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1 Introduction

The theoretical literature on bank runs is based on the early work of Bryant (1980) and the

now classic model of Diamond and Dybvig (1983) — henceforth DD. While DD claim that

with simple deposit contracts bank runs are possible, they show that bank run equilibria can

be avoided with more sophisticated mechanisms that allow for the suspension of convertibil-

ity. When the fraction of impatient depositors is random, DD find that government-provided

deposit insurance can eliminate runs and achieve the full-information first best. In two im-

portant papers, Wallace (1988, 1990) argues that the sequential service constraint should

apply to the government as well as the bank, in which case the full-information first-best

allocation is not achievable.1 The constrained-efficient contract entails partial suspension of

convertibility. Green and Lin (1996) extend Wallace’s framework to include more general

distributions. They show that the constrained-efficient outcome can always be implemented

by a mechanism that employs partial suspension of convertibility and excludes bank runs.2

Cooper and Ross (1998) do find equilibrium bank runs, but their banks are restricted to

simple deposit contracts that do not allow for suspension of convertibility.

Our goal is to put “runs” back in the bank runs literature. In particular, we investigate

the possibility of equilibrium runs on banks that can write sophisticated contracts in which

the current withdrawal depends on the history of withdrawals; if a bank is restricted to only

very simple deposit contracts, these simple contracts are not optimal in a broader sense.

Bank runs are historical facts. If bank runs were impossible, then much of banking policy

would be directed toward a non-issue. In our model, equilibrium bank runs are possible

and government policies that restrict banks to holding only (lower-yield) liquid assets might

1See also McCulloch and Yu (1998).

2Other authors analyze market based solutions in which it is assumed that patient depositors always wait
before withdrawing their funds. See, e.g. Jacklin (1987) and Diamond (1997). In this literature, runs are
assumed away.
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actually increase the likelihood of bank runs.3

We build on the basic DD model and its successors, but there are significant differences:

(1) In DD, banks provide insurance against the event that a consumer becomes impatient

and must do her consumption “early” (if patient, she consumes “later”). We follow DD in

building our model upon the stochastic nature4 of some urgent consumption opportunities or

urgent needs, but we modify the model to capture the transactions and payments roles played

by checking accounts. For us, a depositor facing a consumption opportunity is someone who

requires immediate liquidity to make an important purchase or someone taking advantage

of the convenience of writing a check. The benefits of a demand deposit account would be

severely limited if 100% payment were not made by the bank: either the cash transaction

could not be completed or the check would bounce. We attempt to capture the payment

role of banks by assuming that when the consumer finds a “consumption opportunity” it

is of the nature of an indivisible good. We assume that the impatient consumers find their

consumption opportunities in the first period, while the patient consumers find their con-

sumption opportunities in the second period. In another departure from DD and as a proxy

for more complete intertemporal analysis, we assume that all consumers value “left-over”

consumption goods (beyond the demand for funds to finance these indivisible consumption

opportunities) in the final period.5 Utility is assumed to be a strictly concave function of

“left-over” consumption.

(2) We allow for intrinsic uncertainty: in particular, we allow the proportion of impatient

3Diamond and Rajan (1998) develop a model in which the possibility of a bank run affects bankers’
bargaining power in renegotiating loan contracts with borrowers. If a run occurs, depositors capture the
loans and renegotiate with borrowers directly. However, it is the threat of a run that disciplines bankers,
and a run can not occur in equilibrium.

4For a general-equilibrium analysis of this type of intrinsic uncertainty, see Peck (1996).

5Our motivation is somewhat different, but our utility specification is a special case (except for the
indivisibilities) of those in Jacklin (1987) and Wallace (1996).
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consumers to be random.6 We introduce a publicly observed extrinsic (or sunspots) random

variable on which depositors can coordinate their actions. It seems to us that it is the

combination of intrinsic uncertainty and extrinsic (or strategic, market) uncertainty that

is essential to financial intermediation — especially to the potential fragilities in financial

intermediation.

(3) We assume that there are two assets: one based on a liquid, lower-return technology

and the other based on an illiquid, higher-return technology.7 We introduce an ad hoc

(possibly zero) cost to the bank of serving as a consolidated or unified financial institution

that holds both types of investments. We also allow for the possibility that the government

might restrict banks to holding only the liquid asset in their portfolios.

(4) We follow Wallace and others in treating the bank’s deposit contract as a mechanism,

but we place some restrictions on this mechanism. While the bank must satisfy sequential

service, we do not allow the bank to punish customers who were denied service in period 1

or who refused service in period 1. We also assume the bank is not allowed to offer pure

lotteries in its deposit contract.

We analyze two financial systems. In the first, the unified financial system, the bank

provides payment services and invests in both types of assets. In the second, the separated8

financial system, the bank provides payment services but only invests in the liquid asset.

The separated financial system might emerge because of regulations which restrict bank

6See also DD, Green and Lin (1996), and Wallace (1988, 1990).

7This two-technology approach was used by Wallace (1996). The restrictions on the bank in Wallace’s
formal models are different from ours. See also Cooper and Ross (1998).

8Our separated financial system yields a bank that is close to what advocates of narrow banking recom-
mend, although Friedman would perhaps restrict banks from holding government bonds. See the introduction
to Wallace (1996). The differences are largely of interpretation. We are thinking that the separated bank
does not hold the most illiquid assets in its portfolio, while the narrow bank is restricted to holding only the
most liquid assets. Of course, with only two asset types, these ideas are the same. Nonetheless, advocates
of narrow banking should be startled by our results.



4

investment to relatively liquid assets or because the real (nonregulatory) costs of financial

integration lead to a separated financial system.

The unified bank can easily eliminate runs, but its constrained-efficient contract does

allow for non-run rationing9 of impatient customers when the proportion of impatient cus-

tomers is large. For the separated bank, the constrained efficient contract allows for runs with

sufficiently small probability. Consumers are rational depositors in such banks. Compared

to a unified bank with no extra transactions costs, the separated financial system heavily

overinvests in the more liquid asset. For this reason, non-run rationing in the separated bank

is impossible or extremely unlikely.

The social policy implications of this analysis might be surprising — at least to some

of the early proponents of narrow banking. If the government restricts banks to holding

only the more liquid assets, then either this restriction will have no effect because the real

costs of unification are high or this restriction will make the financial system more fragile by

introducing a positive probability of bank runs.

2 The Model

There are three periods and a continuum of consumers (the potential bank depositors) rep-

resented by the unit interval. In period 0, each consumer is endowed with y units of the

consumption good. A fraction α of the consumers is impatient : each of these has an urgent

need for 1 unit of consumption in period 1. The remaining consumers are patient: each

of these has an urgent need for 1 unit of consumption in period 2.10 Beyond these urgent

9This type of rationing is socially desirable since otherwise there would be overinvestment in preparation
for the worst case outcome. Champ, Williamson, and Smith (1996) argue that large real shocks that neces-
sitate rationing should be called panics. Thus, our unified financial system can avoid extrinsic panics of the
self-fulfilling DD variety, but opens up the possibility of intrinsic panics and rationing.

10A slightly more realistic version would break the strict dichotomy between patient and impatient con-
sumers. In each of several periods, each consumer has a probability of an urgent opportunity. This proba-
bility well might depend on the consumer’s past history, but would not necessarily be zero even if an urgent
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“consumption opportunities,” both types of consumers derive utility from additional con-

sumption in period 2, and can costlessly store consumption across periods. Thus, impatient

and patient consumers, respectively, have the reduced form utility functions:

UI(C
1
I , C

2
I ) =


ū+ u(C1

I + C2
I − 1) if C1

I ≥ 1

u(C1
I + C2

I ) if C1
I < 1

(1)

and

UP (C1
P , C

2
P ) = ū+ u(C1

P + C2
P − 1),

where Ct
i is the total withdrawal of a type i consumer from the bank in period t. I stands for

impatient and P stands for patient. The positive scalar ū is the utility from the (indivisible)

consumption opportunity. Specification (1) is based on the assumption that the patient

consumer will always be able to afford her consumption opportunity, and that ū is high

enough so that it is optimal to undertake available consumption opportunities. We assume

that u is an increasing, smooth, and strictly concave function of “terminal” (or “left-over”)

consumption, so we have u′ > 0 and u′′ < 0.

Let f denote the probability density function for α, the fraction of the consumers who

become impatient, which is assumed to be continuous and have support [0, ᾱ]. In keeping

with our assumption that consumers are identical, ex ante, we have the following process

in mind.11 First, nature determines α according to f . Then, nature selects each particular

consumer to be impatient with probability α and patient with probability (1−α). Conditional

on being patient, the density for α, denoted as fP , can be calculated as

consumption occurred in the past.

11The continuum model is convenient, but there are technical issues regarding the law of large numbers
which we ignore. Our main results still hold with a finite number of consumers, although the expressions
and calculations become more complicated.



6

fP (α) =
(1− α)f(α)∫ ᾱ

0
(1− a)f(a)da

.

A consumer’s type is her private information.

There are two constant-returns-to-scale technologies, an illiquid, higher-yield technology,

A, and a liquid, lower-yield technology, B. Investing 1 unit of period-0 consumption in

technology A yields RA units of consumption in period 2. Investing 1 unit of period-0

consumption in technology B yields RB units of consumption if held until period 2, or 1 unit

of consumption if harvested in period 1. We assume that 1 < RB < RA holds.

In period 0, the bank designs a demand-deposit contract, which we call the banking

mechanism. We assume that the bank seeks to maximize the ex-ante expected utility of

consumers. The banking mechanism must respect the following timing considerations. In

period 0, consumers must be willing to make the required deposit12. At the beginning of

period 1, each consumer (now a depositor) learns her type and decides whether to arrive at

the bank in period 1 or period 2. Consumers who choose period 1 are assumed to arrive

in random order. Let zj denote the position of consumer j in the queue. Because of the

sequential service constraint, consumption must be allocated to consumers as they arrive

to the head of the queue, as a function of the history of transactions up until that point.

We further assume that consumer j’s withdrawal can only be a function of her position,

zj
13, and that she has an opportunity to refuse to withdraw and return without prejudice in

12A consumer could invest her endowment herself, instead of dealing with the bank. It does not matter
whether or not we allow a consumer to access technology B privately, but we do require that unharvested
“trees” cannot be traded. This is to rule out the case in which a patient depositor (claiming to be impatient)
trades period-1 consumption withdrawn from the bank for unharvested trees. Jacklin (1987) has shown that
such a market undermines the optimal contract, and his argument applies to our setting as well. Ruling out
this asset market is merely to posit that only banks can provide the liquidity necessary to pay for urgent
consumption opportunities.

13From a mechanism design standpoint, it might seem strange not to allow consumers to send messages
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period 2. The bank cannot keep track of how many consumers have refused.14 Let α1 denote

the measure of consumers who have made a withdrawal in period 1. In period 2, the bank

chooses how to divide its remaining resources between those who have withdrawn in period

1 and those who have not.15

A contract specifies the fraction of a consumer’s endowment invested in technology B,

denoted by γ; her withdrawal in period 1 as a function of her arrival position, denoted by

c1(z); and her withdrawal in period 2 from technology B investments as a function of α1

and whether the consumer made a withdrawal in period 1 or not, denoted respectively by

c2
I(α1) and c2

P (α1).16 That is, a consumer who receives c2
I(α1) from technology B investments

receives a total withdrawal in period 2 of C2
I (α1) = c2

I(α1)+(1−γ)RAy. Similarly, a consumer

who receives c2
P (α1) from technology B investments receives a total withdrawal in period 2

of C2
P (α1) = c2

P (α1) + (1− γ)RAy. We assume that parameters are such that nonnegativity

constraints C2
I (α1) ≥ 0 and C2

P (α1) ≥ 0 never bind.

For a mechanism to be feasible, all remaining resources must be distributed in period 2.

Letting λ denote a fixed transactions cost, to be motivated below, we then have

α1c
2
I(α1) + (1− α1)c2

P (α1) = [γy −
∫ α1

0

c1(z) dz]RB − λ. (2)

to the bank. This is almost without loss of generality, since consumers will send whatever message gives
them the most consumption. However, we are ruling out the bank offering a lottery to learn a consumer’s
type, and punishing consumers in period 1 after a patient consumer has arrived. Besides being costly to
implement, these lotteries and punishments hardly correspond to accepted conservative banking practices.

14Thus, zj should really be interpreted as the measure of consumers who have already withdrawn from
the bank in period 1 before consumer j has an opportunity to withdraw. The purpose of this restriction is
to disallow the bank from telling a customer during a run that they may not withdraw in period 1 and that
they also forfeit their claims to consumption in period 2.

15In principle, what a consumer receives in period 2 could depend on how much she received in period 1,
and not just on whether she made a withdrawal. This distinction is not important here, since the optimal
contract always provides 1 unit of consumption in period 1 until the bank runs out.

16Here, in a slight abuse of notation, the subscripts I and P refer to consumers claiming to be impatient
and patient respectively.
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Thus, the space of contracts or mechanisms, M , is given by

M = { γ, c1(z), c2
I(α1), c2

P (α1) | Equation (2) holds for all α1 }.

We have two financial systems in mind. First, in the separated financial system, consumers

place a fraction (1− γ) of their wealth in technology A, whose return cannot be touched by

the bank. In terms of resource constraint (2) this is equivalent to imposing the additional

constraints: c2
P (α1) ≥ 0 and, more importantly, c2

I(α1) ≥ 0. Combined with incentive

compatibility, these additional constraints give rise to the overinvestment in technology B

and the possibility of bank runs. Offsetting the inefficiencies caused by separation, the

transactions cost might be less in the separated system. Hence we normalize transaction

costs to be zero in the separated system; if λ is positive, it is the transactions cost incurred

by the unified system beyond those incurred by the separated system.

Second, under the unified financial system, the bank is able to invest in both technologies.

This allows the bank a great deal of flexibility to smooth consumption and prevent runs.

For example, when ᾱ consumers arrive in period 1 (the worst case scenario), the bank can

liquidate all of its technologyB holdings, but differentially reward consumers from technology

A in period 2. Consumers who arrived in period 1 might receive less than (1 − γ)RAy in

period 2, while consumers who waited might receive more than (1 − γ)RAy. In terms of

resource constraint (2) this is equivalent to allowing c2
P (α1), or, more importantly, c2

I(α1), to

be negative.

The unified system can be interpreted in several ways. The most straightforward inter-

pretation is that the bank is allowed to hold technology A assets (stocks or mutual funds)

as part of its portfolio. Another interpretation is that the bank can write subordinated debt

contracts with firms investing in technology A, whereby the bank receives period-2 con-

sumption in the event that sufficiently many consumers arrive in period 1. We allow for the

possibility that the unified system might incur transactions costs beyond those incurred in
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a separated system. Thus, λ could represent the cost of writing and enforcing subordinated

debt contracts, or the cost associated with the bank’s moral hazard problem with respect

to the issuers of subordinated debt contracts. Under the interpretation in which the bank

directly holds technology A assets, λ could represent the cost associated with combining or

linking a depositor’s several accounts, or the cost associated with the bank’s increased moral

hazard problem with respect to its depositors.17

Definition 2.1: Consider either a unified financial system or a separated financial sys-

tem, and a contract m ∈ M . Then m is said to have a run equilibrium if there is a perfect

Bayesian equilibrium of the post-deposit game in which all consumers arrive in period 1 and

a positive measure of patient consumers withdraw in period 1.

Our definition of run equilibrium requires all patient consumers to choose period 1. They

are not all required to withdraw, since the bank might very well offer zero consumption after

ᾱ of the consumers have made withdrawals (and a hence run is known to be in progress).

We require a positive measure of patient consumers to withdraw, to rule out the degenerate

case in which patient consumers arrive in period 1 with the intention of refusing all offers,

since this is equivalent to waiting until period 2. Following the literature, we focus for the

moment on the post-deposit game. In Section 5, with the help of extrinsic uncertainty we

analyze equilibrium runs in the full pre-deposit game.

3 The Unified System

In this section, we describe the planner’s problem, the solution to which yields the optimal

contract for the unified system. The optimal contract very nearly, but not quite, attains

17Plausible parameters yield an optimal contract in the separated system that pays a real interest rate
whose expectation is near zero and whose variance is small. In the unified system, the range of second-period
consumption is much greater, as is the temptation for the bank to cheat. See Calomiris and Kahn (1991)
for an explicit analysis of moral hazard issues and embezzlement in banking.
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the full-information optimal outcome in equilibrium. Although we do not rule out a run

equilibrium at the optimal contract, we will argue that this possibility is not quantitatively

interesting. On the other hand, we demonstrate below that the optimal contract entails a

positive probability of (non-run) rationing of consumers in period 1.

We restrict attention to environments in which it is beneficial to provide for consumption

opportunities whenever the resources are available. It is then clearly desirable that the

impatient consumers choose period 1 and the patient consumers choose period 2 for making

their urgent withdrawals. Since the amount of a withdrawal in period 1 greater than one

unit would be stored for period 2, there is no reason for the bank to provide more than one

unit in period 1; hence we have yγ ≤ ᾱ. Thus we can restrict the search to contracts in

which we have

c1(z) = 1 for z ≤ γy. (3)

Given (3) and the fact that patient consumers wait until period 2, the ex ante welfare W of

the planner is given by

W =

∫ γy

0

[ū+ (1− α)u((1− γ)yRA + c2
P (α)− 1) + αu((1− γ)yRA + c2

I(α))]f(α)dα

+

∫ ᾱ

γy

[(1− α + γy)ū+ (1− α)u((1− γ)yRA + c2
P (α)− 1) (4)

+ (α− γy)u((1− γ)yRA + c2
P (α)) + γyu((1− γ)yRA + c2

I(α)] f(α)dα.

Maximand (4) captures the fact that impatient consumers who are rationed in period 1

cannot be prevented from receiving the (higher) consumption that the patient consumers

receive in period 2. The only incentive compatibility constraint to worry about is that a

patient consumer must be better off waiting until period 2 than accepting one unit in period

1, given that the other patient consumers wait. Thus, we have
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∫ ᾱ

0

u(c2
P (α) + (1− γ)yRA − 1)fP (α)dα ≥

∫ γy

0

u(c2
I(α) + (1− γ)yRA)fP (α)dα

+

∫ α

γy

(γy/α)u(c2
I(α) + (1− γ)yRA) + (1− γy/α)u(c2

P (α) + (1− γ)yRA − 1)fP (α)dα. (5)

Resource constraint (2) can be simplified to yield

αc2
I(α) + (1− α)c2

P (α) = (γy − α)RB − λ if α ≤ γy

αc2
I(α) + (1− α)c2

P (α) = −λ if α > γy.
(6)

The optimal contract under the unified system is the solution to the following planner’s

problem:

max γ,c2I ,c
2
P
W

subject to 5 and 6. (7)

The next theorem establishes that the optimal contract necessarily rations consumers in

period 1 when the number of impatient consumers is sufficiently large, i.e. the realization

of α is close to its maximum. The intuition for this result is that, if consumers were never

rationed (no matter the realization of α) in period 1, then society through over-caution would

be over-investing in the liquid technology, B.

Theorem 3.1: In the optimal contract for the unified system, consumers in period 1 are

rationed when the realization α is sufficiently close to its maximum possible value, ᾱ. That

is, for optimality in the unified system, we have γy < ᾱ.

Proof: Suppose that, at the optimal contract, γy = ᾱ holds. We will treat γ as a

parameter, consider the problem of choosing the allocation that maximizes W subject to

(5) and (6), and show that ∂W/∂γ, evaluated at γ = ᾱ/y, is negative. From the envelope

theorem, we will conclude that the optimal γ is strictly less than ᾱ/y.
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Given γ = ᾱ/y, the functions {c2
I(α), c2

P (α)} that maximize W subject only to resource

constraint (6) entail full consumption smoothing. That is, we have

c2
I(α) = c2

P (α)− 1 for all α. (8)

However, the allocation defined by (6) and (8) also satisfies the incentive compatibility

constraint (5), and therefore solves the more tightly constrained problem, (7). Plugging (6)

and (8) into the expression for W , and differentiating with respect to γ, we have(
∂W

∂γ

)
γ=ᾱ/y

=

∫ ᾱ

0

y(RB −RA)u′[c2
P (α)− 1 + (y − ᾱ)RA]f(α)dα < 0.

Clearly, any contract for which we have γy > ᾱ is inferior to the one characterized by (6) and

(8), since the former provides fewer resources available in period 2, with no compensating

advantage in terms of consumption smoothing in period 2 or provision of consumption in

period 1. �

The proof of Theorem (3.1) suggests that we can approximate the optimal contract by

one that offers complete consumption smoothing, according to (6) and (8). Since the patient

consumers receive the same consumption, whether they arrive in period 1 or period 2, it is

obviously incentive compatible. It would be fully optimal as well, if not for the fact that

some impatient consumers are rationed in period 1 when the realization of α is close to ᾱ.

A planner who could observe consumers’ types would give these rationed consumers c2
I(α),

but they instead receive c2
P (α), which is one unit too much. Thus, for those few states in

which rationing occurs, a few impatient consumers would have marginal utility below that

of the other consumers. A slight increase in c2
I(α) and reduction in c2

P (α), in states where

rationing occurs, would yield higher welfare. However, we show below in example (3.2) that

the dropoff in welfare is negligible in practice.18

18Calculating the exact optimal contract is difficult, because the small adjustments described here cause
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In the next example, we specify the following basic parameters: the utility function u(c),

the utility from satisfying the urgent opportunity ū, the interest factor on the illiquid asset

RA, and f(α). We then compute (or at least approximate) the function γ invested in the

liquid asset and welfare W as functions of the interest factor RB on the liquid technology

and the transaction cost of financial unification λ.

Example 3.2: Consider the following parameter specification:

y = 10, u(c) = 100 log(c)− 249, ū = 20, RA = 1.1,

uniform distribution with ᾱ = 0.5: f(α) =


2 for α ∈ [0, 0.5]

0 otherwise.
(9)

For the unified financial system, we compute γ, the proportion of wealth invested in tech-

nology B and the ex-ante welfare of consumers W for different values of the ad hoc cost

of integration λ, and the interest factor RB on the liquid technology. We do not compute

directly the solution to planning problem (7), but we compute instead tight upper and lower

bounds on the optimal solution. As a lower bound, we compute the values of γ and W for

the optimal contract involving full consumption-smoothing, (6) and (8), which is feasible

and incentive compatible. As an upper bound, we compute the optimal contract when the

planner has full information about each consumer’s type. The only distinction between the

two contracts is that the “full consumption smoothing” contract is unable to distinguish be-

tween patient consumers and impatient consumers who were unable to receive consumption

incentive compatibility to be (barely) violated. Further changes in the allocation and possibly γ are required
to reestablish incentive compatibility. We conjecture that the optimal contract will actually have a run
equilibrium, since incentive compatibility when the patient wait is probably less restrictive than when there
is a run. We do not explore these issues here, because the unified system is nearly full-information efficient
(except for λ), and runs can be avoided at negligible resource cost.
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in period 1. Since the probability of being an impatient consumer who is rationed is less

than 0.002, and the imbalance in marginal utilities is small even in these circumstances, the

two contracts yield nearly identical values for γ and W .

Our results are summarized in Table 1.19

“Cons. Smoothing” lower bound “Full Information” upper bound
γ W γ W

RB = 1.05
λ = 0

0.04747180271 0.8891732 0.04734903564 0.8893609

RB = 1.05
λ = 0.01

0.04746679331 0.7886871 0.04734341373 0.7890072

RB = 1.05
λ = 0.02

0.04746176340 0.6881982 0.04733776756 0.6885445

RB = 1.08
λ = 0

0.04895748003 0.9590241 0.04890419892 0.9590912

RB = 1.08
λ = 0.01

0.04895534931 0.8587239 0.04890179176 0.8587233

RB = 1.08
λ = 0.02

0.04895320845 0.7582438 0.04889937484 0.7583353

Table 1: The Liquidity Proportion γ and Welfare W in the Unified System

Table 1 indicates that the difference in welfare between the “full-consumption-smoothing”

lower bound and the “full-information” upper bound is several orders of magnitude less

important than the effects of modest changes in RB or λ. The tightness of these welfare

bounds will allow us, in section 4, to compare the optimal contract for the unified system

with the optimal contract for the separated system.

The relatively small change in λ from 0.01 to 0.02 has a large impact on welfare relative

to its impact on γ. This makes sense, because λ represents a fixed resource cost, which

directly reduces welfare by approximately (0.01) multiplied by marginal utility evaluated

19Computations were made using Maple version 5 running on Windows 95. The code is available from the
authors for the purposes of replicating the results.
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at consumption of 10, which is (0.01) × 100/10 = 0.1. The impact on γ is a second-order

effect. Second-period consumption is reduced when λ increases, so marginal utility is slightly

higher. Thus, the tradeoff between the higher yields in technology A versus the higher

risk of rationing impatient consumers in period 1 tilts slightly towards more investment in

technology A and lower γ. Notice also that an increase in RB increases welfare, due to the

higher yield on technology B investments, and increases γ, because reducing the probability

of rationing consumers in period 1 is now less costly, because the gap between the yields in

technologies A and B has been reduced. The optimal γ is less than 0.05, which follows from

Theorem (3.1) and the parameter specification, ᾱ/y = 0.5/10 = 0.05. The fact that γ is

close to .05 indicates that the probability of rationing is small at the optimal contract. The

intuition is that, at the margin, the loss of ū multiplied by the probability of rationing is

traded off against the difference in yields, RA−RB. Whenever the consumption opportunity

is important relative to RA −RB rationing will be unlikely.

4 The Separated System

Here we assume that the bank cannot gain access to the funds invested in technology A.

One motivation for this restriction is that the bank chooses not to incur transactions costs,

such as the costs associated with writing subordinated debt contracts with other financial

institutions. Another type of transactions cost lies in committing not to cheat depositors,

i.e., preventing false claims by the bank of a large number of early withdrawals that would

necessitate small second-period withdrawals. (As Example 4.4 below demonstrates, the real

return on deposits is likely to be fairly predictable in the separated system, so the cost of

committing not to cheat might be smaller.) Under this interpretation, the optimal system

depends on the transactions cost λ.

Another motivation for the analysis of the separated system is the presence of legal re-

strictions on the activities of banks. For example, we can interpret the Glass-Steagall Act as
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preventing banks from directly investing in technology A, and circumventing these restric-

tions might be costly. Under this interpretation, removing these statutory and regulatory

restrictions might result in the emergence of the unified system. A comparison of the sep-

arated system to the unified system with λ = 0 might indicate how costly the restrictions

are, and how banking institutions might evolve if we eliminated the restrictions.

As in Section 3, we restrict attention to environments in which it is optimal to provide

one unit of consumption to consumers arriving in period 1. However, since second-period

withdrawals from the bank must come from technology B investments that were not har-

vested in period 1, the separated system is quite different from the unified system. When

α is high enough, some impatient consumers are rationed in the unified system, yet full

consumption smoothing is possible. When α is high in the separated system, it may be im-

possible to provide those arriving in period 2 with one unit of consumption from technology

B investments, so full consumption smoothing may be impossible. “Excessive” investment

in technology B may be necessary in order to satisfy incentive compatibility, so the optimal

contract may require γy > ᾱ. Finally, the optimal contract may be subject to bank runs, as

long as the runs are sufficiently infrequent.

In the separated system, ex-ante welfare, the incentive compatibility constraint, and the

resource constraint are as given in expressions (4), (5), and (6), where we set λ = 0. The

restriction that the bank cannot gain access to investments of technology A is expressed

simply as follows:

c2
I(α) ≥ 0 and c2

P (α) ≥ 0 for all α. (10)

Notice that constraints (6) and (10) imply c2
I(α) = c2

P (α) = 0 for α > γy. If all of the

technology B investments are liquidated in period 1, then withdrawals from the bank must

be zero in period 2. The optimal contract under the separated system is the solution to the
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following planner’s problem:

max γ,c2I ,c
2
P
W (11)

subject to (5), (6), and (10).

In the unified system, all of the technology B investments are harvested and some con-

sumers are rationed in period 1 when α is sufficiently high. In the separated system when

α is close to ᾱ, it is typically the case that not all technology B investments are harvested

and no one is rationed. The intuition is that more investment in technology B is needed in

order to satisfy incentive compatibility without using technology A resources. While some

technology B investments may remain for patient consumers in state ᾱ, the next lemma

establishes that in state ᾱ the consumers who choose period 1 withdraw more than those

who choose period 2.

Lemma 4.1: The optimal contract in the separated system, which solves problem (11),

satisfies c2
P (ᾱ) < 1.

Proof: Suppose instead that (c2
P (ᾱ))∗ ≥ 1 holds at the optimal contract, m∗, and let

γ∗ be the optimal value of γ. Since resources remain in period 2, it follows that ᾱ ≤ γ∗y.

Treating γ as a parameter, let W (γ) denote welfare, as a function of γ, which solves:

max c2I ,c
2
P
W (12)

subject to (5), (6), and (10).

The optimal consumption allocation in m∗ must solve (12) for γ = γ∗. Given γ∗, and for

α ≤ ᾱ, the solution to (12) must offer full consumption-smoothing. That is, consumption in

state α is uniquely determined by (6) and

(c2
P (α))∗ = 1 + (c2

I(α))∗ (13)
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This is because, given γ∗, choosing consumption according to (6) and (13) maximizes welfare

subject only to the resource constraint. However, inequality (5) is satisfied because patient

consumers are indifferent between arriving in period 1 and period 2, and the inequalities in

(10) are satisfied because (c2
P (α))∗ ≥ 1, so we know that (c2

I(α))∗ ≥ 0 for all α . Therefore,

given γ∗, choosing consumption according to (6) and (13) is optimal for the more tightly

constrained problem (12). It also follows that the Lagrangean multipliers on constraints (5)

and (10) are zero. Using (6) and (13) and applying the envelope theorem, one can show:

W ′(γ∗) = y(RB −RA)

∫ ᾱ

0

u′[(1− γ∗)yRA + (γ∗y − α)RB + α− 1]f(α)dα < 0.

However, it follows that reducing γ improves welfare, contradicting the fact that γ∗ is

part of the optimal contract, m∗. �

The intuition behind Lemma (4.1) is that too much is invested in technology B if patient

consumers arriving in period 2 receive at least 1 unit of consumption in state ᾱ. Reducing

γ does not lead to rationing, and yields a higher return on investment. The only reason to

save any consumption at all for period 2 in state ᾱ is to satisfy non-negativity and incentive

compatibility constraints. Since these constraints are not binding if (c2
P (ᾱ))∗ ≥ 1 holds, too

much has been invested in technology B. Applying Lemma (4.1), we next show that the

optimal contract in the separated system always admits a run equilibrium.

Theorem 4.2: The optimal banking contract in the separated financial system has a

run equilibrium.

Proof: We know that the optimal contract satisfies c1(z) = 1 for all z ≤ ᾱ . Since we

are considering the possibility of runs here, a patient consumer’s decision to arrive in period

1 must also take into account c1(z) for all z > ᾱ . Let z∗ be the smallest value of z, greater

than or equal to ᾱ, such that the following inequality holds

c1(z) ≤
[γy − ᾱ−

∫ z
ᾱ
c1(a)da]RB

1− z
. (14)
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If there is no value of z satisfying (14), define z∗ to equal 1. From Lemma (4.1), we know

that c2
P (ᾱ) < 1 holds at the optimal contract. We must also have c2

I(ᾱ) = 0, or else higher

welfare can be achieved by transferring consumption from those who arrived in period 1

to those who did not, while continuing to satisfy the constraints.20 It follows that, setting

z = ᾱ, the left side of (14) is equal to unity, and the right side of (14) is equal to c2
P (ᾱ).

Since inequality (14) is not satisfied, we have z∗ > ᾱ.

We claim that there is a run equilibrium, in which all consumers arrive in period 1. Those

for whom zj < z∗ holds accept c1(zj), and those for whom zj ≥ z∗ holds refuse c1(zj) and do

not withdraw in period 1.

Without loss of generality, we can assume c2
I(z) = 0 for z > ᾱ , because giving period-2

consumption to those who withdraw in period 1 only increases the incentive to run. Thus,

for z > ᾱ, second period consumption is given by

c2
P (z) =

[γy − ᾱ−
∫ z
ᾱ
c1(a)da]RB

1− z
. (15)

Differentiating with respect to z in (15) yields

∂c2
P (z)

∂z
=
RB(c2

P (z)− c1(z))

1− z
,

which is negative for z < z∗, since inequality (14) does not hold. Thus c2
P (z) is decreasing

in z for z < z∗.

Given the acceptance/refusal behavior specified above, everyone will refuse c1(z∗), so

we have α1 = z∗ with probability 1. By (14) and (15), it is a best response for consumer

j to refuse if zj = z∗, and zj > z∗ is irrelevant. If zj < z∗ holds, (14) and (15) imply

c1(zj) > c2
P (zj) > c2

P (z∗), where the last inequality follows from the fact that c2
P (z) is

continuous and decreasing in z for z < z∗. Therefore, it is a best response for consumer j to

accept c1(zj). �

20Remember, the optimal contract is the one that provides the highest welfare in the equilibrium in which
the patient consumers wait until period 2.
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There is an intuitive explanation for why run equilibria always exist in the separated

system. In the optimal banking contract for the separated financial system, c2
P must be

less than 1, or else too much is invested in technology B. Therefore, in the event of a run,

consumers arriving in period 2 receive less than one unit. Consumers arriving in period 1 are

better off, since they receive 1 unit of consumption if zj ≤ ᾱ, and they can refuse to withdraw

and delay their arrival until period 2 otherwise. The proof is a bit more intricate, since we

must rule out the possibility that a fraction greater than ᾱ of the consumers withdraw

in period 1, possibly leaving more than one unit of consumption per capita in period 2.

Another perspective is that the desire to economize on technology B investments causes the

incentive compatibility constraint to bind, so that a patient consumer is indifferent between

period 1 arrival and period 2 arrival, assuming other patient consumers wait. If instead the

other patient consumers arrive in period 1, those who wait are worse off, so that incentive

compatibility is no longer satisfied.

The following theorem provides a sufficient condition for the optimal liquid asset invest-

ment under the separated financial system to be greater than it is under the unified financial

system.

Theorem 4.3 (Overinvestment in the Liquid Asset): If ᾱ < 1/RB holds, then the

optimal banking contract for the separated financial system does not ration consumers in

period 1, and invests more in technology B than the optimal banking contract for the unified

financial system.

Proof: From Theorem (3.1), the optimal contract in the unified system satisfies γ < ᾱ/y.

In the separated system, the optimal contract must invest at least enough in technology B

to provide 1 unit of consumption in period 2 when everyone is patient. That is, we must

have c2
P (0) ≥ 1, or else all patient consumers will choose period 1. Thus, the optimal fraction

invested in technology B for the separated system, γ∗, satisfies γ∗ ≥ 1/(RBy). Since RBᾱ < 1
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holds, we draw the following conclusions. First, γ∗¿ᾱ/y holds, so consumers are not rationed

in period 1. Second, γ∗ exceeds the optimal fraction invested in technology B for the unified

system. �

This overinvestment in the liquid asset, B, is likely to be substantial, as long as the

maximum fraction of impatient consumers is relatively small. For example, if we have ᾱ =

0.5, y = 10, and RB = 1.08, then in the unified system, the fraction of resources invested

in technology B is less than 0.05, while in the separated system, the fraction of resources

invested in technology B is more than 0.09.

Next we compute the optimal contract in the separate system.

Example 4.4: We use the same parameter values specified in Example (3.2). We also

specify: λ = 0 and RB = 1.08.

It can be shown that the optimal solution to (12) satisfies c2
I(α1) = 0 for all α1. The

intuition is that giving consumption to impatient consumers in period 2 hurts incentive com-

patibility and forces more overinvestment in technology B, outweighing any consumption-

smoothing advantages.21 Since Theorem (4.3) applies, it follows from (6) that we have

c2
P (α) =

(10γ − α)1.08

1− α
. (16)

Finding the optimal contract now reduces to finding the value of γ that maximizes welfare

subject to the incentive compatibility constraint. The optimal γ will cause the incentive com-

patibility constraint to hold with equality, yielding: γ∗ = 0.094445331 and W ∗ = 0.8687644.

Now compare the optimal contract in the unified system to the optimal contract in the

separated system, for parameters given by (9) and RB = 1.08. When we have λ = 0 in both

21This result is derived by first obtaining a lower bound for the multiplier on the incentive compatibil-
ity constraint, which allows us to obtain a lower bound for the multiplier on each state-α non-negativity
constraint. Since these multipliers are positive, the constraints must bind, so the impatient receive no con-
sumption from the bank in period 2. (Details are available from the authors.) If the parameters of the
example are changed, it is possible that some of the non-negativity constraints do not bind.
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cases, welfare is clearly higher in the unified system, even using the pessimistic lower bound

from Table 1. This is because problem (12) involves maximizing over a strictly smaller set

than problem (7), due to the additional non-negativity constraints. Technology B investment

in the separated system is nearly double that in the unified system. If λ = 0 in the separated

system, but the transactions cost of achieving the unified system requires λ = 0.01 or higher,

then welfare is higher in the separated system, even using the optimistic upper bound for

welfare in the unified system. Again, technology B investment in the separate system is

nearly double that in the unified system.

Another distinction between the two systems is that the real interest rate that consumers

receive from technology B investments is much more volatile in the unified system. In the

unified system, impatient consumers nearly all receive 1 unit in period 1, but invest only

about 0.489 units, for a real interest rate of over 100%. Patient consumers receive a real

interest rate of 8% when α = 0, but they receive a real interest rate of negative 100% when

α = 0.5. Of course, the overall return also reflects the fact that the patient consumer receives

approximately 1 unit more than the impatient consumer from technology A investments. In

the separated system, the impatient consumer receives a real interest rate of approximately

5.88%. The patient consumer receives a real interest rate ranging from 1.6%, when α = 0.5,

to 8% when α = 0. �

Several conclusions can be drawn from our example, depending on how the ad hoc trans-

actions cost parameter λ is to be interpreted. First, suppose that transactions costs are

not significantly different in the two systems, so that λ = 0 holds for each system. Then

efficiency can be enhanced by eliminating legal restrictions on banks’ portfolios, such as

the restrictions imposed by the Glass-Steagall Act. Moreover, our analysis suggests that in

this case eliminating regulatory and other government restrictions would cause a major shift

from liquid, lower-yield investments to illiquid, higher-yield investments. This shift would
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necessitate occasional scarcities of liquidity (non-run rationing of period 1 consumption in

the model). Perhaps surprisingly, allowing banks to freely invest in all technologies would

reduce the likelihood of speculative bank runs, thereby making the system less fragile.22

Second, suppose that “real” (i.e. nongovernment) transactions costs are significantly

greater in the unified system than in the separated system.23 Then the separated system is

the optimal financial system. Furthermore, the optimal system is fragile, in the sense that

sufficiently infrequent bank runs are preferable to investing so much in technology B that

run equilibria can be eliminated.

5 Sunspots and Susceptibility to Runs

Postlewaite and Vives (1987) argue that, strictly speaking, run equilibria in DD are not

equilibria at all, because consumers would not agree to the original contract if they knew

that a run would take place. DD suggest that a run could take place in equilibrium with

positive probability, triggered by some extrinsic random variable “sunspots,” as long as the

probability of the run is sufficiently small. Here we formalize this notion, and calculate what

“sufficiently small” is for an example.24

At the beginning of period 1, each consumer learns her type and observes a sunspot

variable, s, distributed uniformly on [0,1].25 Sunspots do not affect preferences, the likelihood

of being impatient, endowments, or technology. Now the period in which a consumer arrives

can depend on the realization of the sunspot variable s as well as the realization of her

22A major caveat is that our analysis does not include deposit insurance or explicit moral hazard issues,
nor does it include credit chains as analyzed by Kiyotaki and Moore (1997).

23Setting λ = 0.01 corresponds roughly to losing 2% of the resources invested in technology B. The reader
may decide whether this is a large or a small number.

24Cooper and Ross (1998), without performing calculations, also model runs being triggered by sunspots.

25The uniformity assumption is without loss of generality.
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type. The space of mechanisms is unchanged; the solution concept is perfect Bayesian

equilibrium. We have a run equilibrium if, for some set of realizations of s occurring with

positive probability, all consumers arrive at the bank in period 1 and a positive measure of

the patient consumers withdraw in period 1.

To fix ideas, suppose that the economy is susceptible to runs, in the following sense.

Whenever we have s < s0 , then all consumers choose to arrive at the bank in period 1,

and accept consumption offers of at least one unit, whenever such a run is consistent with

equilibrium. When we have s ≥ s0, the equilibrium is selected in which all patient consumers

wait for the second period. Of course, incentive compatibility must be satisfied. We will

calculate the cutoff value of s0 below which the optimal contract in the separated system

has a run equilibrium.26 We work in the context of our example, defined by the parameters

in (9), λ = 0, and RB = 1.08.

There are two approaches to eliminating runs within the separated financial system. One

approach, which turns out to be the best here, is to continue to provide 1 unit of consumption

in period 1 when available, and increase γ to the point at which c2
P (0.5) = 1. From 16, we

can calculate the optimal γ to avoid runs: γ∗∗ = 0.0962962963. It is now feasible and welfare-

maximizing to offer full consumption smoothing, as in (13).27 Welfare in this contract that

eliminates runs, W norun, can now be calculated: W norun = 0.86506. The other approach to

eliminating runs is to ration consumers in period 1, thereby retaining enough consumption

to guarantee that c2
P (0.5) = 1. This approach is too costly here. However, if we change the

26Since run – if they exist – equilibria could be eliminated in the unified system at negligible cost, even
if such run equilibria exist, we focus here on the separated system. For this section, suppose that either
the real transactions cost of the unified system is high, or that legal restrictions on banks’ portfolio choices
prohibit the unified system.

27With full consumption smoothing, patient consumers are indifferent as to which period to choose. To
eliminate run equilibria, we must give consumers slightly more consumption in period 2 in some states,
making it a dominant strategy for patient consumers to wait. Therefore, we can eliminate runs with contracts
arbitrarily close to the one considered here.
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density function, f , so that high realizations of α are sufficiently unlikely, then the best way

to avoid runs is to make the impatient consumers suffer in the extremely unlikely event of

large α.28

We now determine the optimal contract that has a run equilibrium, given that a run

occurs with probability s0 and that the equilibrium in which patient consumers wait occurs

with probability (1−s0). Patient consumers must be induced to wait when s ≥ s0, and there

is no attempt to provide incentives when s < s0, so the incentive compatibility constraint is

unchanged. It can be shown that the incentive compatibility constraint binds, so investment

in technology B is unchanged, γ = γ∗ = 0.094445331. In other words, the probability of a run

has no effect whatsoever on the optimal contract, as long as the probability is small enough so

that the optimal contract tolerates runs. When we have s < s0, there is no reason to punish

consumers for running. It turns out that everyone will receive 1 unit of consumption in period

1, until the bank runs out. The gain from providing for the consumption opportunities of a

significant minority of impatient consumers outweighs the foregone yield of RB. Thus, the

probability of receiving 1 unit in period 1 is γy, which equals 0.94445331, so the proportion

of consumers taking advantage of their consumption opportunity in state α is (1−α+αγy).

Conditional on a run taking place, welfare is calculated to be: W run = 0.1502908. Overall

welfare is a weighted average of W run and the welfare when a run does not take place,

W ∗ = 0.8687644. Thus, the cutoff value of s0 solves

s0W
run + (1− s0)W ∗ = W norun. (17)

From (17), we calculate the cutoff value of s0 to be 0.0051557921. If the susceptibility to

runs is less than 0.0051557921, then it is better to tolerate the unlikely event of a run than to

28Even when the density is such that large realizations of α are extremely unlikely, it is still quite possible
for the optimal contract, without fear of runs, not to ration consumers in period 1, an assumption we have
maintained throughout. It might be worthwhile to invest enough in technology B so that patient consumers
receive positive consumption in period 2, so there is no rationing, while not worthwhile to invest enough for
them to receive 1 unit.
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increase technology B investment to prevent runs.29 In other words, the cost of eliminating

this fragility from the financial system is too high, in terms of efficiency when the system

is working smoothly. See the papers by Lagunoff and Schreft (1998) and Allen and Gale

(1998) for an analysis of financial crises based on local interactions. Our notion of fragility

is distinct from theirs, yet not altogether unrelated.

6 Concluding Remarks

We believe that the indivisibility in our model that is associated with the transactions

and payments for urgent “consumption opportunities” is well-motivated, and it facilitates

calculation of the optimal contract, but we conjecture that the indivisibility is not crucial

for our basic results.30 For the discussion below, we drop the indivisibility assumption–

supposing instead that the impatient consumers have smooth utility functions over period-1

and period-2 consumption, and the patient consumers have smooth utility functions over

period-2 consumption.

Under the unified system, all of the technology B investments will have to be liquidated

in state ᾱ, or else higher welfare can be achieved by investing more in technology A, without

affecting the consumption of the impatient. In the special case of deterministic α, technology

B investments will be used exclusively for impatient consumers and will be fully liquidated.

When α is random, rather than rationing the impatient consumers, the optimal contract

will likely have period-1 consumption tapering off as more consumers arrive, exhibiting the

“partial suspension of convertibility” obtained by Wallace (1988, 1990) and Green and Lin

(1996). A reasonable conjecture would be that run equilibria are impossible under the

29For the same parameters, the probability of a run on the unified system must be less than 6.89× 10−5

for it to be an equilibrium to the pre-deposit game if indeed an equilibrium run is possible at all.

30Although the indivisibility does leave open the possibility of runs in the unified bank but only with tiny
probability.
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optimal contract.

Under the separated system, the typical case will be overinvestment in technology B.

For example, if is α deterministic, then the unified system harvests all of the technology B

investments in period 1, leaving nothing for the patient consumers.31 To satisfy incentive

compatibility, the optimal contract in the separated system will invest more in technology

B and/or reduce consumption in period 1. When α is random, but not too volatile, we

anticipate the same conclusion.

At the risk of being foolish, we conjecture that run equilibria are possible at the optimal

contract in the separated system. Our basic intuition remains: that investment in technology

B must satisfy incentive compatibility for each patient consumer, based on the other patient

consumers waiting. A patient consumer is indifferent between choosing to arrive at the bank

during period 1 and choosing to arrive during period 2, weighing all possible values of α.

State ᾱ is likely to be one of the states in which a patient consumer is better off choosing

period 1, because this is the state in which the most investments are harvested in period 1

and the fewest remain for period 2. If so, then there is a run equilibrium.

What are the differences between our model and the closely related narrow banking model

of Wallace (1996)? Wallace’s technologies are slightly different from ours, allowing some liq-

uidation value of technology A in period 1, and having technology B’s return between period

0 and 1 equal the return between period 1 and 2. These differences are probably not crucial.

Wallace’s utility functions do not exhibit any indivisibilities (such as our urgent consump-

tion opportunities), but they are otherwise more general than ours. We have argued that

the indivisibility is probably not crucial for most of our basic results. The extra structure

we impose on utility functions allows us to maintain tractability while generalizing Wallace

31As in our setup, the patient consumers are compensated by a bigger share of the technology A investments
in the unified system. Notice that it is difficult even to talk about the separated system without the impatient
caring about future consumption. If the impatient were finished with consumption in period 1, what would
happen to their investments in technology A?
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(1996) in other directions. In particular, we allow α to be stochastic and only impose the

condition that the distribution be continuous, while Wallace requires α to be determinis-

tic. We believe that the introduction of stochastic aggregate fundamentals, in our case the

random α, dramatically changes the problem.

Wallace’s working definition of narrow banking is that all of the bank’s obligations to

depositors must be met for every possible pattern of withdrawals. This amounts to a re-

striction that the space of contracts is limited to a menu of consumption bundles that is

independent of the history of withdrawals. On the other hand, Wallace’s banks are permit-

ted to invest in both technologies. Wallace shows that, without subordinated debt contracts,

any allocation achievable with narrow banking is also achievable with autarky, so that nar-

row banking eliminates the role for banks. On the other hand, our notion of the separated

financial system is closer to the description of narrow banking in the introduction to Wallace

(1996), where banks are (only) restricted to holding liquid (short-term) assets. We allow

deposit contracts to specify withdrawals that are fully contingent on the history, but restrict

the banks’ portfolios to technology B assets. Because our portfolio restrictions are different

from Wallace’s restrictions on the banking contract, banks play a very important role in our

separated financial system.

In our model, as in Wallace (1996), the banking restrictions under consideration cannot

improve welfare and can cause harm. If the only transactions cost preventing the unified

system is due to government restrictions on banks’ portfolios, then removing the restrictions

will improve welfare. On the other hand, if there are other significant transactions costs which

inhibit the necessary linkages implicit in the unified system, then removing the restrictions

will not hurt, but it will not lead to change in the financial system. We find that the optimal

contract in the separated financial system exhibits overinvestment in the liquid technology,

and is subject to run equilibria. Considering that many have argued that Glass-Steagall

type restrictions on bank portfolios are needed in order to ensure stability, our result may
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come as a surprise. Not only are bank runs possible in the separated financial system, they

are far more likely with portfolio restrictions than without the restrictions.32

The sole intrinsic uncertainty in our formal model comes from the urgent transaction

opportunities of consumers. We expect quite similar results in the case where the uncer-

tainty is about investment returns, RA and RB, rather than about the aggregate importance

parameter α.
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