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ABSTRACT

We pay human subjects to be the policy maker
and the public in an expectational Phillips curve
model. Policy makers often find ways to achieve
the time-inconsistent optimal inflation rate, at least
for a while. But backsliding toward the sub-optimal
Nash (time consistent) inflation rate also occurs.
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and the seminar participants at the University of Amsterdam, Califor-
nia Institute of Technology and University of California at Los Angeles
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1. Introduction

This paper describes experiments with human subjects in an en-
vironment that provokes the time consistency problem of Kydland and
Prescott (1977). There is an expectational Phillips curve, a single pol-
icy maker able to set inflation up to a random error term, and members
of a public who forecast the inflation rate. The policy maker knows the
model. Kydland and Prescott considered a one-period model. They
described how inability to precommit to an inflation policy causes the
policy maker to set inflation higher than if it can precommit. With
repetition,1 the availability of history-dependent strategies multiplies
the range of equilibrium outcomes. Some are better than the one-
period time-consistent one. Others are worse.

Commentators including Blinder (1998) and McCallum (1995)
assert that in practice the time consistency problem can be solved
through some unspecified process that, in the terminology of an Amer-
ican sports shoe advertisement, lets the monetary authority ‘just do
it’. Here ‘it’ is to choose the optimal or Ramsey target inflation rate.
Although reputational macroeconomics provides no support for the
‘just do it’ phrase as a piece of policy advice,2 the range of outcomes
predicted by that theory is big enough to rationalize ‘just do it’ be-
havior. The large set of outcomes motivated us to put human subjects
inside a Kydland-Prescott environment.

We paid undergraduate students to perform as policy makers and
private forecasters in a repeated version of the Kydland-Prescott econ-
omy. A single policy maker repeatedly faces N forecasters whose av-
erage forecast of inflation positions an expectational Phillips curve.

Inspired by the theoretical literature, we ask the following ques-
tions: (1) Emergence of Ramsey: Is there a tendency for the opti-
mal time-inconsistent (Ramsey) one-period outcome to emerge as time
passes within an experiment? (2) Backsliding: After a policy maker
has nearly achieved Ramsey inflation, does inflation ever drift back

1 See Barro and Gordon (1983).
2 The theory identifies multiple systems of expectations about its

behavior that the policy maker will want to conform. It provides
no guidance about how to switch from one system of expectations to
another.
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toward Nash inflation? (3) Focal points: Are there other ‘focal points’
besides the Nash and Ramsey inflation rates? (4) History-dependence:
Is there evidence of ‘carry over’ across sessions in agents’ forecasts of
inflation? (5) Inferior forecasting: Are there sometimes systematic
average errors in forecasting inflation? We answer yes to the first four
questions and no to the last one. The positive answer to question
(1) provides support for the ‘just do it’ position, but qualified by the
positive answer to question (2).

Questions (1) and (2) are inspired by Barro and Gordon (1983)
and Sargent (1999). Barro and Gordon described a reputational equi-
librium that could sustain repetition of the Ramsey outcome. Sargent
pointed out that Phelps’s (1967) control problem for the monetary
authority under adaptive expectations for the public would eventually
lead the monetary authority to choose repeated Ramsey outcomes.
However, Sargent also showed that only repetition of the Nash equi-
librium outcome is a self-confirming equilibrium3 and that the ‘mean
dynamics’ of least squares learning on the part of the government
drives the system toward the self-confirming Nash equilibrium. The
mean dynamics are essentially a differential version of ‘best response
dynamics’. They summarize and formalize the forces alluded to in
Kydland and Prescott’s (1977) heuristic sketch of an adaptive learn-
ing process that causes the government to depart from the Ramsey
outcome and gradually approach the self-confirming Nash equilibrium
outcome. We call ‘backsliding’ the process of moving away from a
Ramsey outcome, however attained, toward a Nash equilibrium.4

3 A self-confirming equilibrium is a regression of unemployment on
inflation that reproduces itself under a government decision problem
that takes the regression as invariant under intervention and that
trades off inflation against unemployment. See Sargent (1999) for
details.
4 John B. Taylor (see Solow and Taylor (1999)) warns against the

prospect of backsliding because he thinks that standard time series
tests of the natural rate hypothesis will soon start to reject it if the
persistence of inflation continues to decrease as it has in recent years
in the U.S.
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2. The environment

Our basic model is Kydland and Prescott’s. Let (Ut, yt, xt, x̂t)
denote the unemployment rate, the inflation rate, the sytematic part
of the inflation rate, and the public’s expected rate of inflation, respec-
tively. The policy maker sets xt, the public sets x̂t, and the economy
determines outcomes (yt, Ut).
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Figure 2.1: The Nash equilibrium and Ramsey
outcome for the Kydland-Prescott model.

The data are generated by the natural unemployment rate model

Ut = U∗ − θ (yt − x̂t) + v1t (2.1a)
yt = xt + v2t (2.1b)
xt = x̂t, (2.1c)

where θ > 0, U∗ > 0, and vt is a (2 × 1) i.i.d. Gaussian random vec-
tor with Evt = 0, diagonal contemporaneous covariance matrix and
Ev2

jt = σ2
vj . Here U∗ is the natural rate of unemployment and −θ

is the slope of an expectations-augmented Phillps curve. According
to (2.1a), there is a family of Philips curves indexed by x̂t. Condi-
tion (2.1b) states that the government sets inflation up to a random
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term v2t. Condition (2.1c) imposes rational expectations for the pub-
lic. It embodies the idea that private agents face a raw forecasting
problem: their payoffs vary inversely with their squared forecasting
error. System (2.1) embodies the natural unemployment rate hypoth-
esis: surprise inflation lowers the unemployment rate but anticipated
inflation does not.

2.1. Nash and Ramsey equilibria and outcomes

The literature focuses on two equilibria of the one-period model.
Both equilibria assume the government knows the correct model. Called
the Nash and the Ramsey equilibria, they come from different timing
protocols. The Ramsey outcome is better than the Nash outcome,
symptomatic of a time inconsistency problem.

To define a Nash equilibrium, we need

Definition 2.1. A government best response map xt = B(x̂t) solves
the problem

min
xt

E
(
U2

t + y2
t

)
(2.2)

subject to (2.1a), (2.1b), taking x̂t as given.

The best response map is xt = θ
θ2+1U∗ + θ2

θ2+1 x̂t. A Nash equilibrium
incorporates a government best response and rational expectations for
the public:

Definition 2.2. A Nash equilibrium is a pair (x, x̂) satisfying (a)
x = B(x̂) , and (b) x̂ = x. A Nash outcome is the associated (Ut, yt).

Definition 2.3. The Ramsey plan xt solves the problem of minimiz-
ing (2.2) subject to (2.1a), (2.1b), and (2.1c). The Ramsey outcome is
the associated (Ut, yt).

A Ramsey outcome dominates a Nash outcome. The Ramsey plan
is x̂t = xt = 0 and the Ramsey outcome is Ut = U∗−θv2t+v1t, yt = v2t.
The Nash equilibrium is x̂t = xt = θU∗ and the Nash outcome is
Ut = U∗− θv2t + v1t, yt = θU∗+ v2t. The addition of constraint (2.1c)
on the government’s in the Ramsey problem makes the government
achieve better outcomes by taking into account how its actions affect
the public’s expectations. The superiority of the Ramsey outcome
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reflects the value to the government of being able to commit to a
policy before the public sets expectations.

3. Repetition

We design our experiments to implement an infintely repeated
version of the Kydland-Prescott economy. The objective of the mon-
etary authority is to maximize

J = −E0 (1− δ)
∞∑

t=0

δt
(
U2

t + y2
t

)
, δ ∈ (0, 1) . (3.1)

The objective of private agents continues to be to minimize the error
variance in forecasting inflation one period ahead.

Three types of theories apply to this setting.

(i.) Subgame perfection. Reputational macroeconomics, also called
the theory of credible or sustainable plans,5 studies subgame per-
fect equilibria with history-dependent strategies. The theory dis-
covers a set of equilibrium outcomes. For a big enough discount
factor δ, this set includes one that repeats the Ramsey outcome
forever and others that sustain worse than the one-period Nash
outcome. One sensible reaction is that because it contains so
many possible equilibria, the theory says little empirically.

(ii.) Adaptive expectations (1950’s). Suppose that the government
believes that the public forms expectations by Cagan-Friedman
adaptive expectations:

x̂t = (1− λ) yt + λxt (3.2)

or x̂t = (1 − λ)
∑∞

j=0 λjyt−j−1, where λ ∈ (0, 1). A version of
Phelps’s (1967) control problem is to maximize (3.1) subject to
(2.1a), (2.1b), and (3.2). The solution of this problem is a feedback
rule

xt = f1 + f2x̂t. (3.3)

5 See Stokey (1989) for a brief survey.
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It can be shown that that with a high enough discount factor,
the coefficients in (3.3) take values that make the government
eventually push inflation toward the Ramsey outcome. Cho and
Matsui (1995) refined this idea in the context of a broad class of
expectations formations mechanisms for the public that satisfy the
same ‘induction hypothesis’ that adaptive expectations exhibits:
if sustained long enough, a constant inflation rate will eventually
come to be expected by the public.6

(iii.) Adaptive expectations (1990’s) Sargent (1999) shows that a
self-confirming equilibrium (see Fudenberg and Levine (1995))
of the Kydland-Prescott model yields the pessimistic Nash equi-
librium outcome. Sims (1988), Sargent (1999), Cho and Sar-
gent (1999), and Williams (1999) perturb the behavior rules of
that self-confirming equilibrium by imputing to the policy maker
doubts about model specification that cause him to use a constant-
gain learning algorithm. Those papers show that the result-
ing model has both (1) ‘mean dynamics’ usually propelling it
toward the self-confirming equilibrium, and (2) ‘escape dynam-
ics’ occasionally expelling it toward the Ramsey outcome. Sam-
ple paths display recurrent abrupt stabilizations prompted by
experimentation-induced discovery by the monetary authority of
an approximate natural rate hypothesis government, followed by
gradual backsliding toward the (inferior) self-confirming equil-
brium.

6 Cho and Matsui (1999) study a version of the repeated model
with alternating choices by the government and the public. They
find that, depending on relative discount factors, the one period Nash
outcome is excluded as an equilibrium outcome, and that a narrow
range of outcomes near Ramsey can be expected under some parameter
settings.
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4. Experiments

4.1. Design

A group of N +1 students composes the economy; we set N equal
to 3, 4 or 5. The first N students form the public. Their decision
is to forecast the inflation rate for each period of the experiment.
Call agent i’s forecast x̂it and let x̂t be the average of the citizens’
forecasts. Citizens receive payoffs that rise as their session-average
squared forecast errors fall. Agent i’s payoff at the end of time period
t is given by:

−.5 (yt − xi,t)
2
.

Student N + 1, chosen at random, is the policy maker. Each period,
student N + 1 sets a target inflation rate, xt. A random number
generator sets v2t and the actual inflation rate equals yt = xt + v2t.
Unemployment is then generated by the Phillips curve (2.1a). Student
N +1’s payoff varies inversely with the session-wide average of U2

t +y2
t

and is given by:
−.5

(
U2

t + y2
t

)
.

The same student remains the policy maker throughout all sessions
within a single experiment. Sessions within an experiment are sepa-
rated by a stopping time (see below).
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4.2. Knowledge

The policy maker knows:

• The true Phillips curve (2.1).

• The existence of private agents who are trying to forecast its
action.

• The histories of outcomes (yt, Ut) in the current experiment up
to the current time.

The private forecasters know:

• The history of inflation and unemployment, including prior ses-
sions of the current experiment. At the beginning of an economy, there
is no history. The private forecasters do not know the structure of the
economy. They know that a policy maker sets inflation up to a random
term.

4.3. Physical details

Subjects sit at computer terminals and are isolated from one an-
other. They receive written instructions at the beginning of each ex-
periment. Appendices A and B reproduce the instructions. All exper-
iments were conducted at the Micro computer lab of the Simon Fraser
University, Burnaby, Canada. Subjects were SFU undergraduate eco-
nomics majors. They were recruited for 2 hour experiments but were
not told in advance how many sessions would be played during each
experiment. No subject was used in more than one session.

We conducted a total of 12 experiments, 3 in April 1998 and 9
between February and April 1999.

9

4.4. Stopping rule

We followed Duffy and Ochs (1999) and Marimon, McGrattan,
and Sargent (1989) in using a random stopping rule to implement an
infinite horizon and to discount future payoffs. At the end of an exper-
imental period, the computer program drew a random number from a
uniform distribution over [0, 1]. If this random number was less than
0.98, the experimental session would continue for one more period. If
the number was greater than 0.98, the session was terminated. An
upper bound on the duration of an individual session was set at 100
time periods.

4.5. Earnings

Subjects received $10 payment (Canadian funds) for completing
a 2 hour experiment. They could also earn a prize of additional $10.7

Whether or not they earned a prize was determined in the following
way. At the end of each experimental time period, the number period
points was calculated by adding 100 points to the subject’s payoff. If
this number was less than 0, it was truncated to 0. Then, the number
total points was calculated by adding up all period points earned in a
session. Finally, the number maximum points was calculated as the
product of 100 and the number of session periods. At the end of a
session, a probability of winning the prize, πwin, was computed as the
ratio between the total points and the maximum points.

Once an experiment was over, the computer program chose one
of the sessions at random and chose a number, rand, from a uniform
distribution over [0, 1]. If πwin of the selected session was greater than
rand, a subject earned additional $10.

The parameter values used in the experiments were: U∗ = 5, θ =
1, and discount parameter δ = 0.98. Two sets of values of σ were used,
σ ≡ σ1 = σ2 = 0.3 and σ ≡ σ1 = σ2 = 0.03. In addition to the setting

7 We used a version of the Roth-Malouf binary lottery to deter-
mine actual cash payments with the intention to control for subjects’
differing attitudes towards risk.
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of σ, an information variable (yes or no) records whether the policy
maker was told the value of x̂t from the previous period.8

We label each experiment as an ‘economy’ that consists of a set
of sessions with the same policy maker and group of forecasters. Each
economy has several sessions.

Table 4.1 summarizes the treatment variables across economies.9

Table 4.1: Design of Experiments

experiment sessions information σ N

1 3 * .03 4

2 2 ** .03 4

3 3 *** .3 5

4 2 yes .3 3

5 2 yes .3 4

6 9 yes .3 4

7 6 yes .3 4

8 9 yes .3 4

9 4 yes .3 4

10 2 yes .3 4

11 9 yes .3 4

12 9 yes .3. 4

8 We used two alternative scales for the payoffs for the forecasters.
For experiments 1-8, we used −.5(yt−x̂it)2, while for experiments 9-12
we used −5(yt − xit)2. The second scale was introduced in order to
increase the weight of poor forecasts in the calculation of πwin.
9 In Table 4.1, (*) denotes (no, yes, yes), (**) denotes (no, yes),

and (***) denotes (no, yes, yes) in successive sessions.
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5. Outcomes

Table 5.1 and Fig. C.1 – Fig. C.16 describe the outcomes. Each
economy corresponds to one set of N+1 students. Fig. C.13–Fig. C.16
contain evidence about the heterogeniety of the citizens’ expectations
of inflation. An economy contains several sessions, determined by the
realization of a random variable that terminated the session. The
various panels in Fig. C.1–Fig. C.12 correspond to different sessions
within the same group of students.

The columns of Table 5.1 report the means and standard devia-
tions of xt, x̂t, yt, Ut,−.5(U2

t + y2
t ) across all sessions for each group.

For the parameter values U∗ = 5, θ = 1, the population values for these
variables at the Nash equilibrium are 5, 5, 5, 5,−25. For the Ramsey
outcome, the values are 0, 0, 0, 5,−12.5.
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Table 5.1: Means and standard deviations of outcomes.

Economy x x̂ y U gov. payoff

Nash 5 5 5 5 -25

Ramsey 0 0 0 5 -12.5

1 4.1173 4.1497 4.1125 5.0381 -22.4196

(1.5267) (1.4923) (1.5298) (.4671) (5.2823)

2 1.4937 1.5047 1.4888 5.0183 -16.5486

(2.2521) (2.2286) (2.2522) (0.8135) (7.2296)

3 1.1266 1.1455 1.1162 5.0263 -14.0370

(1.1115) (1.0726) (1.1347) (0.5334) (3.1575)

4 1.3326 1.4218 1.2930 5.1438 -14.5550

(0.7794) (0.8094) (0.8360) (0.5383) (2.8898)

5 2.0143 2.2536 1.9998 5.2495 -18.0040

(1.7884) (1.7682) (1.8025) (1.1115) (7.5711)

6 1.9196 2.0600 1.9086 5.1636 -21.4142

(2.8144) (2.3279) (2.8319) (2.1278) (26.5034)

7 1.3561 1.4444 1.3080 5.0956 -14.7334

(1.1482) (1.1892) (1.1962) (0.6071) (3.8102)

8 0.7879 0.8354 0.7582 5.0545 -13.5492

( 0.7897) (0.9031) (0.8551) (0.4979) (3.0613)

9 5.8802 5.8129 5.8274 4.9490 -31.8680

(1.9699) (1.7939) (1.9725) (1.1919) (8.7549)

10 2.4640 2.5443 2.4158 5.1006 -20.8438

(2.4087) (2.0490) (2.4543) (1.9718) (11.6304)

11 3.6396 3.6664 3.6158 5.0216 -19.7498

(0.7379) (0.7217) (0.7873) (0.7706) (4.6579)

12 2.6957 2.7048 2.6659 5.0161 -18.8765

(1.7212) (1.1878) (1.7263) (1.5879) (15.8123)

5.1. Patterns

Table 5.2 summarizes what we see to be the patterns in Fig. C.1–
Fig. C.16. The column labels mean the following. ‘Ramsey’ indicates
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Table 5.2: Patterns of results

Economy Ramsey back- other experi- rank

sliding focal mentation

1 x 11

2 x 5

3 x x 2

4 x 3

5 x x x 6

6 x x y x 9

7 x 4

8 x 1

9 y 12

10 x x x 10

11 x 8

12 x 7

that the policy maker pushes the system to Ramsey at least for a sub-
stantial length of time (e.g., see Fig. C.1 and Fig. C.2 for economies
1 and 2). ‘Backsliding’ indicates a resurgence of inflation after having
attained Ramsey (e.g., see Fig. C.3 and Fig. C.6). ‘Other focal’ indi-
cates sustained inflation at values distinct from the Ramsey or Nash
inflation (e.g., see Fig. C.9). ‘Experimentation’ indicates the presence
of episodes in which the monetary authority seems to be engaging
in purposeful experimentation. ‘Rank’ denotes the rank order of the
experiments in terms of the economy-wide average payoff for the mon-
etary authority. An ‘x’ signifies strong evidence for the pattern in
question, a ‘y’ weaker evidence, and a blank no evidence.

We interpret the results as follows.

♥ Heterogeneity of expectations across citizens is largest
at the beginning of an experiment. It also tends to grow
at the start of a new session within an experiment.

♥ Fig. C.1–Fig. C.12 indicate that on average the public’s
forecasts of inflation are good and do not contain sys-
tematic forecast errors.

♥ In nine of the twelve experiments, the policy maker pushes
inflation to near the Ramsey value for many periods.
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♥ Backsliding occurs in four of twelve economies.
♥ The policy maker experiments in two of twelve economies.
♥ Economy 9 has a bad or indifferent policy maker.
♥ Most of the transitions from Nash to Ramsey are smooth.

Few if any have the drama of the Volcker-like rapid
disinflations produced by the escape route dynamics of
Cho and Sargent (1999), Sargent (1999), and Williams
(1999). Depending on parameter values, they could re-
semble a pattern predicted by Phelps (1967) and Cho
and Matsui (1995). However, we now show that the sta-
bilizations are too slow to be explained in this way, at
least if policy makers are assumed to know the rate at
which the public is adapting its expectations.

6. Adaptive expectations

We estimated the parameter λ in the adaptive expectations model
(3.2). We estimated the model both for each individual within an ex-
periment, pooling across sessions,10 and for the average of households
within an experiment, pooling across sessions.11 For econometric rea-
sons, we wrote the model in the form

x̂it = (1− λi)
t−1∑

j=0

λj
i yt−1−j + ηiλ

t + uit, (6.1)

where uit is a random disturbance with mean zero that is orthogo-
nal to yt−1−j for j = 0, . . . , t − 1 and η is the systematic part of the
initial condition.12 We estimated (6.1) by non-linear quasi-maximum
likelihood, assuming a Gaussian distribution for uit. For each individ-
ual, we pooled across sessions, estimating a common λi but a different
session-specific ηi for each session. For the average of forecasts across

10 Thus, there is one λi for each subject.
11 Here there is one λ for each experiment for each individual.
12 See Klein (1958).
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individuals, x̂t, we proceed in a similar way, estimating a common λ
across sessions as well as session-specific η’s.

Table 6.1 shows the estimates of λ.13 Notice that most of them
are below .5, indicating that most citizens formed forecasts by heavily
overweighting the recent past. In the next section we study whether
the policy makers can be viewed as solving a Phelps problem in light
of this rapid adjustment.

6.1. Phelps problem

In the row labelled L.S.,Table 6.2 records least squares estimates
of the government’s rule (3.3). In the row labeled Phelps the table also
reports the rule that solves the Phelps problem for δ = .98 and the
value of λ from Table 6.1 for the averaged-across-individuals values of
x̂t. The least squares estimates of (3.3) show that the policy makers
seems to have adjusted inflation downward too slowly relative to the
solution of the Phelps problem. In particular, the least squares values
of f2 are always substantially larger than those associated with the
optimal rule from the Phelps problem. If policy makers are to be
interpreted as solving a Phelps problem, then they must be regarded
as acting as though they think the public adjusts much more slowly
(has a higher λ) than they apparently do.

13 In experiment 3 there is a fifth private agent. His/her estimate of
λi is .2303(.0314) with an R2 of .9938.
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Table 6.1: Estimates of λi in (6.1).

Exp. Agent 1 Agent 2 Agent 3 Agent 4 Average

1 λ 0.1395 0.0942 0.3136 0.1618 0.1896

s.e. (0.0350) (0.0828) (0.0549) (0.0436) (0.0322)

R2 0.9983 0.9919 0.9952 0.9972 0.9986

2 λ 0.1698 0.1366 0.2501 0.0007 0.1950

s.e. (0.0915) (0.0885) (0.0506) (0.0015) (0.0382)

R2 0.9475 0.9736 0.9656 0.9692 0.9912

3 λ 0.3278 0.4007 0.3363 0.4627 0.3556

s.e. (0.0649) (0.0452) (0.0381) (.0359) (0.0278)

R2 0.9737 0.9809 0.9897 0.9862 0.9938

4 λ 0.7345 0.3849 0.2635 0.4126

s.e. (0.0805) (0.0641) (0.0638) (0.0547)

R2 0.9755 0.9852 0.9820 0.9893

5 λ 0.5059 0.3644 0.2605 0.7918 0.5006

s.e. (0.0493) (0.0609) (0.0605) (0.0343) (0.0360)

R2 0.9569 0.9498 0.9539 0.9092 0.9846

6 λ 0.8413 0.7829 0.7059 0.6335 0.7452

s.e. (0.0232) (0.0635) (0.0147) (0.0292) (0.0137)

R2 0.7844 0.5853 0.8761 0.8569 0.9461

7 λ 0.2585 0.3362 0.7562 0.3124 0.4160

s.e. (0.0409) (0.0295) (0.0368) (0.0505) (0.0746)

R2 0.9840 0.9929 0.6209 0.9801 0.9692

8 λ 0.4893 0.4200 0.2788 0.3632 0.3935

s.e. (0.0370) (0.0329) (0.0014) (0.0048) (0.0236)

R2 0.9544 0.9691 0.9696 0.9769 0.9872

9 λ 0.5649 0.1233 0.2662 0.2073 0.3392

s.e. (0.0214) (0.0730) (0.0405) (0.0503) (0.0201)

R2 0.9960 0.9907 0.9940 0.9875 0.9983

10 λ 0.1300 0.2877 0.4176 0.6609 0.3800

s.e. (0.0476) (0.1145) (0.0322) (0.0438) (0.0442)

R2 0.9368 0.4668 0.9667 0.9151 0.9393

11 λ 0.4796 0.4856 0.5322 0.4378 0.5109

s.e. (0.0244) (0.0422) (0.1162) (0.0356) (0.0367)

R2 0.9966 0.9861 0.8596 0.9915 0.9888

12 λ 0.7083 0.0663 0.7136 0.4836 0.4776

s.e. (0.0366) (0.0222) (0.0476) (0.0410) (0.0264)

R2 0.8338 0.9533 0.9249 0.9255 0.9708
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7. Dispersion

Fig. C.13–Fig. C.16 display time series of maxi x̂it −mini x̂it for
each experiment. Vertical lines denote inaugurations of new sessions.
Generally, diversity of forecasts is highest at the beginning of an ex-
periment, and there is some tendency for increased dispersion at the
inauguration of a new session within an experiment. Only occasionally
is there a within-session increase in dispersion.

8. Session dependence

Fig. C.1 – Fig. C.12 display some visual evidence of what we can
call ‘session dependence’, a tendency of the monetary authority to set
the systematic part of inflation equal to its value at the end of the
preceding session within an experiment. A regression of beginning
of session setting of x against the previous session’s last setting of x
pooled across sessions and experiments shows that there is some such
tendency, but it is weak: x1(j) = 1.71(.70) + .67(.25)xT (j−1) where
standard errors are in parentheses, R2 = .14, x1(j) is the first-period
setting of x within session j ≥ 2 and xT (j−1) is the last period setting
of x within session j − 1.
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Table 6.2: Estimates of Phelps rule (3.3).

Experiment f1 f2 n R2 λ

1 L.S. 0.0515 0.9798 191 0.9172 0.1896
s.e. (0.0944) (0.0214)

Phelps 0.0779 0.3655

2 L.S. 0.0672 0.9480 162 0.8800 0.1950
s.e. (0.0743) (0.0277)

Phelps 0.0785 0.3649

3 L.S. 0.0238 0.9627 202 0.8630 0.3556
s.e. (0.0425) (0.0271)

Phelps 0.0997 0.3504

4 L.S. 0.0349 0.9127 111 0.8984 0.4126
s.e. (0.0480) (0.0294)

Phelps 0.1099 0.3456

5 L.S. 0.1190 0.8410 139 0.6914 0.5006
s.e. (0.1373) (0.0480)

Phelps 0.1298 0.3386

6 L.S. 0.2215 0.8243 541 0.4649 0.7452
s.e. (0.1183) (0.0381)

Phelps 0.2509 0.3233

7 L.S. 0.0488 0.9051 251 0.8787 0.4160
s.e. (0.0398) (0.0213)

Phelps 0.1105 0.3453

8 L.S. 0.0771 0.8508 347 0.9467 0.3935
s.e. (0.0134) (0.0109)

Phelps 0.1063 0.3472

9 L.S. 0.5250 0.9213 203 0.7038 0.3392
s.e. (0.2564) (0.0422)

Phelps 0.0971 0.3519

10 L.S. 0.5248 0.7622 133 0.4204 0.3800
s.e. (0.2551) (0.0782)

Phelps 0.1038 0.3484

11 L.S. 1.1289 0.6848 401 0.4486 0.5109
s.e. (0.1420) (0.0380)

Phelps 0.1326 0.3378

12 L.S. 0.8612 0.6782 347 0.2191 0.4776
s.e. (0.2036) (0.0689)

Phelps 0.1240 0.3404
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9. Concluding Discussion

Before our experiments, we were skeptical that chanting ‘just do
it’ would solve the time consistency problem posed by an expectational
Phillips curve. Our experiments have softened but not fully arrested
our skepticism. A supermajority of experimental sample paths show
the monetary authority gradually reaching for the Ramsey value. This
might reflect the working of the ‘just do it’ spirit. We think it more
probable that it reflects a Phelps-Cho-Matsui monetary authority who
imputes an ‘induction hypothesis’14 to the private forecasters, and who
sets out to manipulate those expectations by its actions. However,
there is a big gap between estimated feedback rules from those that
would have been chosen by the optimal Phelps planner who knows the
value of citizens’ adaptive expectations coefficient: our policy makers
exploit the ‘induction hypothesis’ too slowly, when they do seem to
exploit it at all. And there are more than enough deviations from
Ramsey for us not to take the solution of the time consistency prob-
lem for granted. In addition to occasional backsliding – predicted by
the mean dynamics associated with least squares learning of a self-
confirming equilibrium – our experimental economy can be stuck with
an incompetent policy maker.

14 I.E., adaptive expectations.
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Appendix A.
Instructions for Policy Maker

Today you will participate in an experiment in economic decision mak-
ing. Various research foundations have provided funds for the conduct of
this research. The instructions are simple, and if you follow them carefully
and make good decisions you can earn up to $20 that will be paid to you in
cash at the end of this experiment.

You will be assigned a role of a policy maker. In each period of the
experimental economy, your job will be to choose the target inflation rate.
As a policy maker, you are concerned about the values of inflation and
unemployment. However, you can directly affect only the inflation rate.

You will play a series of experimental sessions. An experimental session
will consist of a number of experimental periods. At the beginning of each
period of an experimental session, you will be asked to choose the target
inflation rate. The actual inflation rate will then be determined by adding a
stochastic shock to the target inflation rate. This reflects the fact that you,
as the policy maker, do not have complete control over the inflation rate.

The stochastic shock is normally distributed and has the mean value
equal to 0 and the standard deviation equal to 0.3. This means that ap-
proximately 68% of the values of the shock will be between −0.3 and 0.3.
In addition, approximately 95% of the values will be between −0.6 and 0.6.
Almost all the values, 99.7%, will be between -0.9 and 0.9

At the beginning of each time period, private agents will forecast the
inflation rate for that time period.

At the end of each experimental period, you will see the average fore-
casted inflation rate (averaged over the forecasts of all private agents) on
your computer screen. You will also see the actual rate of inflation and the
rate of unemployment for that experimental time period.

The actual inflation rate and the average forecasted inflation rate play
the role in determining the rate of unemployment in the economy. The rate
of unemployment is calculated in the following way:

unemployment = u∗ - (inflation - av. forecasted inflation) + shock

where u∗ is the natural rate of unemployment which prevails in the economy
if the actual rate of inflation is equal to average forecasted inflation rate,
av. exp. inflation is the rate computed as the average of private agents’
expected rates, and shock is a stochastic shock normally distributed, with
mean value 0 and the standard deviation equal to 0.3.
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At the end of every experimental period, you will also see the payoff
that you earned in that period. The payoff is calculated in the following
way:

payoff = - 0.5 ( inflation2 + unemployment2).

Thus your payoff decreases with increases in both the inflation and unem-
ployment.

At any given experimental period, the probability that the current
session continues for one more period is equal to 0.98. Whether or not the
session is played for one more period is determined in the following way. A
random number between 0 and 1 is drawn from a uniform distribution. If
the number is less or equal to 0.98, the current session continues into the
next period. If the number is greater than 0.98, the session is over. This
number will appear in the last column of your screen at the end of each
experimental time period. Once the number randomly drawn is greater
than 0.98, the session will be automatically terminated.

You will start every experimental session by running a computer pro-
gram. The experimenter will give you the name of the program.

Once you start the program, you will be prompted to enter the session
number. You will enter these numbers in the consecutive order, starting
with 1 for the first session, 2 for the second, etc.

After entering the session number, you will be prompted to enter the
probability that a particular session ends at any given experimental time
period. Enter the number 0.98 for this question. Once you answer thesetwo
questions, an experimental session begins.

Earnings
The experiment will last for two hours. If you complete this 2-hour

experiment, you are guaranteed to receive a $10 payment. Moreover, you
can earn additional $10, for a total of $20.

At the end of each session, a probability of winning a prize of additional
$10 will be computed in the following way.

1. For every time period of the session, the number period points is
calculated by adding 100 points to the payoff that you obtained in that
time period.

2. The number total points is calculated by adding up the period points
earned in all time periods of a given experimental session. If this number
turns out to be less than 0, it is set equal to 0.

3. The number max points is calculated by multiplying the total num-
ber of periods of the session by 100. This number is the number of total
points that you would earn in an experimental session if your payoff were
equal to 0 in every experimental period.
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4. The probability of winning the prize is then calculated in the fol-
lowing way:

1− (maxpoints− totalpoints) /maxpoints.

Table B.1 1 presents an example of how the total points, maxpoints,
and the probability are calculated in a hypothetical experimental session.
The length of session is 5 experimental periods.

period payoff period points

1 -20.25 79.75

2 -115.25 - 15.25

3 -5.16 94.84

4 -10.37 89.63

5 -30.25 69.75

total points 318.72

maxpoints = 100 x 5 periods = 500
Thus, the probability of winning the prize in this session is:

1− (500 − 318.72)

500
= 0.64

Note that higher values of your payoff in each time period (lower in
absolute terms) result in higher period and total points. Higher values of
total points result, in turn, in higher probability of winning the prize.

5. If your total points happen to be less than zero, then your probability
of winning the prize in that session is set equal to zero.

At the end of the experiment, one of the sessions that you played will
be randomly selected. Each session will have equal chance of being selected.
The session will be selected by running the program draw.exe at the DOS
prompt.

Once you type draw and press enter, you will be asked to enter your
id number. Your id number as the policy maker is 5. Once you entered
it, you will be prompted to enter the total number of sessions played in
the experiment. When you enter this number, the computer will randomly
choose a number between 1 and the number of sessions played. This number
will appear on your computer screen and will indicate the number of the
selected session.

The second number that will appear will be the number between 0 and
1, rand, drawn from the uniform distribution. You will take that number and
compare it to the probability of winning the prize for the selected session.
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If rand is less or equal to the probability of winning a lottery, you win
additional $10.00. If rand is greater than the probability, you do not win
the additional $10.00 prize. Thus the higher the probability of winning
the prize, the higher your chances that rand will be less or equal to the
probability.

ARE THERE ANY QUESTIONS?
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Appendix B.
Instructions for forecasters

Today you will participate in an experiment in economic decision mak-
ing. Various research foundations have provided funds for the conduct of
this research. The instructions are simple, and if you follow them carefully
and make good decisions you can earn up to $20 that will be paid to you in
cash at the end of this experiment.

You are assigned a role of a private agent whose task is to forecast
the rate of inflation in the economy in each experimental time period. The
target inflation rate in the economy is set by a policy maker.

The actual rate of inflation is determined by adding a stochastic shock
to the target inflation rate which reflects the fact that the policy maker does
not have the total control over the inflation rate. The shock is normally
distributed and has the mean value equal to 0 and the standard deviation
equal to 0.3 This means that approximately 68% of the values of the shock
will be between −0.3 and 0.3. In addition, approximately 95% of the values
will be between −0.6 and 0.6. Almost all the values, 99.7%, will be between
-0.9 and 0.9

Your payoff will depend on how close your forecast is to the actual rate
of inflation.

You will play a series of experimental sessions. An experimental session
will consist of a number of experimental periods. At the beginning of each
experimental time period, you will be prompted to forecast the inflation
rate. At the end of each experimental period, you will see the actual rate
of inflation and the rate of unemployment for that time period on your
computer screen.

At the end of every experimental period, you will also see your payoff
for that period. The payoff is given by:

payoff = - 5 ×(inflation - forecast)2.
Thus the higher the squared difference between the actual rate of inflation
and your forecast, the lower your payoff.

At any given experimental period, the probability that the session con-
tinues for another period is equal to 0.98. This will be determined in the
following way. A random number between 0 and 1 will be drawn from a
uniform distribution. If the number is less or equal to 0.98, the current ses-
sion continues into the next period. If the number is greater than 0.98, the
session is over. This number will appear in the last column of your screen
at the end of each experimental time period. Once the number randomly
drawn is greater than 0.98, the session will be automatically terminated.
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You will start every experimental session by running a computer pro-
gram. The experimenter will give you the name of the program. At the be-
ginning of the experiment you will be assigned your identification number.
You will keep the same identification number in all experimental sessions
and will be prompted to type it at the start of each session. You will also
be prompted to enter the probability that the session will end. Enter 0.98
for this question.

Earnings

The experiment will last for two hours. If you complete this 2-hour
experiment, you are guaranteed to receive a $10 payment. Moreover, you
can earn additional $10, for a total of $20.

At the end of each session, a probability of winning a prize of additional
$10 will be computed in the following way.

1. For every time period of the session, the number period points is
calculated by adding 100 points to the payoff that you obtained in that
time period.

2. The number total points is calculated by adding up the period points
earned in all time periods of a given experimental session. If this number
turns out to be less than 0, it is set equal to 0.

3. The number max points is calculated by multiplying the total num-
ber of periods of the session by 100. This number is the number of total
points that you would earn in an experimental session if your payoff were
equal to 0 in every experimental period.

4. The probability of winning the prize is then calculated in the fol-
lowing way:

1− (maxpoints− totalpoints) /maxpoints.

Table A.1 presents an example of how the total points, maxpoints, and
the probability are calculated in a hypothetical experimental session. The
length of session is 5 experimental periods.

period payoff period points

1 -20.25 79.75

2 -115.25 - 15.25

3 -5.16 94.84

4 -10.37 89.63

5 -30.25 69.75

total points 318.72
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maxpoints = 100 x 5 periods = 500
Thus, the probability of winning the prize in this session is:

1− (500 − 318.72)

500
= 0.64

Note that higher values of your payoff in each time period (lower in
absolute terms) result in higher period and total points. Higher values of
total points result, in turn, in higher probability of winning the prize.

5. If your total points happen to be less than zero, then your probability
of winning the prize in that session is set equal to zero.

At the end of the experiment, one of the sessions that you played will
be randomly selected. Each session will have equal chance of being selected.
The session will be selected by running the program draw.exe at the DOS
prompt.

Once you type draw and press enter, you will be asked to enter your
id number. Once you entered it, you will be prompted to enter the total
number of sessions played in the experiment. When you enter this number,
the computer will randomly choose a number between 1 and the number of
sessions played. This number will appear on your computer screen and will
indicate the number of the selected session.

The second number that will appear will be the number between 0 and
1, rand, drawn from the uniform distribution. You will take that number and
compare it to the probability of winning the prize for the selected session.
If rand is less or equal to the probability of winning a lottery, you win
additional $10.00. If rand is greater than the probability, you do not win
the additional $10.00 prize. Thus the higher the probability of winning
the prize, the higher your chances that rand will be less or equal to the
probability.

ARE THERE ANY QUESTIONS?
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Appendix C.
Figures
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Figure C.1: Economy 1. The x̂t (dotted) and xt

solid.
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Figure C.2: Economy 2. The x̂t (dotted) and xt

solid.
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Figure C.3: Economy 3. The x̂t (dotted) and xt

solid.
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Figure C.4: Economy 4. x̂t (dotted) and xt (solid).
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Figure C.5: Economy 5. x̂t (dotted) and xt (solid).
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Figure C.6: Economy 6. x̂t (dotted) and xt (solid).
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Figure C.7: Economy 7. x̂t (dotted) and xt (solid).
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Figure C.8: Economy 8. x̂t (dotted) and xt (solid).
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Figure C.9: Economy 9. x̂t (dotted) and xt (solid).
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Figure C.10: Economy 10. x̂t (dotted) and xt

solid.
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Figure C.11: Economy 11. x̂t (dotted) and xt

(solid).
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Figure C.12: Economy 12. x̂t (dotted) and xt

(solid).
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