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Abstract

We study two dynamic models of payments systems. The …rst is a deter-

ministic model with spatial separation where we consider alternative payments

systems institutions and their implications for allocation and welfare. A pay-

ments system with period-by-period settlement in outside money improves on

decentralized exchange using currency by reducing average cash balances and

the average holding period of money. However, an e¢cient allocation is sup-

ported by a payments system with interbank credit where settlement is not

¤We thank seminar and conference participants at the Cleveland Federal Reserve Bank, the

Richmond Federal Reserve Bank, the University of Iowa, and the 1999 SITE workshop at Stanford

University, for helpful comments and suggestions.
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imposed. In the second model, there is random matching and unobserved pro-

ductivity shocks and preference shocks. We explore how risk should be shared

optimally in this economy and interpret the results in terms of how actual

payments systems should operate.

1. INTRODUCTION

Given advances in information technology, the volume of payments system trans-

actions has recently increased greatly in the United States. For example, in terms

of electronic payments by consumers, nominal payments by credit card increased by

72.6% from 1993 to 1997 in the United States, and nominal payments by debit card

increased by 688.8%. The value of electronic interbank payments has also increased

markedly over the same period, with nominal payments over the CHIPS system in-

creasing 38.4% and nominal payments by Fedwire increasing 38.9% (see Bank for

International Settlements 1998).

The increased ‡ow of transactions through the payments system has raised ques-

tions about the optimal design of payments systems and the appropriate role for

central banks in these systems (see Greenspan 1996 and Rochet and Tirole 1996a,

1996b). In particular, primary concerns are over whether settlement should take place

on gross or net terms, how frequently settlement should take place, what constraints

should be placed on within-settlement-period credit balances, and how payment ser-

vices and credit should be priced.

To date there are few explicit models of economies where payments systems play

an important role. Important contributions are by Freeman (1996a, 1996b, 1998)

and related work by Kahn and Roberds (1998), Fujiki, Green, and Yamazaki (1997),

Lacker (1997), and Rochet and Tirole (1996a). Our goal here is to construct dynamic

models in which we can study di¤erent payments institutions and their e¢ciency

properties.
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We consider two related models. In the …rst model, we consider an environment

with spatial separation and an absence-of-double coincidence problem, which bears

some relation to Townsend (1980), though spatial itineraries and assumptions about

communication are quite di¤erent, and we include production. We …rst suppose that

there is no centralized payments system and that exchange takes place only using …at

money, which implies that the households in this economy essentially face endogenous

cash-in-advance constraints. In equilibrium, there is price dispersion across markets

(goods cannot be transported between locations), and the allocation is ine¢cient.

An arrangement that improves welfare for all agents, but is still not Pareto optimal,

is to have a centralized payments system with net settlement in outside money at the

end of each period. Here, though goods cannot be moved across locations, centralized

payments improves on decentralized monetary exchange due to the fact that there is

within-period credit. As a result, households can reduce their average cash balances

and the average holding period of money.

An e¢cient arrangement in this environment involves having centralized payments

and inter-period credit with no settlement imposed other than that households meet

their lifetime budget constraints. In this arrangement, households (we can interpret

representative households as banks) hold an account balance with a central clearing-

house, earning interest on positive balances and paying interest on negative balances

at the same competitively-determined interest rate. Another interpretation of this

arrangement is that the clearinghouse is a central bank which pays interest on reserves

and charges interest on central bank loans at the same rate.

In the second model, we study an environment related to the …rst, but with ran-

dom matching and idiosyncratic shocks which are private information. Here, we wish

to study how idiosyncratic risk is allocated optimally, and to provide an interpreta-

tion of this optimal risk-sharing arrangement in terms of how real-world payments

systems should work. The allocation problem for a social planner in the random
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matching environment can be converted into a dynamic contracting problem un-

der private information, following Aiyagari and Williamson (1996). This dynamic

contracting problem can then be approached using methods developed in Atkeson

and Lucas (1992, 1995), Aiyagari and Alvarez (1995), and Aiyagari and Williamson

(1998). A key di¤erence in this environment is that there is private information about

productivity shocks as well as about preference shocks.

In this model, private information limits insurance, in that consumption and labor

supply are not smoothed perfectly across states of the world as would be the case

under full information. Also, as is the case in other dynamic contracting environ-

ments, the expected utility of an individual household will ‡uctuate over time. Here,

this will a¤ect the sequence of households that is randomly matched with this agent

in transactions. That is, if an individual household receives a string of good luck,

which is a string of positive productivity shocks here, then this is bad lack for the

households that happen to be randomly matched with the good-luck household.

The random-matching private-information model implies that, to solve payments

system incentive problems, credit and insurance should be an integral part of the

payments system mechanism. An e¢cient payments system imposes endogenous

credit limits, and insures each participant against the event that they cannot settle

a transaction.

The remainder of the paper is organized as follows. In Section 2 we study the

deterministic model, and then turn to the random matching model with private in-

formation in Section 3. Section 4 is a conclusion.

2. A DETERMINISTIC MODEL

This is a spatial model which contains frictions which will motivate transactions in-

termediated by currency and “interbank” payments mechanisms. There is a countable

in…nity of locations, indexed by i = ¡1; :::; ¡1; 0; 1; :::; 1: Location i is inhabited
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by a representative household, consisting of two members, a producer and a shopper.

Each household has preferences given by

1X

t=0

¯t[u(ct)¡ z(nt)];

where 0 < ¯ < 1; ct is consumption, and nt is labor supply. Assume that u(¢) is strictly

increasing, strictly concave, twice continuously di¤erentiable, and satis…es decreasing

absolute risk aversion, with u(0) = 0 and u0(0) = 1: Also assume that z(¢) is strictly

increasing, convex, and twice continuously di¤erentiable with z(0) = z0(0) = 0:

The representative household at location i consumes only the goods produced by

the household at location i + 1; so that there is an absence of double coincidence

of wants. One unit of labor produces one unit of the non-storable consumption

good when a household is productive, and produces zero units when the household is

unproductive. Consumption goods cannot be transported between locations except

by shoppers returning with goods that have been purchased. During a period, the

timing is such that shoppers …rst leave their home locations and travel to the next

location (i.e. shopper i travels to location i + 1); following which production takes

place, there is exchange, and shoppers then return to their initial locations.

There are three types of households, denoted j = 1; 2; 3: Type j households reside

at locations :::; j¡3; j; j+3; ::: . The producer in a type 1 household is unproductive

in periods t = 2; 5; 8; 11; :::, and productive in all other periods, the producer in a

type 2 household is unproductive in periods t = 1; 4; 7; 10; :::; and the producer in a

type 3 household is unproductive in periods t = 0; 3; 6; 9; ::: . This then implies that

type 1 households consume only in periods t = 0; 1; 3; 4; 6; 7; :::; type 2 households

consume only in periods t = 0; 2; 3; 5; 6; 8; 9; :::; and type 3 households consume only

in periods t = 1; 2; 4; 5; 7; 8; ::: .

In each period, 2
3

of households will be producing and 2
3

of households will be

consuming, however 1
3

of households will be consuming and not producing, 1
3

will be
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consuming and producing, and 1
3

will be producing and not consuming. Thus, each

household follows a three-period payment cycle whereby in the …rst period of the cycle

it consumes and does not produce, in the second period it consumes and produces,

and in the third period it does not consume and produces. To help the reader visualize

the patterns of trade among households, Figure 1 shows how exchange takes place

among the three types of agents. If we take three consecutive periods where type 1

households consume in the …rst and second periods, then type 2 households consume

in the …rst and third periods, and type 3 households consume in the second and

third periods. In the model, in contrast to Figure 1, there is not a circular pattern

of exchange, since the chain is broken between type 3 and type 1 agents, and the

pattern is repeated over the double in…nity of locations.

This environment has the following two key elements. First, households cannot

engage in barter, since spatial separation and the pattern of meetings implies an

absence-of-double-coincidence-of-wants problem. Second, households cannot trade

personal IOUs, as there is an intertemporal absence of double coincidence problem

for households who meet, and an IOU could not circulate as it would never …nd its

way back to the issuer for redemption. Trade can take place only through trade in

…at money, or through a centralized “payments system.”

Pareto Optimal Allocations

Here, we will suppose that the social planner weights the utility of each household

type equally, and con…ne attention to allocations where households of a given type

produce the same quantity and consume the same quantity in a given period. Let cit

(nit) denote the consumption (production) of a type i household in period t: Then,

the social planner solves

1X

t=0

¯t

"
3X

i=1

u(cit)¡
3X

i=1

z(nit)

#
(1)
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subject to

cit = n
(i+1)(mod 3)
t

nit = 0; i = 1 and t = 0; 3; 6; :::; i = 2 and t = 1; 4; 7; :::; i = 3 and t = 2; 5; 8; :::

The solution is then

cit = n
(i+1)(mod 3)
t = c¤;

for i = 1 and t = 0; 1; 3; 4; 6; 7; :::; i = 2 and t = 0; 2; 3; 5; 6; :::; i = 3 and t =

1; 2; 4; 5; 7; 8; :::; where c¤ solves

u0(c¤) = z0(c¤); (2)

and cit = n
j
t = 0 otherwise.

Monetary Exchange Without a Centralized Payments System

To show how the equilibrium allocation changes with alternative payments tech-

nologies, we …rst consider a case where there is no means for communication among

households other than through the movements of shoppers between adjacent loca-

tions. Fiat money is distributed in some arbitrary fashion among households in

period t = 0; and we will suppose for now that the aggregate stock of money then re-

mains …xed for all time at M . This environment is then essentially a cash-in-advance

economy where households accumulate cash during production periods in order to

consume during consumption periods. We will refer to this institutional arrangement

as cash-in-advance (CIA).

Given a …xed money supply, consider a steady state symmetric equilibrium where

each household faces the same prices in each period of the three-period payments

cycle. That is, the shopper purchases consumption goods at the price p1 (in terms of

money) when the household does not produce, consumption goods are purchased at

price p2 and sold at price p1 in a period when the household produces and consumes,
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and consumption goods are sold at price p2 in a period when the household produces

but does not consume. Therefore, when the household consumes and does not pro-

duce, the Bellman equation associated with the household’s optimization problem

is

v1(m1) = max
c1;m2¸0

[u(c1) + ¯v2(m2)] (3)

subject to

c1 · m1 (4)

c1 +
p2m2

p1
· m1; (5)

Here, c1 denotes consumption during period 1 of the payments cycle, mi denotes real

cash balances at the beginning of period i of the payments cycle, for i = 1; 2; vi(¢)
values real cash balances at the beginning of period i of the payments cycle, (4) is

the cash-in-advance constraint, and (5) is the budget constraint. Similarly, in period

2 of the payments cycle, when the household produces and consumes, the Bellman

equation associated with the household’s problem is

v2(m2) = max
c2;n2;m3¸0

[u(c2)¡ z(n2) + ¯v3(m3)] (6)

subject to

c2 · m2 (7)

c2 +m3 · m2 +
p1n2
p2
; (8)

and in period 3 of the payments cycle we have

v3(m3) = max
n3;m1¸0

[¡z(n3) + ¯v1(m1)] (9)

subject to
p1m1

p2
· m3 + n3; (10)

In equilibrium we will have

c1 = n2; c2 = n3: (11)
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Assuming that the value functions are strictly concave and di¤erentiable, and let-

ting ¸i denote the Lagrange multiplier associated with the cash-in-advance constraint

for periods i = 1; 2 of the payment cycle, and ¹i the multiplier associated with the

budget constraint for i = 1; 2; 3; we have the following …rst-order conditions from

problems (3), (6), and (9):

u0(c1)¡ ¸1 ¡ ¹1 = 0; (12)

¯v02(m2)¡
p2
p1
¹1 = 0; (13)

u0(c2)¡ ¸2 ¡ ¹2 = 0; (14)

¡z0(n2) +
p1
p2
¹2 = 0; (15)

¯v03(m3)¡ ¹2 = 0; (16)

¡z0(n3) + ¹3 = 0; (17)

¯v01(m1)¡
p1
p2
¹3 = 0: (18)

We also have the following envelope conditions:

v0i(mi) = ¸i + ¹i; for i = 1; 2; (19)

v03(m3) = ¹3: (20)

Lemma 1 Some cash-in-advance constraint must bind in equilibrium, i.e. we cannot

have ¸1 = ¸2 = 0:

Proof. Suppose that ¸1 = ¸2 = 0: Then, given (11)-(20), we obtain the following

four equations which c1 and c2 must satisfy in equilibrium:

¯u0(c2)¡
p2
p1
u0(c1) = 0; (21)

¡z0(c1) +
p1
p2
u0(c2) = 0; (22)
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¯z0(c2)¡ u0(c2) = 0; (23)

¯u0(c1)¡
p1
p2
z0(c2) = 0: (24)

But then, (21), (23), and (24) imply that

(¯3 ¡ 1)u0(c1) = 0;

which holds if and only if ¯ = 1; a contradiction.2

Lemma 2 ¸1 = 0:

Proof. Suppose not. Then, (4) holds with equality, and (5) then implies thatm2 = 0:

Then, from (7), c2 = 0 which cannot hold in equilibrium as u0(0) = 1: We therefore

have a contradiction.¤
>From Lemmas 1 and 2, we can conclude that ¸1 = 0 and ¸2 > 0; that is the cash-

in-advance constraint binds in equilibrium only in the second period of the payments

cycle. Thus, cash accumulated from production in the second and third periods of

the payments cycle is spent on consumption goods in the …rst and second periods of

the payments cycle, and the entire stock of cash is exhausted at the end of period 2

of the payments cycle.

Now, let p ´ p2
p1
: We can use (11)-(20) to derive the following four equations, which

solve for c1; c2; p; and ¸2:

¯u0(c2)¡ pu0(c1) = 0; (25)

u0(c2)¡ ¸2 ¡ pz0(c1) = 0; (26)

¯z0(c2)¡ pz0(c1) = 0; (27)

¯u0(c1)¡
1

p
z0(c2) = 0: (28)

Then, it is straightforward to show that the solution to (25)-(28) is

c1 = c2 = ĉ; (29)
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p = ¯; (30)

¸2 = (1¡ ¯3)u0(ĉ) > 0; (31)

where ĉ solves

¯2u0(ĉ)¡ z0(ĉ) = 0: (32)

Thus, from (2) and (32), we have ĉ < c¤, and the equilibrium allocation is not Pareto

optimal. Note that the equilibrium exhibits price dispersion, that is p1 > p2; so

that prices are higher in exchanges between households in period 1 of the payments

cycle and households in period 2 of the payments cycle, versus. exchanges between

households in period 2 of the payments cycle and households in period 3 of the

payments cycle. There are two e¤ects at work here. First, shoppers in the …rst type

of exchange are not cash-constrained while shoppers in the second are, which tends

to lower p2 relative to p1: Second, producers in the …rst type of exchange will not be

able to spend the money they receive for two periods, while producers in the second

type of exchange need only wait one period. This acts to reduce production in the

…rst type of exchange and to increase p1 relative to p2:

We can solve for mi; i = 1; 2; 3; from (5), (7), (8), (29), and (30), to get

m1 = (1 + ¯)ĉ; (33)

m2 = ĉ; (34)

m3 =
ĉ

¯
: (35)

We can then solve for prices by using (30) and the equilibrium condition for the

money market,

p1(1 + ¯)ĉ+ p2ĉ+ p2
ĉ

¯
=M;

to obtain

p1 =
M

2(1 + ¯)ĉ
;
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p2 =
¯M

2(1 + ¯)ĉ
:

The velocity of money is then

Vc =
2ĉP3
i=1mi

=
2¯

2¯ + ¯2 + 1
:

Note that the symmetric equilibrium that we have constructed is a steady state

equilibrium, but it is a stationary equilibrium given the correct distribution of money

balances among types at t = 0:

Banking with Settlement at the End of Each Period

Now, suppose that there is a centralized clearing arrangement among the house-

holds, which can be interpreted as the clearing of transactions among banks, where

there is one bank for each location. As before, consumption goods cannot be trans-

ported between locations, except when shoppers go to adjacent locations. However,

outside money can now be transferred among locations at the end of each period

through the clearing mechanism, which we will denote the clearinghouse.

At the beginning of each period, shoppers go to the next location and exchange

IOUs (interpreted as checks or electronic messages) for consumption goods. At the

end of the period, IOUs are received by the clearinghouse, and these debts must be

settled on net by each household with the clearinghouse, in outside money. The key

di¤erence between this arrangement and the previous one is that the household does

not face a cash-in-advance constraint in the second period of the payments cycle,

when it consumes and produces. However, note that there is still a cash-in-advance

constraint in the …rst period of the payments cycle. Thus, what changes from the

previous section is that we can drop (7), and set ¸2 = 0 in (14). We will refer to

the institutional arrangement here as payments system with settlement (PSS). It is

important that this be a net settlement system. If households are required to engage

in gross settlement, then the arrangement is exactly the same as with CIA.
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We now have to take account of the nonnegativity constraint on money balances

at the beginning of period 3 of the payments cycle. That is, problem (6) is solved

subject to

m3 ¸ 0; (36)

in addition to (8). Note, that we did not need to impose (36) for the CIA setup, as

it was satis…ed given the cash-in-advance constraint (7). Along the lines of Lemma

1, it is straightforward to show that at least one of constraints (4) and (36) must

bind in a steady state symmetric equilibrium. Let ± denote the Lagrange multiplier

associated with constraint (36). Then there are three possibilities. First, we could

have ¸1 ¸ 0 and ± = 0; so that the …rst period cash-in-advance constraint binds and

the nonnegativity constraint on end-of-period money balances in the second period

does not bind; second, we could have ¸1 ¸ 0 and ± ¸ 0; so that both constraints bind;

third, we could have ¸1 = 0 and ± ¸ 0; so that the cash-in-advance constraint does not

bind but the nonnegativity constraint does. In the …rst case, period 1 consumption is

…nanced by cash accumulated from sales in periods 2 and 3, and period 2 consumption

is …nanced from period 2 sales. In the second case, period 1 consumption is …nanced

from cash accumulated from sales in period 3, and period 2 consumption is …nanced

from period 2 sales. Finally, in the third case, period 1 consumption is …nanced by

cash accumulated from period 3 sales, and period 2 consumption is …nanced by cash

accumulated from period 3 sales and from period 2 sales. We need to consider each

case in turn.

Case 1: ¸1 ¸ 0; ± = 0.—

Here, we use (11)-(20) to obtain the following three equations, which solve for c1;

c2; and p :

¡z0(c1) +
1

p
u0(c2) = 0; (37)

¯z0(c2)¡ pz0(c1) = 0; (38)
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¯u0(c1)¡
1

p
z0(c2) = 0: (39)

In contrast to the CIA case, a simple solution is not available here, and we will

need to resort to local analysis. Note …rst that if ¯ = 1; then (37)-(39) (for the PSS

case) and (25), (27), and (28) (for the CIA case) solve to give c1 = c2 = c¤ and p = 1;

where u0(c¤) = z0(c¤): Now, if we totally di¤erentiate (37)-(39), we can solve to get

dc1
d¯

=
2u0

z00 ¡ u00 > 0; (40)

dc2
d¯

=
¡u0

z00 ¡ u00 < 0; (41)

dp

d¯
=
(z00 + u00)

(u00 ¡ z00) ;

where all derivatives are evaluated at ¯ = 1: Thus, for ¯ close to 1, we will have

c1 < c
¤ and c2 > c¤; but p may be greater or less than 1 (depending on the sign of

z00+u00): As with the CIA case, the equilibrium allocation is not Pareto optimal, and

prices are di¤erent across locations. Here, however, we may have p1 < p2 or p1 > p2:

From (4) and (8), we have m3 =
c1
p

¡ c2; so for (36) to be satis…ed, we must have
c1
p

¡ c2 ¸ 0. Similar to the above, for ¯ close to 1 this constraint will be satis…ed if

and only if

3u0 + c¤(z00 + u00) · 0: (42)

We can solve for ¸1 to get ¸1 = u0(c1) ¡ ¯
p
u0(c2); and it is straightforward to show

that, given the solution above, ¸1 ¸ 0 as required, if ¯ is close to 1.

Using (4), (5), (8), and (10) with equality, velocity is given by

Vp1 =
c1 + c2

m1 +m2 +m3
=

c1 + c2
(1
p
+ 1)c1 ¡ c2

When ¯ = 1; since (37)-(39) and (25), (27) each solve to give c1 = c2 = c¤ and

p = 1; we have Vc = 1
2

and Vp1 = 2: Thus, by continuity, for ¯ close to 1 velocity is

approximately 4 times higher with PSS than with CIA in this …rst case. A payments
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system with net settlement allows households to reduce their average cash holdings

and to reduce the average holding period of money, which then increases velocity.

Case 2: ¸1 ¸ 0; ± ¸ 0.—

We take a similar approach here to case 1, obtaining the following three equations

which solve for c1; c2; and p in the symmetric steady state:

¡z0(c1) +
1

p
u0(c2) = 0; (43)

¯u0(c1)¡
1

p
z0(c2) = 0; (44)

c2 ¡ 1

p
c1 = 0: (45)

Then, totally di¤erentiating (43)-(45) and solving, we get

dc1
d¯

=
u0(¡u0 ¡ c¤u00)

(¡z00 + u00)[2u0 + c¤(z00 + u00)] ; (46)

dc2
d¯

=
u0(¡u0 ¡ c¤z00)

(¡z00 + u00)[2u0 + c¤(z00 + u00)] ; (47)

dp

d¯
=

¡u0
2u0 + c¤(z00 + u00)

:

For this to be a symmetric equilibrium for ¯ close to 1, we need ¸1 ¸ 0 and ± ¸ 0; or

3u0 + c¤(2z00 + u00)

2u0 + c¤(z00 + u00)
¸ 0; (48)

3u0 + c¤(z00 + 2u00)

2u0 + c¤(z00 + u00)
¸ 0; (49)

respectively. Further, velocity in case 2 is given by

Vp2 =
c1 + c2
c1

;

so that, as in case 1, Vp2 = 2 when ¯ = 1:

Case 3: ¸1 = 0; ± > 0.—
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Here, taking a similar approach to the …rst two cases, we obtain the following three

equations which solve for c1; c2; and p:

¯u0(c2)¡ pu0(c1) = 0;

¡z0(c1) +
1

p
u0(c2) = 0;

¯u0(c1)¡
1

p
z0(c2) = 0;

and totally di¤erentiating and solving we get

dc1
d¯

=
¡u0
z00
; (50)

dc2
d¯

=
2u0

z00
; (51)

dp

d¯
=
2u00 + z00

z00
:

In contrast to case 1, where c1 < c¤ and c2 > c¤ for ¯ close to 1, here we will have

c1 > c
¤ and c2 < c¤ for ¯ close to 1. This is due to the fact that there is a binding

nonnegativity constraint on money balances at the end of period 2 of the payments

cycle. That is, in period 2 of the payments cycle, households would like to borrow to

…nance current consumption, but they are constrained from doing so.

The condition ± ¸ 0 is always satis…ed here, but to guarantee that the cash-in-

advance constraint holds in period 1 of the payments cycle, i.e. c1 · m1; we must

have

3u0 + c¤(2u00 + z00) · 0: (52)

Velocity is given by

Vp3 =
c1 + c2

(1 + p)c2 ¡ 1
p
c1
;

and, as in the other two cases, we have Vp3 = 2 when ¯ = 1:

An Example.—

16



Inspection of inequalities (42), (48), (49), and (52) indicates that there is a possi-

bility of multiple symmetric steady states with a payments system with settlement.

An example will show what can happen. Suppose that u(c) = c1¡°¡1
1¡° and z(n) = n;

where ° > 0: Then, the Pareto optimum has c1 = c2 = c¤ = 1: In the CIA case, we

have

p = ¯;

c1 = c2 = ¯
2
° :

With PSS, case 1, we get

p = ¯;

c1 = ¯
2
° ;

c2 = ¯¡
1
° ;

and this equilibrium exists if and only if ° ¸ 3: With PSS, case 2, the solution is

p = ¯
1

°¡2 ;

c1 = ¯
°¡1

°(°¡2) ;

c2 = ¯¡
1

°(°¡2) ;

and this equilibrium exists if and only if ° · 3
2

or ° ¸ 3: For PSS, case 3, we get

p = ¯¡2;

c1 = ¯¡
1
° ;

c2 = ¯
2
° ;

and this equilibrium exists if and only if ° ¸ 3
2
:

Therefore, with PSS, for ° < 3 there exists a unique symmetric steady state equi-

librium, but for ° ¸ 3 there are three such equilibria.
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Welfare.—

We would like to compare the welfare properties of PSS versus. CIA equilibria,

and also see if we can arrive at a ranking of PSS equilibria for the cases where there

is more than one. The welfare measure we will use is the welfare function (1) which

the social planner maximizes in determining the Pareto optimal allocation. Thus, for

a symmetric steady state allocation, welfare is given by

W = u(c1) + u(c2)¡ z(c1)¡ z(c2):

As in much of the above, we do a local analysis for ¯ close to 1, given that the

equations characterizing equilibria yield the same solution of c1 = c2 = c¤ and p = 1

for ¯ = 1: If we di¤erentiate the above welfare function with respect to ¯, and evaluate

derivatives at ¯ = 1; we obtain

dW

d¯
= (u0 ¡ z0)(dc1

d¯
¡ dc2
d¯
) = 0;

so that the …rst-order e¤ect on welfare is zero. However, the second derivative of the

welfare function, evaluated at ¯ = 1; is

d2W

d¯2
= (u00 ¡ z00)

"µ
dc1
d¯

¶2

+

µ
dc2
d¯

¶2
#
< 0; (53)

so knowing the derivatives dc1
d¯

and dc2
d¯

allows us to compare welfare across equilibria

for ¯ close to 1.

Now, let

ÁC =

µ
dc1
d¯

¶2

+

µ
dc2
d¯

¶2

;

evaluated at ¯ = 1; for the CIA case, and similarly let ÁPi apply to PSS case i for

i = 1; 2; 3: Then, from (29), (32), (40), (41), (46), (47), (50), and (51), we get

ÁC =
8(u0)2

(u00 ¡ z00)2 ; (54)

ÁP1 =
5(u0)2

(u00 ¡ z00)2 ; (55)
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ÁP2 =
(u0)2 [(u0 + c¤u00)2 + (u0 + c¤z00)2]

(u00 ¡ z00)2 [2u0 + c¤(z00 + u00)]2
; (56)

ÁP3 =
5(u0)2

(z00)2
: (57)

It is then clear from (54), (55), and (57) that

ÁP1 < ÁC ; (58)

and

ÁP1 < ÁP3: (59)

Also, we have

ÁC ¡ ÁP3 =
5(u00)2 ¡ 10z00u00 ¡ 3(z00)2

(z00)2(u00 ¡ z00)2 > 0 (60)

if the case 3 PSS equilibrium exists, i.e. if (52) holds. Further, we have

ÁP1 ¡ ÁP2 =
(3u0 + 2c¤z00 + c¤u00) (6u0 + 4c¤u00 + 2c¤z00)

(u00 ¡ z00)2 [2u0 + c¤(z00 + u00)]2
> 0 (61)

if the case 2 PSS equilibrium exists, i.e. if (48) and (49) hold. Therefore, from

(58)-(61) we have

ÁP2 < ÁP1 < ÁP3 < ÁC ;

and from (53) the welfare ranking of equilibria is then the reverse of the above in-

equalities, i.e. the welfare ranking is (from low to high): CIA, PSS case 3, PSS case

1, PSS case 2.

Here, the payments system with settlement yields an e¢ciency gain, due to the

fact that households reduce average money holdings and the average holding period

of money. However, the payments system also introduces the possibility of multiple

steady state equilibria. Though all equilibria dominate the CIA arrangement in wel-

fare terms, they can be ranked in terms of welfare, so there is a clear multiplicity

problem.
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Banking with Interbank Lending

Suppose now that payments are arranged so that, instead of settling at the end of

each period with outside money, as above, households (i.e. banks) settle by borrowing

and lending on an interbank market. This can also be interpreted as an arrangement

where each household carries an account balance with the clearinghouse, with the

account balance increasing when goods are sold to other households and decreasing

when the household makes purchases. Further, we could think of the clearinghouse as

a central bank, with banks at each location holding interest-earning reserve balances

at the central bank and taking out central bank loans.

We wish to show that this arrangement can support the Pareto optimal allocation

as a steady state symmetric equilibrium. If the interest rate on clearinghouse account

balances is 1
¯

¡ 1; then it is optimal for each household to produce c¤ in productive

periods and to consume c¤ when consumption is possible. Letting bi denote the

household’s net position against the clearinghouse at the beginning of period i of

the payments cycle in the steady state symmetric equilibrium, from the household’s

budget constraints we have, when the interest rate is 1
¯

¡ 1;

b1 =
c¤(1¡ ¯2)
1¡ ¯3 ;

b2 =
¡c¤¯(1¡ ¯)
1¡ ¯3 ;

b3 =
¡c¤(1¡ ¯)
1¡ ¯3 ;

and so
P3

i=1 bi = 0; and this is a steady state equilibrium. Here, the household

borrows in the …rst period of the payments cycle to …nance consumption, sells just

enough output in period 2 of the payments cycle to …nance period 2 consumption,

and accumulates credits from sales in period 3 of the cycle so as to come into period

1 of the cycle with a positive account balance.
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This payments system works e¢ciently solely through the exchange of inside money,

and it is unnecessary for payments to be settled in outside money. Indeed, note that

there is no settlement in the steady state symmetric equilibrium, since there will be

no period in which all households have a zero account balance with the clearing-

house. We could impose some kind of settlement rule, but this would only imply

ine¢ciency. For example, suppose that there is a rule that households must settle

with the clearinghouse once in each payment cycle. Without loss of generality, let

settlement occur at the ends of periods 2, 5, 8, 11, ... . That is, at the end of each

settlement period, each household is required to hold a zero account balance with

the clearinghouse. This constraint must bind on some households in a steady state

symmetric equilibrium, and therefore leads to Pareto ine¢ciency.

A Pareto optimum could certainly be supported in other ways than the arrangement

with a clearinghouse and interbank lending. For example, there are versions of the

Friedman rule which would yield e¢ciency under CIA or PSS. This would in general

require that the appropriate money transfers be made in a type-speci…c fashion.

The Friedman rule solution here su¤ers from the usual problems. First, equilibrium

can be indeterminate when the monetary authority is behaving optimally. Second,

permitting the monetary authority to make individual-speci…c transfers appears to

violate the spirit of the spatially-separated environment.

3. A MODEL WITH IDIOSYNCRATIC RISK AND PRIVATE

INFORMATION

In the model above, it is e¢cient for the payments system to operate without

outside money and to have settlement postponed to the inde…nite future. However,

in many discussions of payments system design and policy, the allocation of risk plays

a central role (e.g. Rochet and Tirole 1996a, 1996b, Fujiki, Green and Yamazaki

1997), and Federal Reserve policy towards payments by Fedwire is to move towards
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real time gross settlement of payments with outside money, in the belief that this

implies optimal risk-bearing (see Greenspan 1996).

In the model we study next, agents make transactions at dispersed locations subject

to unobserved idiosyncratic risk. We wish to study the nature of optimal risk sharing

in this setting, with the view that this will be useful in telling us how risk should be

shared optimally within a payments system. The model bears some relation to the

deterministic setup in the previous section in that exchange is not possible without

some kind of monetary or payments arrangement. The key di¤erences will be that

households are randomly matched over time with would-be trading partners, and

there are idiosyncratic shocks which are private information.

There is a continuum of households with unit mass, half of whom are private-

information households (type 1), with the remaining half being full-information

households (type 2). A household of type i has preferences given by

E0(1¡ ¯i)
1X

t=0

¯ti [µ1tu(ct)¡ z(nt)];

where the functions u(¢) and z(¢) have the same properties assumed previously. For

private information households, µ1t is a preference shock: Private-information house-

holds also receive a productivity shock, µ2t; where output is produced by the house-

hold according to yt = µ2tnt: Assume that µt = (µ1t; µ2t) is an i.i.d. draw from the

distribution F (µt): There is an upper bound on labor supply, that is nt · h; where

h > 0; and the consumption good is perishable. Further, we assume that ¯1 < ¯2:1

Full-information households always have µ1t = µ2t = 1:

As in the previous setup, households consist of producer/shopper pairs. Each

shopper from a private (full) information household is randomly matched with a

1There will be a limiting distribution of expected utilities with mobility if and only if the risk

neutral agent is more patient than the risk averse agent (see Aiyagari and Williamson 1996 and

Williamson 1998).
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producer from a full (private) information household each period. Households cannot

produce for themselves.

E¢cient Allocations

As in the deterministic model, we could consider allocations here as equilibrium

allocations with di¤erent kinds of monetary/payments institutions. However, to con-

centrate on optimal risk-sharing implications, we will suppose that the payments

system operates as if there were a central planner who can communicate with all

households in the economy, but cannot transfer goods across locations (i.e. between

pairs of matched agents). The planner takes the initial distribution of expected utili-

ties across private information households, Ã0(w); as given and maximizes the initial

expected utilities of full information households, w¤ (restricted to be the same for

each full information household). The planner thus wishes to write e¢cient contracts

with private information households and, as in Aiyagari and Williamson (1996), the

fact that in each meeting there is only a one-sided asymmetry of information, and

that idiosyncratic shocks are i.i.d., implies that the planner’s contracting problem

can be solved as if a private information household were paired with the same full

information household forever.

We denote consumption and production of the private information agent at t by

ct(w0; µ
t) and nt(w0; µt) respectively, where µt = (µ0;µ1; : : : ; µt) denotes an agent’s

history of reports to date t and w0 is the private information agent’s date 0 expected

utility entitlement.

De…nition 1 For each given w0; and all t; µ
0
; an allocation that is feasible, incentive

compatible, and satis…es promise-keeping is given by a pair (c; n) is fct(w0; µt); nt(w0; µtg1t=0
such that:

w0 = E0(1¡ ¯1)
X

1
t=0¯

t
1

©
µ1tu[ct(w0; µ

t)]¡ z[nt(w0; µt)]
ª
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Et
X

1
s=t¯

s¡t
1 fµ1su[cs(w0; µs)]¡ z[ns(w0; µs)]g

¸ µ1tu[ct(w0; µ0; : : : ; µt¡1; µ
0
)]¡ z[nt(w0; µ0; : : : ; µt¡1; µ

0
)]

+Et
X

1
s=t+1¯

s¡t
1

8
<
:
µ1su[cs(w0; µ0; : : : ; µt¡1; µ

0
; µt+1; : : : ; µs)]

¡z[ns(w0; µ0; : : : ; µt¡1; µ0 ; µt+1; : : : ; µs)]

9
=
; ;

for all t; µt; and µ0;

0 · ct(w0; µ
t); nt(w0; µ

t) · h

In the above de…nition, the …rst equation is the promise-keeping constraint, the

second inequality describes the temporary incentive compatibility constraints, and

the last inequality captures the feasibility constraint.

An allocation (c; n) attains Ã0(w) for the private information agents with expected

utility for the full information agents Á(Ã0) if

Á(Ã0) = (1¡ ¯2)
1X

t=0

¯t2

Z Z ©
u[µ2tnt(w0; µ

t)]¡ z[ct(w0; µt)]
ª
dF (µt)dÃ0(w):

Next, de…ne maximized expected utility Á¤ by

Á¤ = sup
c;n
Á(Ã0):

De…nition 2 An allocation (c; n) is e¢cient if it attains Ã0(w) at a maximum ex-

pected utility for the full information agents.

Bellman equation

We consider a special case of the above model which will allow us to relate this

environment to the deterministic model studied in the previous section. Consider the

case where there are 3 states for a private information household. In state 1, µt = (1; 0)
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(the household consumes and does not produce); in state 2, µt = (1; 1) (the household

consumes and produces), and in state 3, µt = (0; 1) (the household produces and does

not consume). Following Aiyagari and Williamson (1996) and Atkeson and Lucas

(1994), the social planner’s problem can be solved as a set of component planning

problems, where it is as if a given private information household and full information

household met forever. The private information household comes into the period with

an expected utility promise w from the social planner, and receives consumption ci(w)

in state i; produces ni(w); and receives continuation expected utility wi(w):

Clearly, it is e¢cient to have c3(w) = 0 as the private information household

receives no utility from consumption in state 3 and this cannot hurt incentives. We

must have n1(w) = 0 as zero labor supply is all that is feasible in state 1. Thus, the

promise-keeping constraint for the planner is

w =
1

3

(
(1¡ ¯1) [u(c1(w)) + u(c2(w))¡ z(n2(w))¡ z(n3(w))] + ¯1

3X

i=1

wi(w)

)
:

(62)

To induce truth-telling, the contract must satisfy a set of incentive compatibility

conditions. Assuming that ni(w) > 0 for i = 2; 3; it is impossible for a private

information household in state 1 to report states 2 or 3, as it cannot produce. For it

to be in the interest of a household in state 2 to report the truth we must have

(1¡ ¯1)[u(c2(w))¡ z(n2(w))] + ¯1w2(w) ¸ (1¡ ¯1)u(c1(w)) + ¯1w1(w); (63)

(1¡ ¯1)[u(c2(w))¡ z(n2(w))] + ¯1w2(w) ¸ ¡(1¡ ¯1)z(n3(w)) + ¯1w3(w); (64)

and similarly for an agent in state 3,

¡(1¡ ¯1)z(n3(w)) + ¯1w3(w) ¸ ¡(1¡ ¯1)z(n2(w)) + ¯1w2(w); (65)
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¡(1¡ ¯1)z(n3(w)) + ¯1w3(w) ¸ ¯1w1(w): (66)

Consumption and labor supply must satisfy

0 · ci(w); nj(w) · h; for i = 1; 2; j = 2; 3: (67)

The lowest possible expected utility that can be imposed on a private information

agent is w = 0; since consumption can be reduced to zero, but households cannot be

forced to work as they can always report that the state is 1. The highest possible

level of expected utility is what the household receives if consumption is always h

and labor supply is zero, that is w = 2
3
u(h) = ¹w: The continuation expected utilities

in the contract must then satisfy

wi(w) 2 [0; ¹w]; for i = 1; 2; 3: (68)

An e¢cient contract is then the solution to the following Bellman equation

v(w) = max
1

3

8
<
:
(1¡ ¯2)[¡z(c1(w))¡ z(c2(w)) + u(n2(w)) + u(n3(w))]

+¯2
P3

i=1 v(wi(w))

9
=
; (69)

subject to (62)-(68).

Next, we wish to establish some properties of the value function v(¢); and the policy

functions ci(w); i = 1; 2; ni(w); i = 2; 3; and wi(w), i = 1; 2; 3: That a unique v(¢)
exists that is bounded, continuous, decreasing, and concave follows from applying

Theorems 9.6, 9.7, and 9.8 in Stokey, Lucas, and Prescott (1989).

Proposition 1 w1(w) · w2(w):

Proof. Suppose w1(w) > w2(w) at the optimum. Then, increase w2(w) and decrease

w1(w) by the same small amount. This relaxes constraints (63), (64), and (68), and

so (63)-(68) continue to hold. Further, (62) holds. Since v(w) is a concave function,
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the value of the objective function on the right-hand side of (69) increases, which is

a contradiction.2

Proposition 2 w1(w) · w3(w):

Proof. This follows immediately from the incentive constraint (66).2

Proposition 3 c1(w) · c2(w):

Proof. Suppose that c1(w) > c2(w) at the optimum. Then, reduce c1(w) and increase

c2(w) such that (62) continues to hold. This relaxes constraints (63) and (64), so

that (62)-(68) hold. Further, given the convexity of z(¢) and the strict concavity of

u(¢); the value of the objective function on the right-hand side of (69) increases, a

contradiction.¤

Proposition 4 If ¯1 is su¢ciently large; then n2(w) ¸ n3(w) and w2(w) · w3(w):

Proof. First, if n2(w) = n3(w) and w2(w) > w3(w); or if n2(w) < n3(w) and

w2(w) = w3(w); or if n2(w) < n3(w) and w2(w) > w3(w) then the incentive constraint

(65) does not hold. Next, suppose that n2(w) > n3(w) and w2(w) > w3(w): If ¯1 = 0;

then (65) holds, but if ¯1 = 1; then (65) does not hold: Now, (1 ¡ ¯1)[¡z(n3(w)) +
z(n2(w))] + ¯1[w3(w) ¡ w2(w)] is continuous in ¯1; and it is decreasing in ¯1 given

that n2(w) > n3(w) and w2(w) > w3(w): Therefore, for ¯1 su¢ciently large, (65)

does not hold if n2(w) > n3(w) and w2(w) > w3(w): Finally, if n2(w) < n3(w)

and w2(w) < w3(w); then for ¯1 = 1 the incentive constraint (64) does not hold.

Then, by continuity (64) does not hold for ¯1 su¢ciently large if n2(w) < n3(w)

and w2(w) < w3(w): We therefore conclude that, if ¯1 is su¢ciently large, then

n2(w) ¸ n3(w) and w2(w) · w3(w) are necessary in order for the incentive constraints

(64) and (65) to hold.2
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Propositions 1-4 tell us that, if ¯1 is su¢ciently large, then the optimal contract

between the social planner and an individual private information household satis…es

several intuitively-appealing properties. We can think of state 1 as corresponding

to a state of the world where the private information household makes a transaction

(consumes), but cannot settle the transaction in the current period (cannot produce).

It is optimal for the payments system to insure against this state by permitting the

household to make a transaction in this state even though the household cannot settle,

but there is an incentive problem in that the planner does not want households in

states 2 and 3 to claim that they are state 1 households so as to avoid producing.

The incentive problems are solved by allowing the state 2 household to make a larger

transaction than the state 1 household (c2(w) ¸ c1(w)); and permitting the state 2

household and the state 3 household to make larger transactions and produce less in

the future than does the state 1 household (w2(w) ¸ w1(w) and w3(w) ¸ w1(w)):

There are further incentive problems in that the planner does not want a state 3

household to misreport that it is a state 2 household, and vice-versa. Provided

that the discount factor of a private information household is su¢ciently high, these

incentive problems are solved by having the state 3 household produce less and receive

a higher continuation utility than the state 2 household. Thus, the ability to produce

during the current period always increases a household’s current consumption and

its claims to future consumption, and if the household does not consume during the

current period this reduces its current production and increases future claims on

consumption.

Examples

To illustrate the features of an optimal contracts, we compute two examples, using

methods similar to those in Aiyagari and Williamson (1999) and Williamson (1998).

We choose a constant absolute risk aversion utility function, u(c) = 1 ¡ e¡®c; where
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® > 0; and a quadratic disutility of labor function, z(n) = °n2; where ° > 0; and set

® = ° = 1:

In the …rst example, we choose ¯1 = :5 and ¯2 = :6: Also, we choose h = 1; but

the constraint on hours worked did not bind in the solution. Here, since the discount

factor of the private information household is small, intertemporal incentives will not

work well. The binding incentive constraints are (except at the lower boundary on

expected utilities) (63) and (65), that is the key incentive problem in the example

involves keeping producers from reporting that they are non-producers. In Figure

2, note that consumption is higher in state 2 than in state 3, which induces the

household in state 2 to report the truth. Also, labor supply is higher in state 2 than

in state 3. The incentive constraint (65) does not bind, so this cannot be the reason

why n2 > n3: However, since (63) and (65) bind, a household in state 2 can then be

induced to report the truth by giving her more consumption in state 2 than in state

1 and requiring her to work less in state 2 than might otherwise be the case. For an

agent in state 3, within-period incentives can be generated only by lowering n3; so

we have n2 > n3.

In Figure 3, we have w1 < w2 < w3; which again is the result of binding incentive

constraints. The continuation utility of a household in state 3 is higher than for

a household in state 1 to provide the state 3 household intertemporal incentives to

report the truth. The same applies to state 2 versus. state 1. We have w2 < w3 as

the household in state 2 receives an intratemporal incentive which the household in

state 3 does not, i.e. c1 < c2: Thus, intertemporal incentives are used more for the

state 3 household.

Figure 4 shows the limiting distribution of expected utilities for private information

households. Note that a signi…cant fraction of households are “credit constrained,”

i.e. they are at the lower bound on expected utilities, and they consume zero in state

1 when they cannot produce.
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In the second example, we use the same period utility function and have higher

discount factors, i.e. ¯1 = :99 and ¯2 = :991: In Figure 5 we show consumption

and labor supply for private information households. Here, note that risk-sharing

is much better than in the previous example, due to the fact that, with a higher

discount factor for private information households, intertemporal incentives are more

e¤ective. Figure 6 shows the resulting limiting distribution of expected utilities for

private information households.

Discussion

Households in this economy are tied together through randomly constructed chains

of transactions. The structure of the optimal allocation mechanism implies imperfect

risk-sharing among households, so that one household’s bad or good luck will a¤ect

the households that are engaged with that household in transactions, inde…nitely

into the future. For example, if a household has a long string of periods with an

urgent need to consume, this will imply that the household’s claims on consumption

through the payments system will be lower than otherwise in the future, and that the

household must supply more output than otherwise to the payments system. That

is, the household’s future trading partners will receive more consumption and have to

produce less than would otherwise be the case. Thus, payments system risk is shared

through the chain of transactions.

In some policy discussions of payments system design (e.g. Greenspan 1996) it

seems to be taken as given that it is optimal to minimize payments system credit bal-

ances and the risk borne by the payments system as a whole. A message that should

be taken from this model is that the optimal mechanism for solving payments system

incentive problems involves credit and risk-bearing in an important way. Payments

system participants should not be encouraged to seek credit and insurance contracts

outside the payments system; in fact, the payments system will work more e¢ciently
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if credit contracts and insurance contracts are an integral part of the relationship

among the participants.

4. CONCLUSION

Here, we have looked at two models which capture di¤erent aspects of payments

system design. In a deterministic model with spatial separation and an absence-

of-double-coincidence problem, we have shown how a payments system can improve

e¢ciency by substituting for currency transactions. The model illustrates the role

of net settlement systems and shows why, in an environment without risk, imposing

settlement is ine¢cient. In a random matching model with private information,

we modeled an e¢cient payments system as a solution to a social planner’s dynamic

contracting problem. Credit arrangements and insurance within the payments system

were key to mitigating the incentive problems implied by private information. Key

elements of an e¢cient payments system were credit limits and insurance against the

inability to settle transactions.

We think that these models are potentially useful for addressing other problems in

monetary economics and in the economics of payments systems. For example, the

deterministic model with spatial separation might be used to analyze the role of cen-

tral bank intervention through the payments system. As well, the random matching

model with private information might be extended to address issues associated with

payments system risk. For example, suppose there is idiosyncratic risk and trans-

actions relationships take a form similar to those in the …rst model, with repeated

transactions between the same households rather than random matching. Then it is

possible that idiosyncratic shocks could be propagated from household to household

and over time, potentially with ampli…cation of these shocks. The question then is

whether such “systemic risk” phenomena represent a policy problem or not.
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Figure 2: Consumption and Labor Supply
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Figure 4: Limiting Distribution
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Figure 5: Consumption and Labor Supply
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