, 0, e; q)] + β w`′(`,0,e;q),0 >

u(e) + β w0,1.

Lemma 5. Suppose ` < 0, ê ∈ (D(`; q))c,and e < ê. If c(`, 0, ê) ≥ ê, then e ∈ [D(`; q)]c.

Proof. By hypothesis

u[c(`, 0, ê; q)] + β wa′(`,0,be;q),0 > u(ê) + β w0,1.

Let δ = ê− e and suppose c(`, 0, ê; q) ≥ ê. Then, c(`, 0, ê; q)− δ ≥ ê− δ = e ≥ 0. Hence, the

pair {c(`, 0, ê; q) − δ, `′(`, 0, ê; q)} belongs in B(`, 0, e, 0; q). Hence, utility obtained by not
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defaulting when endowment is e must satisfy the inequality

u[c(`, 0, e; q)] + β wa′(`,0,e;q),0 ≥ u[c(a, ê, 0)− δ] + β wa′(a,be,0),0).

The utility obtained by defaulting when endowment is e is u(ê− δ) + β w0,1.

Suppose, to get a contradiction, that

u[c(`, 0, e; q)] + β wa′(`,0,e;q),0 ≤ u(ê− δ) + β w0,1.

Then,

u[c(`, 0, ê; q)− δ] + β wa′(a,be,0;q),0) ≤ u(ê− δ) + β w0,1.

Hence

u[c(`, 0, ê; q)− δ] + β wa′(a,be,0;q),0 − u[c(`, 0, ê; q)]− β wa′(`,0,be;q),0 <

u(ê− δ) + β w0,1 − u(ê)− β w0,1,

or,

u[c(`, 0, ê; q)]− u[c(`, 0, ê; q)− δ] > u(ê)− u(ê− δ).

Since u is concave, the last inequality implies c(`, 0, ê; q)− δ < ê− δ, or, c(`, 0, ê; q) < ê. But

this contradicts our supposition that c(`, 0, ê; q) ≥ ê. Hence u[c(`, 0, e; q)] + β wa′(`,0,e;q),0 >

u(e) + β w0,1.

Theorem 2. (The default set is a closed interval) Suppose ` < 0 and that D(`; q)

is nonempty. Let eL = inf D(`; q) and eU = sup D(`; q). Then [eL, eU ] ⊂ D(`; q).

Proof. Since D(`; q) is nonempty, by the Continuum Property of real numbers both eL and

eU exist. If eL = eU , the result is trivially true (the default set contains only one element

and (eL, eU) is empty). Suppose, then, that eL < eU . Let ê ∈ (eL, eU) and assume that

ê /∈ D(`; q). Then there is an e ∈ D(`; q) such that e > ê (if not, then eU = ê which

contradicts the assertion that ê ∈ (eL, eU)).Then, Lemma 4 implies c(ê, a, 0) > ê. Similarly,

there is an e ∈ D(`; q) such that e < ê. Then Lemma 5 implies c(ê, a, 0) < ê. But c(ê, a, 0)

cannot be both greater and less than ê. Hence, the assertion ê /∈ D(`; q) must be false and

(eL, eU) ⊂ D(`; q). By Lemma 2, eL and eU belong in D(`; q).

By Lemma 2, eL and eU belong in D(`; q). To see this, suppose, for instance, eu /∈
D(`; q). In this case, v(`, 0, eu; q)− u(eu)− βw0,1 > 0. Then continuity of v in e established
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in Lemma 2 and continuity of u imply that there exists an open ball around eu (call it bε(eu)

) such that ∀e ∈ (eL, eU) ∩ bε(eu), v(`, 0, e; q)− u(e)− βw0,1 > 0. This however contradicts

the fact that (eL, eu) ⊂ D(`; q).

This theorem is very useful for computational purposes. It allows us to approximate the

functions χ by various means and to find the function v very easily by looking for points

where the χ functions cross each other. It establishes that there are at most two points of

switching behavior. Also the updating of the value functions (which require integration of

the v functions) becomes relatively easy. In other words while iterating on the value function

we look for all assets levels for the set of at most two points where the agent is indifferent

between defaulting and not defaulting. The auxiliary lemmas that we use to prove this result

are also very useful in terms of how to search for the second switching point once we have

found one.

We now establish another property of default sets; namely that they are decreasing in `.

Lemma 6. Let `n < `m < 0. Then D(`m; q) ⊂ D(`n; q).

Proof. For `n < `m, we have B(`n, 0, e, 0; q) ⊂ B(`m, 0, e, 0; q) for all e. Hence χ(`n, 0, e, 0; q) ≤
χ(`n, 0, e, 0; q). Since χ(`n, 0, e, 1; q) = χ(`m, 0, e, 1; q) = u(e) + β w0,1(q) is independent of `,

the result follows from Theorem 2.

2.2 Unsecured Credit Industry

We assume that firms operate at zero cost and the industry is competitive with free entry.

Firms are free to make unsecured loans at any interest rate. To be consistent with our

discretization of the space state, we assume that firms offer contracts such that a borrower

aquires an asset position tomorrow of ` in exchange for q` ` units of the good today. We

assume that firms only observe the total asset position and the credit history of the household

which means that for all practical purposes a consumer could go to one or to many lenders

and get the same conditions.5 We further assume that households with a bad credit history

5In the U.S., credit card companies can purchase information about total credit card balances of their
customers at the same frequency as their firm specific balances. In practice, however, many companies choose
not to pay the costs. Furthermore, while earnings may be self-reported at the time of application, they are
typically not verified. Credit card companies often simply use average earnings for the area of issue.
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are prevented from borrowing until their history is wiped clean under the rules of the Chapter

7 bankruptcy code.6

The profits of a firm that acquires a liability of size ` in exchange for giving q` ` to a

measure of agents of size y (so that the law of large numbers operates and there is no firm

specific uncertainty) are given by

π[y; `, q`] = y [1− p`] ` − y `
q`

q̂
(12)

where p` is the fraction of households with asset position ` that default.7 Note that profits

are proportional to the size of the firm since there are constant returns to scale. Also note

that there is no interaction between different debt levels which simplifies the analysis.

Equilibrium requires that firm profits are zero. The firm will not pay a higher than market

price for a size ` liability since it can acquire as much as it wants at market price q` `. Also

it will not be able to acquire any of those liabilities at a lower price since borrowers have

a better deal. Therefore, the equilibrium condition is that profits are zero in equilibrium,

which implies

q`(p) = q̂ (1− p`) for all ` ∈ L−−. (13)

Note that if for a particular asset position, ˜̀ , all households default, then the only

equilibrium is to set qè= 0. However, there is an absolute level of debt that poses a natural

upper bound; that implied by having the maximum level of debt that could be paid by the

luckiest household with the lowest possible interest rate. This is e
1−q̂

. This lower bound on

assets is the polar opposite of the one in Aiyagari (1994) and Athreya (1999). Since we permit

default, `min is the maximum possible debt level consistent with potential repayment.8 We

take the upper bound `max to be arbitrarily large so that it will not affect the equilibrium.9

6Thus, we assume there is no renegotiation of contracts following a default. We abstract from the
possibilities induced by filing under Chapter 13. Approximately 90% of Chapter 13 debt was not repaid in
1997 (WEFA data).

7Firms can operate by lending different amounts of debts so we can think of different loan sizes as different
firms. If the firm is not the sole lender, it still poses an interest rate that depends on the household’s total
debt, and it will share the loan (and hence the default) with other firms. In this case we should interpret
y not as the measure of houeholds that will have liability `, but at the fraction of the business held by the
firm of the measure of households that will have asset position `. The profits are given exactly by the same
expression.

8This allows us to decompose default into what the popular press (e.g. Kilborn, P. “Out of a Swamp of
Debt, a Rocky Path”, New Your Times, April 1, 2001, p. 1) often terms “voluntary” or “building their own
traps” versus “involuntary” or “hard luck” bankruptcies.

9Under certain conditions, such as low interest rates (q̂ > β), others Huggett (1993) and Aiyagari (1994)
have shown that `′(`max, h, e) < `max for all e and h, so that an upper bound for their environment exists.
We plan to show this in future work and appeal to their result for now.
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3 Equilibrium

The proof of the existence of a competitive equilibrium in the unsecured credit industry can

now be explained simply. We are looking for a vector of probabilities of default p defined

for each liability level such that given the discounted price schedule q implied by the zero

profit condition evaluated at probabilities p , the optimization problem of the households

generates the original default probabilities.

Definition 2. (D∗, q∗, p∗) constitutes a competitive equilibrium in the unsecured credit in-

dustry if (i) given p∗, zero profits implies q∗` = q̂ (1 − p∗`), (ii) given q∗, household op-

timization χ∗(`, 0, e, d; q∗) implies D∗(`; q∗), and (iii) given D∗and q∗, consistency requires

p∗` = µ[D∗(`; q∗)], ∀`.

It is obvious from the sequential nature of this definition that the key element in es-

tablishing the existence of equilibrium is finding a fixed point of part (iii). To this end we

provide the following definitions.

Definition 3. Let P = {p ∈ RNL : p`n ≥ p`n+1, p`n ∈ [0, 1] for `n < 0 and p`n = 0 for

`n ≥ 0}.

where NL denotes the cardinality of L.

Definition 4. Let F be a function defined on P such that:

F (p)(`) = µ[D(`; q(p))] (14)

In order to prove the existence of an equilibrium vector of default probabilities, we have

two possible routes. One is to apply Tarski’s fixed point theorem for which we need the

operator to be nondecreasing. The other route is to apply Kakutani for which we need the

operator to be upper hemicontinuous. We choose the former route since we have not yet

established hemicontinuity.

Proposition 1. (Tarski) If f(x) is a nondecreasing function from a non-empty complete

lattice X into X, the set of fixed points of f is nonempty.

To this end, we first establish:

Lemma 7. P is a complete lattice.
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Proof. To show that P is a complete lattice we need to show that the supremum and infimum

of any subset Π of P is contained in P. For each ` ∈ L, define the sets πS
` = supp∈Π p` and

πI
` = infp∈Π p`. Since p` ∈ [0, 1] for each `, πS and πI exist for each `. Clearly, both πS and πI

are bounded. Since every element of P is nonincreasing, it follows that supp∈Π p` ≥ supp∈Π p`′

and infp∈Π(`) ≥ inf p`′ for ` < `′. Hence, both πS and πI are non-increasing. Also, since p` = 0

for ` ≥ 0 for every p ∈ P, πS
` = πI

` = 0 for ` ≥ 0. Thus, πS and πI belong in P.

The following assumption is necessary to prove our results. Later in this section we will

show that it is possible to satisfy this assumption for certain parameter values.

Assumption 2. (Monotonicity of Default Sets): If p0, p1 ∈ P and p1 ≥ p0 then

D[`; q(p0)] ⊆ D[`; q(p1)].

The next lemma establishes that the operator takes bounded, increasing functions into

itself.

Lemma 8. Under Assumption 2, (i) F (P ) ⊆ P and (ii) F (p) is an increasing function of

p.

Proof. (i) Note that for all ` and q, µ[D(`; q)]∈ [0, 1]. Note also that Lemma 6 insures that

the default probabilities are non-decreasing. Finally, nobody defaults with positive assets.

(ii) Consider p0, p1 ∈ P and p1 ≥ p0. Let ` < 0. By assumption 2, µ[D[`; q(p0)]] ≤
µ[D[`; q(p1)]]. Therefore F (p1)(`) ≥ F (p0)(`).

The main existence result that we state next results from a straight application of Tarski’s

theorem to the operator F .

Theorem 3. (Existence) There exists a competitive equilibrium.

Now we must establish that there are parameters such that Assumption 2 is not vacuous.

At this point, we are only able to prove the result for a very special parameterization.

Namely, λ = 1 or a household which defaults maintains a bad

Lemma 9. Let p0, p1 ∈ P. If p1 ≥ p0, then w∗
`,h(p

1) ≤ w∗
l,h(p

0) for all ` ∈ L.
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Proof. Since p1 ≥ p0, q∗(p1) ≤ q∗(p0). Since q∗(p0) = q∗(p1) = q̂ for all ` ≥ 0,then any feasible

{c, `′} pair in the q∗(p1) dynamic program is also feasible in the q∗(p0) dynamic program.

Hence w∗
`,h(p

1) ≤ w∗
l,h(p

0).

Theorem 4. (Non-empty parameter space)For λ = 1, Assumption 2 is satisfied.

Proof. Let p0, p1 ∈ P and p1 ≥ p0. Since q∗(p0) = q∗(p1) = q̂ for all ` ≥ 0, λ = 1 im-

plies that w∗
`,1(p

0) = w∗
`,1(p

1) for all 0 ≤ ` ≤ `max. In particular, w∗
0,1(p

0) = w∗
0,1(p

1). Now

consider ` < 0 .Since by Lemma 9, it follows that χ∗(`, 0, e, 0; q∗(p1)) ≤ χ∗(`, 0, e, 0; q∗(p0)).

Therefore, v∗(`, 0, e; q∗(p1)) ≤ v∗(`, 0, e; q∗(p0)). Hence v∗(`, 0, e; q∗(p0)) ≤ u(e) + βw∗
0,1(p

0)

⇒ v∗(`, 0, e; q∗(p1)) ≤ u(e) + βw∗
0,1(p

1). Hence D∗[`; q∗(p0)] ⊆ D∗[`; q∗(p1)].

3.1 Non stationary equilibria

So far we have assumed that the equilibrium is stationary. Now we verify that indeed all

equilibria are stationary. But this is immediate from the arguments that we have had above.

Nowhere in the discussion did we use or impose constraints on the distribution of agents. In

fact prices are independent of the distribution of agents. This means that we have shown

equilibrium for all initial distributions of agents over assets (to make this result hold we may

need to interpret the storage technology as capable of dealing with negative quantities, or

to interpret the economy as a small open economy).

We then may use the results of Hopenhayn & Prescott (1992) to ensure the existence of

a unique stationary (long run) distribution regardless of initial conditions.

4 Bankruptcy in the U.S.

The U.S. legal system considers several bankrupcy options. In particular, there are two

possibilities of bankruptcy for households known as Chapter 7 and Chapter 13. In this

paper we are interested in those defined by Chapter 7. The procedure goes like this. A

household with debts goes to court and files for bankruptcy. Upon successful completion

of the process, the household is left with a certain maximum amount of assets that varies

by state.10 But its debts disappear and the creditors lose any rights to recover assets. The

10It does vary a lot. In Texas and Florida bankrupt households can keep a house of any size. In Virginia
they can keep a pure breed among other items. In Iowa only a few hundred dollars.
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household gets to keep its labor earnings, and it cannot file again for seven years. Chapter 13

involves a rescheduling of the debt and the payments over time, and very often leads to non

payments and Chapter 7 filings. In this model we are thinking of bankruptcy as implied by

the rules of Chapter 7, which are the ones that wipe out the debts. The number of households

that file for Chapter 7 bankruptcy is large and has been growing (see below). For instance,

in 1998, 1,007,922 households filed for bankruptcy under Chapter 7 while 1,379,249 filed

under all chapters.

5 Calibrating the model to U.S. data

We calibrate this model to the most important features of the U.S. economy. We do not

design our model economies to include all households in the U.S. economy. We take out of

the sample households that are too old, too rich, or too much in debt. The reasons for these

exclusions are:

• We exclude those households older than 65 because they are likely to be retired, and

living off their social security and/or their savings. Our model does not include retire-

ment, so it would not be capable of matching the characteristics of these households.

• We exclude those households in the top quintile of the distribution of wealth. It is well

known that it is hard to account for the wealth inequality in the U.S.11 and in this

project we are not interested in replicating the whole distribution of wealth, instead

we are interested in those households with little wealth. Excluding the wealthiest 20%

of under 65 households allows us to achieve a mapping to the data im a simpler way.12

• Finally, we also exclude those households with debts that are larger than yearly average

earnings. In the model it is very hard to get large amounts of debt. Certainly, it is

hard to get debt amounts larger than average earnings. Those households with debts

that are larger than this level acquired those debts probably not in unsecured credit

markets, but in other contexts such as medical bills or debts due to failed businesses,

where the creditors are in different circumstances than those in the unsecured credit

market.

11See Quadrini & Rı́os-Rull (1997) for a discussion.
12See Castañeda, Dı́az-Giménez, & Ŕıos-Rull (2000) for a quantitatively sound theory of wealth inequality.

Although theoretically, we could follow the procedures of Castañeda et al. (2000) to account for the wealth
inequality in the U.S., this would have required the enhancing of the model along several dimensions as
Castañeda et al. (2000) does. This is computationally quite expensive, and from our point of view, not very
relevant for our purpose of understanding unsecured debt.
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The main statistics of the so chosen sample are in Table 1. They describe the wealth to

earnings ratio, the size of negative assets and the Gini Indices for earnings and for wealth

within this sample.

Table 1: Targets for the baseline model economy

Target Value

Average Earnings 100.0
Total assets 153.0
Negative assets 2.7
Earnings Gini 0.44
Wealth Gini 0.63
Percentage of defaulters 0.50

Figure 1 shows the time series of the percentage of households that filed for bankruptcy

since 1960 under all Chapters. In 1998, 73% of the filers did so under Chapter 7. As we can

see this number varies between 0.2% and 1.4%, with a notorious increase since 1985, so it

is hard to think of a suitable stable target. Chakravarty & Rhee (1999) report the reason

for filing stated by those that filed for bankruptcy in the PSID between 1984 and 1995. We

reproduce their partition in Table 2. Of the reasons argued we identify the first three, loss of

job, marital distress, and credit missmanagement as motives for defaulting that our model

should account for. Two thirds of all defaulters claim these reasons, while the other third

claim reasons that essentially imply that they became indebted without being approved by

a credit institution. They claimed health care costs and lawsuits and harassment. Since

hospitals have a limited ability to deny treatment and law suits are not preapproved we are

not considering at this stage these motives for default as part of our theory. In light of all

these reasons, we target 0.50% of households defaulting every year.

Table 2: Reasons adduced for defaulting

Reason Percentage

Loss of job 12.2
Marital Distress 14.3
Credit Missmanagement 41.3
Health Care 16.4
Lawsuits and Harassment 15.9

These targets are difficult to achieve within the confines of the model described above.

The reason is simple. We want simultaneously to have many defaulters and a sizeable
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Figure 1: Percentage of households that file for bankruptcy

amount of debt. However, households will only default if it is not too painful, and debt

can only be sustained by the fear of the pain induced by defaulting. Typically, whatever

moves the model towards higher indebtdedness also moves it towards fewer bankruptcies (and

viceversa). It turns out that within the context of this model and standard parameterization,

the quantitative targets that we have posted are incompatible.

For this reason, we introduce two extensions to the basic model to achieve a larger amount

of debt without reducing the number of defaulters. The two features that we add to the

model are demographic turnover and a Markov process for earnings that we describe in

section 6. Then, we describe the properties of the so calibrated economy in section 7.
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6 Extending the model

We introduce demographic turnover and a Markov process in earnings; two features that

increase both the default rate and the amount of indebtedness. Demographic turnover

generates a relatively large number of households with close to zero wealth which makes many

households prone to indebtebtedness. A Markov process on earnings allows for circumstances

where agents may care to default given the outlook. We first show how to model demographic

turnover in section 6.1 and we then look at how to model a Markov process for earnings in

section 6.2.

6.1 Demographic turnover

Assume that the agents die with probability δ every period and that a measure δ of agents

are born every period. Moreover, assume that there are perfect annuities markets so that

agents can get insurance against living too long and that newborns are born with zero wealth

and clean credit histories.13 The household’s problem depicted in equations (5)- (7) changes

very slightly. The objective function of the agent now discounts the future at rate β(1− δ).

The budget set now has q(`′) `′
1−δ

to account for the fair annuities.

Obviously, the law of motion of the population also differs to account for the demographic

turnover: a fraction δ of all assets types disappears every period and a measure of size δ and

type (` = 0, h = 0) enters the economy every period.

6.2 Markov processes for earnings

Let the distribution of earnings be given by Fη(e). Let η be a Markov chain with transition

Γη,η′ . Now earnings are also a Markov process. This way of proceeding, rather than the more

conventional one of directly posing a Markov process on e has the advantage of allowing for a

parsimonious way of solving the agents problem. The domain of earnings is still continuous,

but the persistent structure is a simple Markov chain. This introduces some minor changes

in the agents problem. Now the state variables also include η. Accordingly, η becomes an

argument of functions w, χ, and v. Additionally, the conditional expectations of the agents

are taken now with respect to η. Variable η is publicly observable, and the interest rate and

default probabilities are both indexed by η. These changes are really cosmetic, and none of

13These annuities markets operate like death insurance markets, see Rı́os-Rull (1996) for details of how to
implement them.
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the arguments used to characterize the solution to the agent’s problem change.

7 The baseline model economy

We report the main properties of the baseline model economy and their data counterpart in

Table 3.

Table 3: The baseline model economy

Statistic Model Data

Average length of punishment 7 years 7 years
Earnings 100.00 100.00
Total assets 153.00
Negative assets 2.70
Percentage of Defaulters 0.411 0.475
Earning Gini .44
Wealth Gini 0. 0.63
Total Defaulted amount 0.142 0.148

8 Changing the bankruptcy laws

In this section we put the model to work by asking what would happen if instead of having

a seven year punishment period to defaulters, the punishment was six years. The long

run implications of the answer are in Table 4. The table shows not only the steady state

comparisons, but also the welfare numbers (These numbers are not yet available). These

welfare numbers are the result of asking what is the average subsidy that agents require to

be indifferent between switching to the six year policy and not switching.

9 Assessing the value of credit

Another interesting question is, “What is the value of credit?” To answer this question we

compute the stationary equilibrium of a model with no credit possibilities. Then we open

the economy for credit under the conditions established for the U.S. law and compare the

allocations under the two systems. Table 5 shows the outcomes (still to be computed).
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Table 4: Changing the punsihment from seven to six years

Statistic 7 yrs 6 yrs

Prob(h′ = 0|h = 1) in % 14.286 16.667
Earnings 100.00 100.00
Total assets 153.216 153.821
Negative assets -2.578 -2.513
Total Defaulted amount 0.142 0.148
Percentage of Defaulters 0.411 0.475
Percentage of Delinquent 2.024 1.946
Wealth Gini 0.636 0.634
Average Welfare from the change

Table 5: Introducing Credit

Statistic No credit 7 years

Prob(h′ = 0|h = 1) 0. 0.1429
Total assets 0. 0.
Negative assets 0. 0.
Gini Index 0. 0.
Total amount defaulted 0. 0.
Fraction of delinquent 0.% 0.%
Fraction of Defaulting 0.% 0.%
Average Welfare from the change
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10 Conclusion

In this paper we have constructed a model of credit and default. The environment matches

the U.S. bankruptcy laws where default is unilaterally chosen by borrowers, and where there

are a large number of defaulters. We characterized the agents problem showing that the

default set is an interval of earnings; while is often the case that households default when

they are too poor, there are also situations where the household is too poor to default

and instead keeps borrowing. We also showed existence of equilibrium. We calibrated the

model to match important statistics of the U.S. and we asked various important normative

questions. Our model allows us to deal not only with steady states but also with transitions.

Extensions of this model may be used to explore the response of credit to monetary

shocks and hence to study how credit fares over the cycle.
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Appendix

A Proofs

B Computational Procedures

To solve the problem we use the following approach.

1. Guess a credit limit `min and an initial discount price q = q̂.

2. Given the discount price q, solve the problem of the household. Find the value function
and default intervals for every ` ∈ L.

(a) We solve it by approximating functions v with splines, which allows us to find the
defaulting interval.

3. Compute the new discount prices that yield zero profits. If equal go to 4. If different,
update the discount price and go to 2.

4. Verify that q(`min) = 0. If not, decrease `min postulate a q for that increased credit
limit and go to 2.

5. Compute the stationary distribution by successive approximations and compute its
relevant statistics.
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