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Abstract
We study an economy where consumers are subject to liquidity demand

shocks and banks arise endogenously to provide insurance against these
shocks. We evaluate the desirability of having an elastic currency generated
by a lender of last resort that prints money and makes liquidity loans to
banks in distress. In the absence of such lending, the economy has a unique
equilibrium, but it is not Pareto optimal. The introduction of unlimited
lending at a zero nominal interest rate generates a steady state equilibrium
allocation that is Pareto optimal. However, this policy is destabilizing in
the sense that it also introduces a continuum of non-optimal in‡ationary
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1. Introduction

Recent developments in a number of countries have served to renew interest in the role of a lender

of last resort. According to Fischer [7, p. 86] , ‘‘there is considerable agreement on the need for

a domestic lender of last resort,’’ even though there is some disagreement about exactly what this

lender should do. However, several recent papers have identified the lender of last resort as a cause

of excess volatility in emerging economies’ financial markets and of the currency crises that have

plagued many of these economies in the 1990s.1 In response to these crises, proposals have been

made in a number of countries to either establish a currency board or abolish the national currency

altogether and adopt some other country’s currency as legal tender (this second arrangement is

often called dollarization ). While adopting such policies may be successful in eradicating excess

volatility stemming from speculation against a domestic currency, they clearly do not come without

cost. In particular, both of these arrangements severely limit the ability of the central bank to act

as a lender of last resort. In light of these proposals, we think it is important to understand the

implications (both benefits and costs) of having a lender of last resort that is able to freely print

money and lend to the banking system.

One of the important roles of a lender of last resort is the provision of an elastic currency, that

is, the adjusting of the money supply in response to transitory changes in liquidity demand. This

role was important enough to merit high billing in the act establishing the Federal Reserve System

in the United States, ‘‘An act to provide for the establishment of Federal Reserve Banks, to furnish

an elastic currency, : : : and for other purposes.’’ Beginning with Sargent and Wallace [15], several

papers have examined the effects of having an elastic currency supply.2 These papers focus on

stationary equilibria and show how an elastic currency promotes a more efficient allocation of

resources in these equilibria. In the present paper, we show that when nonstationary equilibria are

considered, the picture can change dramatically. We build on the model of Champ, Smith, and

Williamson [4], where aggregate liquidity shocks create a role for a lender of last resort. We show

how having a lender of last resort that prints money and lends freely to the banking system at a zero

nominal interest rate allows the economy to completely overcome the liquidity shocks, so that the

stationary equilibrium is Pareto optimal. This is in line with the previous results in the literature.

1 See, for example, Chang and Velasco [5] , Mishkin [12] , and Fischer [7] .
2 Among them are Champ, Smith, and Williamson [4] , Williamson [21] , and Freeman [8] .
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However, we also show that there is a continuum of non-optimal inflationary equilibria under this

regime. Hence, while having an unrestricted lender of last resort allows the economy to posses an

efficient equilibrium allocation, it also opens the door to currency instability.

Having identified the lender of last resort as a potential source of instability, we ask the following

question: What measures could be implemented to eliminate the bad equilibria associated with

unlimited and costless lending, while retaining some of the benefits of such lending? We show

that in some cases this may be achieved by placing a sufficiently low ceiling on the amount of real

lending that can be undertaken, and that it always can be achieved by charging a sufficiently high

real interest rate on liquidity loans.

Our model is a pure exchange, two-period-lived overlapping generations economy, where some

agents are lenders and others are borrowers. There is a store-of-value role for money. Agents are

assigned to either of two locations at birth, and in each period a fraction of lenders is forced to

move to the other location. Limited communication prevents claims on specific agents from being

traded across locations and only money has value in exchange after relocation. As in Townsend

[19] , Mitsui and Watanabe [13] , and Hornstein and Krusell [11] , this generates a transactions role

for currency and allows equilibria where money is dominated in rate of return by other assets. In

this set-up, stochastic relocations act like the portfolio preference shocks in Diamond and Dybvig

[6] and banks will arise endogenously to insure consumers against such random liquidity shocks.

Thus, banks write deposit contracts that insure lenders against the possibility of relocation, hold

reserves, and provide intermediation between borrowers and lenders.

In this framework, we obtain the following results. In the absence of a lender of last resort, the

economy has a unique equilibrium. This equilibrium is stationary, with a constant price level and

with banks holding the same fraction of their portfolio in the form of reserves at all times. There

is a critical value of the relocation shock below which these precautionary reserves suffice to fully

cover the demand for liquidity and to equalize the return on deposits for all agents. However, for

realizations of the relocation shock above this critical value, banks face a ‘‘liquidity crisis’’. This

corresponds to a situation of complete exhaustion of banks’ cash reserves and, since other bank

assets are illiquid, precludes depositors from being fully insured. A wedge is driven between the

returns earned by depositors who are subject to the relocation shock and those who are not. Since

the aggregate resources of the economy are nonstochastic, this allocation is not Pareto efficient.
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Inflation is inconsistent with equilibrium in this setting because stochastic relocation generates a

strong demand for currency, even when the rate of return to holding money is low. When the money

supply is constant, a sustained inflation causes the real stock of money to go to zero. Real money

demand cannot go to zero in this model, and hence inflation is not consistent with equilibrium.

When we allow for the unrestricted provision of lender of last resort services at a zero nominal

interest rate, the set of equilibria is substantially different. In this case the steady state equilibrium is

Pareto optimal. Compared to the equilibrium for the benchmark case, banks hold a lower fraction of

their portfolio as real balances. They contract a liquidity loan from the lender of last resort whenever

they face a crisis where reserves are insufficient to cover the demand for liquidity. By doing so they

are able to fully insure agents against random liquidity shocks in all states of the world: relocated

and non-relocated agents earn the same return under all circumstances. However, in addition to the

Pareto optimal stationary equilibrium, the economy also has a continuum of inflationary equilibria,

none of which are Pareto optimal. With a lender of last resort, the effective money supply (base

money plus liquidity loans) is no longer fixed. The entire point of having a lender in this setting

is to make the money supply elastic so that it responds to the stochastic movements in currency

demand. In the stationary equilibrium, this leads to an efficient allocation of resources. However,

it also opens the door to nonoptimal, inflationary equilibria. If there is a sustained inflation, the

real value of the stock of base money goes to zero, as before. This leads to an excess demand for

money, which in turn leads the lender of last resort to provide liquidity loans that increase the total

money supply. In other words, a lender of last resort implicitly promises to respond to an inflation

by printing money. In the long run, the inflation rate and the growth rate of the total money supply

approach the same constant value.

We explore whether certain restrictions on the provision of liquidity loans would allow the econ-

omy to preserve some of the desirable features of having lender of last resort services without per-

mitting inflationary equilibria. A seemingly natural constraint would be to place an upper bound on

the amount of lending that can be done. Ideally, this cap would be high enough that it never binds

in the steady state (preserving the Pareto optimality of this equilibrium), but low enough that it

eliminates all nonstationary equilibria. We show that whether or not this is possible depends on the

distribution of the aggregate liquidity shock. We then study an economy with a lender of last resort

that charges a real interest rate on liquidity loans to banks facing a crisis. When this interest rate
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is high enough, inflationary equilibria are ruled out regardless of the distribution of the liquidity

shock.

Before turning to the model, we would like to point out some differences between this paper and

much of the existing literature on the lender of last resort. Our model has elements in common with

Diamond and Dybvig [6] , but the banking panics studied there and the liquidity crises arising here

are of a very different nature. In Diamond and Dybvig [6] , the presence of real assets that can be

liquidated prematurely and the imposition of a sequential service constraint combine to create the

potential for self-fulfilling panics. These panics can be ruled out by providing deposit insurance.

In contrast, the liquidity crises in our model are the result of fundamentals, and it is the presence

of the lender of last resort that permits self-fulfilling, inflationary equilibria to arise. Moreover,

Diamond and Dybvig [6] consider a purely real economy, while Champ, Smith and Williamson

[4] have argued that models of banking crises should be expanded to consider monetary factors.

We follow the latter paper in studying a world where money has a role, both as a store of value and

in the completion of transactions. This allows us to examine the relationship between the terms of

last resort lending and currency stability, the central question of our paper.

We also want to underscore that we have abstracted from the problems of moral hazard and

‘‘excessively risky’’ behavior associated with the presence of a lender of last resort. Many authors,

ranging from Bagehot [1] to Solow [18] , Fischer [7] , and Mishkin [12] , have argued that these

problems are crucial in understanding the potential for instability related to the provision of lender

of last resort arrangements. In our model, currency instability may arise even when there is no

scope for moral hazard and ‘‘overly risky’’ portfolio allocation.

The remainder of the paper proceeds as follows. The next section lays out the basic model.

Section 3 describes equilibrium without a lender of last resort, while Section 4 presents the case of

unrestricted lending at a zero nominal interest rate. Section 5 describes the behavior of an economy

with a lender of last resort that faces an upper bound on the amount it can lend to banks in distress,

while Section 6 looks at a policy of charging interest on liquidity loans. Some concluding comments

are offered in Section 7.
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2. The Basic Model

In this section we describe those elements of the model that are independent of the type of lender-

of-last-resort services that are available to banks. The sections that follow then tailor the model to

the specific policy regimes we consider.

2.1 The Environment

We begin with the pure-exchange monetary economy developed by Champ, Smith, and Williamson

[4] . The economy consists of an infinite sequence of two-period lived, overlapping generations,

plus an initial old generation. There is a single, perishable consumption good. At each date t =

0; 1; : : : , a continuum of agents with unit mass is born at each of two identical locations. Half of

these agents are ‘‘lenders’’ and the remaining half are ‘‘borrowers’’. The former have endowments

(!1; !2) = (x; 0), while the latter’s endowment vector is (!1; !2) = (0; y): All consumers have

R2
++ as their consumption set and have preferences given by u (c1; c2) = ln (c1) + ¯ ln (c2) : We

assume that ¯x > y holds, which implies that this is a ‘‘Samuelson case’’ economy (see Gale [9] )

and hence there is a role for money as a store of value in this world. At t = 0 there is a continuum

of old agents with unit mass in each location. Each of these agents is endowed with M > 0 units

of fiat money, which we will refer to as ‘‘base money’’. The stock of base money is constant over

time.

In addition to the store of value role for money, spatial separation and limited communication

generate a transactions role for money in a way reminiscent of Townsend [19] , Mitsui and Watan-

abe [13] , and Hornstein and Krusell [11] . This allows money to be dominated in rate of return

by other assets. At the beginning of each period, agents cannot move between or communicate

across locations. Goods can never be transported between locations. Hence, goods and asset trans-

actions occur autarkically within each location at the beginning of each period. After this trade

is concluded at time t, a fraction ¼t of young lenders in each location is forced to move to the

other location. Limited communication prevents the cross-location exchange of privately issued

liabilities. Currency, on the other hand, is universally recognizable and non-counterfeitable, and is

therefore acceptable in inter-location exchange. Hence the relocation process acts like a stochastic

cash-in-advance constraint for young lenders. The old-age consumption of a mover will be equal to
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the real value of the money that she takes with her to the new location.3 The relocation probability

¼t is a random variable in each period with support [0; 1], and is drawn from the twice continuously

differentiable, strictly increasing distribution function F with associated density function f: The

relocation probability is independently and identically distributed over time.

Stochastic relocations also act like shocks to portfolio preferences which have the same conse-

quences as the ‘‘liquidity preference shocks’’ in Diamond and Dybvig [6] . Hence they motivate

a role for banks to insure lenders against random liquidity needs. Banks take deposits, hold cash

reserves, and intermediate lending. We now describe the behavior of borrowers, lenders, and banks.

2.2 Consumers

Borrowers, who never move, face a gross market interest rate of Rt. They choose their quantity of

borrowing `t to solve the problem

max
`t

ln (`t) + ¯ ln (y ¡Rt`t) :

The solution to this problem is given by

`t =
y

(1 + ¯)Rt
: (1)

Lenders face a more complicated problem. Given that they are confronted with random reloca-

tion, they deposit all of their savings in a bank and the return they receive depends on both whether

or not they move and what fraction of all young lenders move.4 Specifically, they are promised a

real return rt (¼) if they do not move and rmt (¼) if they do move. Notice that, given our assump-

tions on the distribution of ¼, these return schedules depend only on the relocation probability at

time t, and not on the history of realizations of relocation probabilities. Lenders then choose the

amount they save and deposit dt to maximize expected utility, that is, to solve

max
dt

ln (x¡ dt) + ¯
Z 1

0

¼ ln [rmt (¼) dt] f (¼) d¼ + ¯

Z 1

0

(1¡ ¼) ln [rt (¼) dt] f (¼) d¼:

3 Note that since the consumption set is R2
++, this implies that money must have positive value in equilibrium.

4 We assume that an individual’s relocation status is public information. Since in equilibrium no agent ever has an
incentive to misreport her status, this seems innocuous.
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The solution to this problem sets

dt = d =
¯

1 + ¯
x; (2)

that is, saving is independent of the distribution of the rates of return. This result clearly depends

on the assumptions of log utility and no old-age income for lenders, which imply that the income

and substitution effects of a change in the rate of return exactly offset each other.

2.3 Banks

Banks take deposits, make loans, hold reserves, and announce return schedules. We assume that

any borrower can establish a bank and that banks behave competitively in the sense that they take

the real return on assets as given. On the deposit side, we assume that banks behave as Nash

competitors, which leads them to choose deposit returns to maximize the expected utility of young

lenders. The constraints that banks face in this maximization problem depend on what lender-of-

last-resort services are available to them.

Below we consider four different scenarios. First, as a benchmark case, we consider a world

without a lender of last resort. We then turn our attention to the economy with a lender that provides

unlimited lender of last resort services at a zero nominal interest rate. Next, we examine the case

of a lender of last resort constrained by an upper bound on the amount that it can lend to a bank in

distress. Finally, we analyze an economy with a lender of last resort that charges a positive interest

rate when providing liquidity to banks.

3. No Lender of Last Resort

In this section we discuss equilibrium for an economy in which banks are unable to borrow from

anyone other than lenders. We begin by describing the bank’s problem for this benchmark case.

3.1 The Bank’s Problem

A young lender deposits her entire savings dwith a bank. Per young depositor, the bank acquires an

amount zt of real balances, and makes loans with a real value d¡zt: The bank faces two constraints

with respect to the return it promises to movers rmt and the return it promises to non-movers rt. First,
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relocated agents, of which there are ¼t, must be given currency, since that is the only asset which

will allow these agents to consume at time t+ 1 in their new location. This is accomplished using

a fraction ®t (¼) of the bank’s holdings of cash reserves. Hence, letting pt denote the general price

level at time t,5 the return to holding money between time t and t+ 1 is given by pt
pt+1

and

¼drmt (¼) · ®t (¼) zt
pt
pt+1

must hold. If we denote by °t ´ zt
d

the ratio of reserves to deposits, then we can rewrite this

constraint as

¼rmt (¼) · ®t (¼) °t
pt
pt+1

: (3)

Second, real payments to nonmovers, which occur at time t + 1, cannot exceed the value of the

bank’s remaining portfolio – remaining reserves plus loan repayments. Since loans earn the gross

real rate of return Rt, this can be written as

(1¡ ¼) drt (¼) · [1¡ ®t (¼)] zt
pt
pt+1

+ (d¡ zt)Rt

or

(1¡ ¼) rt (¼) · [1¡ ®t (¼)] °t
pt
pt+1

+ (1¡ °t)Rt: (4)

Of course, 0 · °t · 1 and 0 · ®t (¼) · 1 must hold.

Since ¼ is i.i.d., the bank’s problem is the same in every period and hence the optimal functions

rt, rmt , and ®t are independent of time and of the history of realizations of ¼. Moreover, since there

is free entry in banking, and since banks behave as Nash competitors, they will maximize young

lenders’ utility, taking deposit demand d as given. Banks will earn no profits, and constraints (3)

and (4) will hold with equality. Given (2), the bank’s problem is then to choose r (¼) and rm (¼) to

solve

max ln

µ
x

1 + ¯

¶
+ ¯

Z 1

0

½
¼ ln

·
rmt (¼)

¯x

1 + ¯

¸
+ (1¡ ¼) ln

·
rt (¼)

¯x

1 + ¯

¸¾
f (¼) d¼ (5)

subject to

5 That is, pt is the price of consumption in units of currency. Some authors (such as Wallace [20] and Balasko and
Shell [3] ) work instead with the inverse of pt; the price of money in units of consumption, because it better handles
situations where money has no value. In our model, the physical environment combined with the assumed consumption
sets precludes equilibria with an infinite price level, and hence the two ways of defining the price system are equivalent.
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rmt (¼) =
1

¼
®t (¼) °t

pt
pt+1

rt (¼) =
1

1¡ ¼

½
[1¡ ®t (¼)] °t

pt
pt+1

+ (1¡ °t)Rt
¾

0 · °t · 1

0 · ®t (¼) · 1:

Substituting in the first two constraints and dropping the constant terms yields the problem

max
®t(¼); °t

Z 1

0

½
¼ ln

µ
® (¼) °t
¼

pt
pt+1

¶
+ (1¡ ¼) ln

µ
[1¡ ® (¼)] °t
(1¡ ¼)

pt
pt+1

+
(1¡ °t)
(1¡ ¼) Rt

¶¾
f (¼) d¼

subject to

0 · °t · 1

0 · ®t (¼) · 1:

The function ®t, which is the fraction of bank reserves paid out to movers, is chosen after the

realization of ¼, while the function °t, the fraction of reserves in the bank’s asset portfolio, is

chosen before the realization of ¼: Hence we can first determine the optimal value of ®t for fixed

values of °t and ¼: That is, we can choose ®t to solve

max
0·®t·1

¼ ln

·
®t°t
¼

pt
pt+1

¸
+ (1¡ ¼) ln

·
(1¡ ®t) °t
(1¡ ¼)

pt
pt+1

+
(1¡ °t)
(1¡ ¼) Rt

¸
:

The solution to this problem sets

®t (¼) =

(
¼

³
1 + 1¡°t

°t
Rt

pt+1
pt

´

1

)
for ¼ 2

½
(0; ¼¤)
[¼¤; 1)

¾
;

where we have

¼¤ =
°t

pt
pt+1

°t
pt
pt+1

+ (1¡ °t)Rt
: (6)

Hence for realizations of the relocation shock below the critical value ¼¤, the bank pays out only

a fraction of its reserves to movers. However, when a relocation shock ¼ > ¼¤ materializes, all

reserves are paid out to movers, and repayments to non-movers are drawn from loan repayments

only. In other words, the bank holds precautionary reserves. When the realization of the relocation

shock is below the critical value¼¤, these cash reserves are sufficient to equalize the returns received

by movers and non-movers. However, when the realization of the relocation shock is greater than
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the critical value ¼¤, the bank faces a ‘‘liquidity crisis’’. It pays out all its cash reserves to movers,

while repayments to non-movers are drawn from loan repayments only. In a crisis, the bank cannot

equalize the returns of movers and non-movers; movers must receive a lower return.

This result follows from the trade-off between two forces. First, the return on cash balances

is lower than the return on loans. Therefore, everything else being equal, the bank would like to

minimize on cash reserves. On the other hand, in a quest to maximize young lenders’ utility, the

bank strives to provide insurance by equalizing the returns between movers and non-movers for all

realizations of ¼. To do so, it must hold sufficient cash balances. At the margin, the welfare gains

from equalizing the returns to movers and non-movers exactly offset the cost implied by the return

dominance of loans over cash reserves.

It remains to determine the optimal value of °t: To do so, we substitute the optimal value of ®t

into the bank’s objective function so that the only remaining choice variable is °t: Doing so yields

the problem

max
0·°t·1

Z ¼¤

0

ln

·
°t
pt
pt+1

+ (1¡ °t)Rt
¸
f (¼) d¼ +

Z 1

¼¤

½
¼ ln

·
°t
¼

pt
pt+1

¸
+ (1¡ ¼) ln

·
(1¡ °t)
(1¡ ¼) Rt

¸¾
f (¼) d¼:

This formulation of the problem makes it clear that the return earned by both movers and non-

movers will be the same when ¼ is less than ¼¤, but will in general be different when ¼ is greater

than ¼¤. The first-order condition for this problem is

Rt ¡ pt
pt+1

°t
pt
pt+1

+ (1¡ °t)Rt
F (¼¤) =

1

°t

Z 1

¼¤
¼f (¼) d¼ ¡ 1

1¡ °t

Z 1

¼¤
(1¡ ¼) f (¼) d¼: (7)

This can be reduced to6

°t = 1¡
Z 1

¼¤
F (¼) d¼: (8)

This implicitly defines the solution to the bank’s problem when no lender of last resort services are

provided. We now turn to an analysis of general equilibrium for this case.

6 To facilitate the refereeing process, we provide the derivation in Referee’s Appendix A.
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3.2 Equilibrium

An equilibrium of this economy is characterized by the market clearing conditions for real balances

and loans. Since the supply of real balances zt is equal to M
pt

, while the demand for real balances is

given by °td, market clearing for real balances and (2) require that we have

M

pt
= °t

¯

1 + ¯
x:

Similarly, from (1), the demand for loans `t is equal to y
(1+¯)Rt

, while the supply of loans is given

by (1¡ °t) d: This yields the following market clearing condition for loans

y

(1 + ¯)Rt
= (1¡ °t)

¯

1 + ¯
x:

These equations imply that we have

°t
pt
pt+1

= °t+1 (9)

and

Rt (1¡ °t) =
y

¯x
: (10)

Substituting (9) and (10) into the expression for ¼¤ in (6) yields

¼¤ =
°t+1

°t+1 +
y
¯x

;

which we can substitute into (8) to obtain the difference equation

°t = 1¡
Z 1

°t+1
°t+1+

y
¯x

F (¼) d¼: (11)

This implicitly defines the law of motion for °t:We can now formulate the following proposition.

Proposition 1 When there is no lender of last resort, the economy has a unique equilibrium. This

equilibrium is stationary with °t = °a for all t, and max
n
E (¼) ; 1¡ y

¯x

o
< °a < 1.

The proof of Proposition 1 is presented in Appendix A.

Proposition 1 is illustrated in Fig. 1. The law of motion implicitly defined in (11) crosses the

forty-five degree line exactly once, and this steady state is the only equilibrium of the economy.

The fact that there are no inflationary equilibria here follows from the strong demand for currency
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generated by relocations. In this model, there is a positive lower bound on the demand for real

money balances. As the rate of return to holding currency goes to zero, real currency demand

approaches E [¼] d (this follows from (8) using (6)). To see why this rules out inflation as an

equilibrium outcome, suppose that the initial price level is higher than pa = M
°ad

. In other words,

suppose that in Fig. 1 the economy starts on the part of the law of motion that lies to the left of °a:

Then the initial supply of real balances is lower than M
pa
: For this to be an equilibrium, the demand

for real balances must to be lower than °ad. Hence the return on holding cash has to be lower

than pa
pa
= 1, and the price level has to rise. Since the nominal supply of money is constant, this

results in a further decrease in the real supply of money, which requires a commensurate reduction

in the demand for real balances in the next period. This, in turn, requires an even lower rate of

return to holding money. Therefore, along a trajectory that starts to the left of °a, the supply of

real balances decreases continuously as the price level rises. For this to be an equilibrium, the rate

of return to holding money would need to adjust so that real currency demand matches the ever-

shrinking supply in each period. Since the supply goes to zero, this cannot occur. Roughly speaking,

decreasing the demand for real balances below E (¼) d would require a negative return to holding

money, which is not consistent with equilibrium. Therefore, unlike the standard Samuelson-case

economy discussed in Gale [9] , this model cannot have inflationary equilibria when the money

supply is constant. The steady state is the unique equilibrium.

Notice, however, that this equilibrium is not Pareto efficient. There are states of the world in

which the returns for relocated and non-relocated lenders are not equalized, even though there is no

uncertainty about the aggregate resources of the economy. The problem is that banks must choose

their currency holdings before currency demand is realized. If the bank could adjust these holdings

once demand is known by, say, borrowing from a lender of last resort when currency demand is

high, it seems possible that a more efficient outcome could be achieved. We study various such

lending regimes in the remaining sections.

4. An Unrestricted Lender of Last Resort

We first analyze the regime in which the lender is willing to make one-period loans of currency

at a zero nominal interest rate in any quantity that banks desire. Note that such a policy is always
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feasible, in that it requires no real resources from the lender. After the realization of ¼, a bank

determines the real amount b ¸ 0 that it would like to borrow at time t – which will depend on

the realization of ¼ – and the lender simply prints bpt dollars and gives them to the bank. In the

following period, the bank must return these dollars to the lender and they are destroyed.

4.1 The Bank’s Problem

With such borrowing, the bank’s constraints become

¼drmt (¼) = ®t (¼) zt
pt
pt+1

+ bt (¼)
pt
pt+1

and

(1¡ ¼) drt (¼) = [1¡ ®t (¼)] zt
pt
pt+1

+ (d¡ zt)Rt ¡ bt (¼)
pt
pt+1

:

Using our earlier notion for the reserve deposit ratio, °t ´ zt
d

, and defining ±t ´ bt
d

to be the liquidity

loan to deposit ratio, these constraints can be expressed as

¼rmt (¼) = ®t (¼) °t
pt
pt+1

+ ±t (¼)
pt
pt+1

(12)

and

(1¡ ¼) rt (¼) = [1¡ ®t (¼)] °t
pt
pt+1

+ (1¡ °t)Rt ¡ ±t (¼)
pt
pt+1

: (13)

After substituting (12) and (13) into the bank’s objective function (5) and dropping the constant

terms, we obtain the problem

max
®t(¼); ±t(¼); °t

Z 1

0

¼ ln

½·
®t (¼) °t
¼

+
±t (¼)

¼

¸
pt
pt+1

¾
f (¼) d¼ +

Z 1

0

(1¡ ¼) ln
½
[1¡ ®t (¼)] °t
(1¡ ¼)

pt
pt+1

+
(1¡ °t)
(1¡ ¼) Rt ¡

±t (¼)

(1¡ ¼)
pt
pt+1

¾
f (¼) d¼:

subject to

0 · °t · 1

0 · ®t (¼) · 1

±t (¼) ¸ 0:

Both the fraction of bank reserves paid out to movers ®t and the real value of the liquidity loan ±t

13



are chosen after the realization of ¼, while °t, the fraction of reserves in the bank’s asset portfolio,

is chosen before the realization of ¼: Hence we can first solve for the optimal values of ®t and ±t

as functions of ° and ¼: That is, we can choose ®t and ±t to solve

max
®t;±t

¼ ln

½·
®t°t
¼
+
±t
¼

¸
pt
pt+1

¾
+

(1¡ ¼) ln
½
(1¡ ®t) °t
(1¡ ¼)

pt
pt+1

+
(1¡ °t)
(1¡ ¼) Rt ¡

±t
(1¡ ¼)

pt
pt+1

¾

subject to

0 · ®t · 1

±t ¸ 0:

The solution to this problem sets

®t (¼) =

(
¼

³
1 + 1¡°t

°t
Rt

pt+1
pt

´

1

)
and ±t (¼) =

(
0

°t

h
¼

³
1 + 1¡°t

°t
Rt

pt+1
pt

´
¡ 1

i
)

for ¼ 2
½
[0; ¼¤)
[¼¤; 1]

¾
;

where ¼¤ continues to be given by (6).

For realizations of the relocation shock below the critical value ¼¤, the bank pays out only a

fraction of its reserves to movers. When the relocation shock is larger than ¼¤, the bank takes a

liquidity loan from the lender of last resort, and pays out all its reserves, plus the liquidity it obtains

from the loan, to movers. At the beginning of next period, non-movers are paid what is left from

loan repayments after the bank has repaid the lender of last resort.

We now proceed to solve for the optimal value of °t: To do so, we substitute the optimal values

of ®t and ±t into the bank’s objective function so that the only remaining variable to be determined

is °t:We thus obtain the problem

max
0·°t·1

Z ¼¤

0

ln

·
°t
pt
pt+1

+ (1¡ °t)Rt
¸
f (¼) d¼ +

Z 1

¼¤
ln

·
°t
pt
pt+1

+ (1¡ °t)Rt
¸
f (¼) d¼

=

Z 1

0

ln

·
°t
pt
pt+1

+ (1¡ °t)Rt
¸
f (¼) d¼:

Here we see clearly that the introduction of an unrestricted lender of last resort allows the bank to
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offer complete insurance to lenders: Both movers and non-movers receive the average return. In

order to maximize this average return, the optimal choice of reserve-deposit ratio °t must be given

by

°t =

8
<
:

0
2 (0; 1)
1

9
=
; if Rt

8
<
:
>
=
<

9
=
;

pt
pt+1

:

4.2 Equilibrium

The market-clearing equations are the same as in the previous section, and hence (9) and (10)

continue to hold. Moreover, in equilibrium we cannot have °t = 0, since then movers would have

zero old-age consumption. We cannot have °t = 1 either, since then borrowers would have zero

young-period consumption. Therefore, in equilibrium the pricing relationship

Rt =
pt
pt+1

(14)

must obtain. After substituting (14) into (9) and (10), the market clearing conditions simplify into

the law of motion for °,

°t+1 =
y

¯x

°t
1¡ °t

: (15)

We can now state the following proposition.

Proposition 2 When there is an unlimited lender of last resort, the economy displays a unique
steady state equilibrium, °b = 1¡ y

¯x
2 (0; °a) : There is a stationary equilibrium path for °0 = °b,

and a continuum of inflationary equilibrium paths for °0 2 (0; °b).

The proof of Proposition 2 is presented in Appendix B.

The results of Proposition 2 are illustrated in Fig. 2. The economy with unlimited lender of last

resort services has a unique steady state. Since banks can now borrow money when the demand for

it is high, they no longer hold precautionary reserves and therefore the steady state reserve-deposit

ratio is smaller than in the case without a lender of last resort.

The striking feature of the new law of motion is that it permits inflationary equilibria. Suppose

again that the initial price level is higher than pb = M
°bd

. That is, suppose that in Fig. 2 the economy

starts on the part of the law of motion that lies to the left of °b: This implies a trajectory along which

the real supply of base money, °td =
M
pt

, decreases continuously as the price level rises, and falls
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to zero as the price level approaches infinity. However, now the bank takes out a liquidity loan ±t

every time its reserves °t fall short of its liquidity needs. Using (9) and (15) shows that in the limit

as °t goes to zero, the return to holding money approaches y
¯x
< 1: Thus there is sustained inflation

in such an equilibrium. The amount of real borrowing is the limit is given by

lim
°t!0

±t = ¼t:

Hence the long-run expected value of the total real money supply is E [¼] > 0: Since the inflation

rate is positive, this means that the amount of nominal borrowing from the lender of last resort is

increasing over time (in expected value). This is why inflation is consistent with equilibrium in the

model with a lender of last resort: a lender of last resort responds to an inflation by printing money.

In the long run, the (expected) total money supply is increasing at exactly the rate of inflation. That

is, in the long run, a form of the quantity theory of money holds here. The provision of liquidity by

the lender of last resort confirms inflationary expectations and, consequently, inflationary equilibria

arise as self-fulfilling prophecies.

In the steady state, the provision of unlimited and costless lender of last resort services allows the

economy to completely overcome the stochastic relocation friction. Note that in the steady state, pt

is constant even though the money supply is being changed every period as banks borrow from the

lender. The money supply is being moved to exactly match the stochastic movements in demand,

leaving the value of money unchanged. In fact, the law of motion (15) is identical to the one that

would obtain if there were no relocations in this economy. It is well known that the steady state is

Pareto optimal in this case, but that the inflationary equilibria are not.7

In summary, the introduction of an unlimited lender of last resort generates a Pareto optimal

equilibrium. However, it also generates a continuum of inflationary equilibria that are not Pareto

efficient. Is it better to have a lender of last resort or not? There are no clear criteria for answering

such a question, since it involves comparing the set of equilibria generated by two different policies.

Rather than address it directly, we take an approach suggestive of that in Shell [16] , Grandmont

[10] , Woodford [22] , and Smith [17] (among others). We ask if it is possible to design a policy

that captures some of the benefit of providing lender of last resort services without introducing

7 This follows from Proposition 5.6 in Balasko and Shell [2] . See also p.838 in Champ, Smith and Williamson [4] .
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inflationary equilibria. We study two policies, the first of which restricts the amount of lending

that can be undertaken and the second of which involves charging interest on liquidity loans.

5. A Lender of Last Resort with an Upper Bound on Loanable
Funds

The analysis above shows that inflation is an equilibrium outcome if and only if the (expected)

money supply increases at the rate of inflation in the long run. If the lender of last resort could

credibly commit to print no more thanC dollars in any period, this would eliminate all inflationary

equilibria for any finite value of C: However, there are clear credibility issues with such a promise.

If the bound were ever reached, it would be (short-run) optimal to reset the bound to some higher

number so that it did not bind in the current period. If this is done every time the bound is reached,

then effectively there is no bound and we are back in the case of Section 4.

In this section we focus instead on a lender that faces a fixed upper bound on the real value

of the lending it can undertake. As an extreme example, imagine an economy where all currency

injections would have to be completely backed by holdings of foreign reserves. We use c 2 (0; 1)
to denote the real value of liquidity per unit deposited that can be lent to a bank in distress.

5.1 The Bank’s Problem

For this case, the bank’s constraints continue to be given by (12) and (13). Substituting these con-

straints into the bank’s objective function (5), dropping the constant terms, and taking into account

the upper bound on loanable funds yields the problem

max
®t(¼); ±t(¼); °t

Z 1

0

¼ ln

½·
® (¼) °t
¼

+
±t (¼)

¼

¸
pt
pt+1

¾
f (¼) d¼ +

Z 1

0

(1¡ ¼) ln
½
[1¡ ® (¼)] °t
(1¡ ¼)

pt
pt+1

+
(1¡ °t)
(1¡ ¼) Rt ¡

±t (¼)

(1¡ ¼)
pt
pt+1

¾
f (¼) d¼:

0 · °t · 1

0 · ®t (¼) · 1

0 · ±t · c:

Clearly, the upper bound on loanable funds can only be binding for some states if its value is smaller
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than the value of the loan a bank would take for ¼ = 1 in the presence of an unlimited lender of last

resort. Hence, the above program differs from the one in Section 4 only if c < (1¡ °t) Rt
pt

pt+1

´ ~c

holds. We will solve the problem assuming that this condition holds. When it does not hold, the

solution in the previous section applies.

As before, we can first solve for the optimal values of ®t and ±t for given values of °t and ¼.

This entails choosing ®t and ±t to solve

max
®t;±t

¼ ln

½·
®t°t
¼
+
±t
¼

¸
pt
pt+1

¾
+

(1¡ ¼) ln
½
(1¡ ®t) °t
(1¡ ¼)

pt
pt+1

+
(1¡ °t)
(1¡ ¼) Rt ¡

±t
(1¡ ¼)

pt
pt+1

¾

subject to

0 · ®t · 1

0 · ±t · c:

The solution to this problem sets

®t (¼) =

8
><
>:

¼
³
1 + 1¡°t

°t
Rt

pt+1
pt

´

1
1

9
>=
>;

and ±t (¼) =

8
><
>:

0

°t

h
¼

³
1 + 1¡°t

°t
Rt

pt+1
pt

´
¡ 1

i

c

9
>=
>;

for ¼ 2

8
<
:

[0; ¼¤)
[¼¤; ¼¤¤]
(¼¤¤; 1]

9
=
; ;

where ¼¤ continues to be given by (6) and ¼¤¤ is given by

¼¤¤ =
(°t + c)

pt
pt+1

°t
pt
pt+1

+ (1¡ °t)Rt
: (16)

For realizations of the relocation shock below the first critical value ¼¤, the bank pays out only a

fraction of its reserves to movers. When a relocation shock ¼ 2 [¼¤; ¼¤¤] materializes, all reserves

are paid out to movers, and the bank obtains a liquidity loan b (¼) < cd. Finally, when the relocation

shock is larger than ¼¤¤, the bank pays out all its reserves to movers and, in addition, takes the

maximum loan cd it can get from the lender of last resort. Notice that we have ¼¤¤ = 1 when c = ~c

holds, which confirms that this solution only applies for c < ~c:
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We can now determine the bank’s optimal portfolio in the presence of a constrained lender of

last resort: To do so, we substitute the optimal values of ®t and bt into the bank’s objective function:

This yields the problem

max
0·°t·1

Z ¼¤

0

ln

·
°t
pt
pt+1

+ (1¡ °t)Rt
¸
f (¼) d¼ +

Z ¼¤¤

¼¤
ln

·
°t
pt
pt+1

+ (1¡ °t)Rt
¸
f (¼) d¼ +

Z 1

¼¤¤

½
¼ ln

·³°t
¼
+
c

¼

´ pt
pt+1

¸
+ (1¡ ¼) ln

·
(1¡ °t)
1¡ ¼ Rt ¡

c

(1¡ ¼)
pt
pt+1

¸¾
f (¼) d¼;

which can be rewritten as

max
0·°t·1

Z ¼¤¤

0

ln

·
°t
pt
pt+1

+ (1¡ °t)Rt
¸
f (¼) d¼ +

Z 1

¼¤¤

½
¼ ln

·³°t
¼
+
c

¼

´ pt
pt+1

¸
+ (1¡ ¼) ln

·
(1¡ °t)
1¡ ¼ Rt ¡

c

(1¡ ¼)
pt
pt+1

¸¾
f (¼) d¼:

Hence the return earned by both movers and non-movers will be the same when ¼ is less than ¼¤¤,

but will in general be different when ¼ is greater than ¼¤¤. The first-order condition for this problem

is

pt
pt+1

¡Rt
°t

pt
pt+1

+ (1¡ °t)Rt

¼¤¤Z

0

f(¼)d¼ +
1

°t + c

1Z

¼¤¤

¼f(¼)d¼ =
Rt

(1¡ °t)Rt ¡ c pt
pt+1

1Z

¼¤¤

(1¡ ¼)f(¼)d¼:

(17)

which can be reduced to8

°t = 1¡ 1¡ ¼¤¤ + c
1¡ ¼¤¤

1Z

¼¤¤

F (¼)d¼: (18)

We are now ready to state the general equilibrium conditions for this case.

5.2 Equilibrium

The market-clearing conditions (9) and (10) continue to hold. Substituting these equations into the

expression for ¼¤¤ in (16) yields

¼¤¤ =
°t+1 +

°t+1
°t
c

°t+1 +
y
¯x

:

8 To facilitate the refereeing process, we provide the many intermediate steps in Referee’s Appendix B.
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Substituting this into (18), we obtain

°t = 1¡
y
¯x

¡ c
³
°t+1
°t

¡ °t+1 ¡ y
¯x

´

y
¯x

¡ c°t+1
°t

1Z

°t+1+
°t+1
°t

c

°t+1+
y
¯x

F (¼)d¼: (19)

The law of motion implicitly defined here applies when c < ec holds, or when

°t+1 <
y

c¯x
°t

holds. As shown in Fig. 3, the phase plane is effectively divided into two regions. Below the lower

dashed line, the law of motion is given by (19). Above this line, it is given by (15). Both curves

intersect the dashed line at °t = 1 ¡ c > 0, and therefore the piecewise-defined law of motion

is continuous. Whether or not the bound affects the steady state equilibrium simply depends on

whether or not c < ec holds when °t+1 = °t: That is, c is binding in some states in the stationary

equilibrium if and only if

c <
y

¯x

holds.

Whether or not there exist inflationary equilibria is determined by (19), since this governs the

law of motion near the origin. The demand for base money9 is given by (18). Taking the limit as

the return to holding money goes to zero, we have

lim
pt

pt+1
!0
°t = E [¼]¡ c (1¡ E [¼]) ;

which can be either positive or negative. If the upper bound is low enough for this to be positive,

that is, if

c <
E [¼]

1¡ E [¼]
holds, then the demand for base money has a positive lower bound. This case is qualitatively similar

to having no lender of last resort (c = 0) :Demand for base money never goes to zero, and therefore

sustained inflations are not possible in equilibrium. This is the case depicted in Fig. 3, where the

law of motion intersects the horizontal axis to the right of the origin.

9 Recall that base money is circulating currency net of borrowing from the lender of last resort.
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If instead we have

c >
E [¼]

1¡E [¼] ;

then the demand for base money goes to zero when the return to holding money pt
pt+1

approaches

some finite number. In this case the part of the law of motion given by [?] also begins at the origin,

and hence the set of equilibria is qualitatively similar that when there is an unrestricted lender of

last resort (c = 1) : There is a continuum of inflationary equilibria in which the inflation rate and

the growth rate of the total (expected) money supply approach the same constant. None of these

equilibria are Pareto optimal.

Finally, if we happen to have

c =
E [¼]

1¡E [¼] ;

the demand for money goes to zero only as the rate of return to holding money goes to zero. In this

case there are true hyperinflationary equilibria where the inflation rate (and the expected money

growth rate) grows without bound. The following proposition formalizes this result.

Proposition 3 Suppose that there is a lender of last resort with an upper bound on loanable funds

c 2
³
y
¯x
; 1

´
. Then there is a stationary equilibrium with °t = °b for all t. If c < E[¼]

1¡E[¼] holds,

this is the unique equilibrium. If instead c ¸ E[¼]
1¡E[¼] holds, there is also a continuum of inflationary

paths for °0 2 (0; °b) :

The proof of this proposition closely follows the reasoning given above and is therefore omitted.

It is interesting to note that the condition for c to affect the steady state equilibrium and the condition

for it to eliminate inflationary equilibria are unrelated. If the distribution of liquidity shocks satisfies

E [¼] >
y

y + ¯x
; (20)

then an upper bound of this sort is an ideal policy. The cap can be chosen high enough to never

bind in the steady state (making this equilibrium efficient), while still being low enough to eliminate

inflationary equilibria. Note that (20) necessarily holds if the expected value of ¼ is at least 1
2
; as it

is for the uniform distribution. If, however, high liquidity demand is a rare event (and hence E [¼]

is low), the bound required to eliminate the inflationary equilibria would be low and very little

lending would take place.
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6. A Lender of Last Resort that Charges Interest

We now return to a situation where the lender makes one-period loans of currency in any quantity

that banks desire. However, banks are now required to pay interest on liquidity loans. This is in

line with the recommendation of Bagehot [1] that ‘‘in a crisis, the lender of last resort should lend

freely, at a penalty rate, : : :’’ After the realization of ¼, a bank determines the real amount b ¸ 0 that

it would like to borrow at time t (which will depend on the realization of ¼) and the lender prints

bpt dollars for the bank. Next period, the bank must return the same number of dollars and these

dollars are destroyed so that the stock of base money remains unaffected. In addition, the bank

must repay the lender of last resort brd in goods
¡
rd ¸ 0

¢
, that is, rd represents the real interest

rate on liquidity loans.10 Agents derive no utility from the revenue that the lender earns from these

interest payments.11

6.1 The Bank’s Problem

Under this arrangement, the bank’s constraints become

¼rmt (¼) = ®t (¼) °t
pt
pt+1

+ ±t (¼)
pt
pt+1

(21)

and

(1¡ ¼) rt (¼) = [1¡ ®t (¼)] °t
pt
pt+1

+ (1¡ °t)Rt ¡ ±t (¼)
·
pt
pt+1

+ rd
¸
: (22)

Substituting (21) and (22) into the bank’s objective function (5) and dropping the constant terms

yields the problem

max
®t(¼); ±t(¼); °t

Z 1

0

¼ ln

½·
® (¼) °t
¼

+
±t (¼)

¼

¸
pt
pt+1

¾
f (¼) d¼ +

Z 1

0

(1¡ ¼) ln
½
[1¡ ® (¼)] °t
(1¡ ¼)

pt
pt+1

+
(1¡ °t)
(1¡ ¼) Rt ¡

±t (¼)

(1¡ ¼)

·
pt
pt+1

+ rd
¸¾
f (¼) d¼

subject to

10 If the interest rate were instead fixed in nominal terms, the steady state would be the same as the one derived below,
but it would be impossible to eliminate inflationary equilibria. With high inflation rates, the real interest payments
would become small, and hence the economy would behave similarly to one where the real interest rate is zero.

11 Effectively we are assuming that the lender throws this revenue away. If instead the revenue were rebated to banks
as a state-contingent, lump-sum payment, the qualitative properties of the results would not change. Since such rebates
complicate the algebra substantially, we present the simpler case here.

22



0 · °t · 1

0 · ®t (¼) · 1

±t (¼) ¸ 0:

Again, given the timing of the bank’s decisions, we can first solve for the optimal values of ®t and

±t given °t and ¼: That is, we can choose ®t and ±t to solve

max
®t;±t

¼ ln

½·
®t°t
¼

+
±t
¼

¸
pt
pt+1

¾
+

(1¡ ¼) ln
½
(1¡ ®t) °t
(1¡ ¼)

pt
pt+1

+
(1¡ °t)
(1¡ ¼) Rt ¡

±t
(1¡ ¼)

·
pt
pt+1

+ rd
¸¾

subject to

0 · ®t · 1

±t ¸ 0:

The solution to this problem sets

®t (¼) =

8
><
>:

¼
³
1 + 1¡°t

°t
Rt

pt+1
pt

´

1
1

9
>=
>;

and ±t (¼) =

8
>><
>>:

0
0

°t

·
¼

µ
1 + 1¡°t

°t

Rt
pt

pt+1
+rd

¶
¡ 1

¸

9
>>=
>>;

for ¼ 2

8
<
:

[0; ¼¤)
[¼¤; ¼¤¤]
(¼¤¤; 1]

9
=
; ;

where ¼¤ continues to be given by (6) and we have

¼¤¤ =
°t

³
pt
pt+1

+ rd
´

°t

³
pt
pt+1

+ rd
´
+ (1¡ °t)Rt

: (23)

For realizations of the relocation shock below the first critical value ¼¤, the bank pays out only a

fraction of its reserves to movers. When a relocation shock ¼ 2 [¼¤; ¼¤¤] materializes, all reserves

are paid out to movers, but the bank does not resort to a liquidity loan. Finally, when the relocation

shock is larger than ¼¤¤, the bank pays out all its reserves to movers and, in addition, obtains a

liquidity loan from the lender of last resort. The range of inaction [¼¤; ¼¤¤] is generated by a kink

in the bank’s opportunity set. Once the level of reserves ° is set, the bank has a certain amount
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of currency on hand and the return to holding that currency is pt
pt+1

: If the bank wants to acquire

additional currency (in order to increase total payments to movers), the cost per unit is higher, at³
pt
pt+1

+ rd
´
: Hence the increase in lenders’ expected utility must be sufficiently large before the

bank will undertake any borrowing at this rate.

We now proceed to solve for the optimal value of °t: To do so, we substitute the optimal values

of ®t and ±t into the bank’s objective function so that the only remaining variable to be determined

is °t:We thus obtain the problem

max
0·°t·1

Z ¼¤

0

ln

·
°t
pt
pt+1

+ (1¡ °t)Rt
¸
f (¼) d¼ +

Z ¼¤¤

¼¤

½
¼ ln

·
°t
¼

pt
pt+1

¸
+ (1¡ ¼) ln

·
(1¡ °t)
(1¡ ¼) Rt

¸¾
f (¼) d¼ +

Z 1

¼¤¤

8
><
>:

¼ ln

·
°t

pt
pt+1

+ (1¡ °t) Rt
pt

pt+1
+rd

pt
pt+1

¸
+

(1¡ ¼) ln
h
°t

³
pt
pt+1

+ rd
´
+ (1¡ °t)Rt

i

9
>=
>;
f (¼) d¼:

This formulation of the problem makes it clear that the return earned by both movers and non-

movers will be the same when ¼ is less than ¼¤, but will in general be different when ¼ is greater

than ¼¤. The first-order condition for this problem is

Rt ¡ pt
pt+1

°t
pt
pt+1

+ (1¡ °t)Rt
F (¼¤) +

Rt ¡
³

pt
pt+1

+ rd
´

°t

³
pt
pt+1

+ rd
´
+ (1¡ °t)Rt

[1¡ F (¼¤¤)]

=
1

°t

Z ¼¤¤

¼¤
¼f (¼) d¼ ¡ 1

1¡ °t

Z ¼¤¤

¼¤
(1¡ ¼) f (¼) d¼; (24)

which can be reduced to12

°t = ¼
¤¤ ¡

Z ¼¤¤

¼¤
F (¼) d¼: (25)

This implicitly defines the solution to the bank’s problem in the presence of a lender of last resort

who charges interest. We now turn to an analysis of general equilibrium for this case.

6.2 Equilibrium

Once again, the market-clearing equations are the same as in the benchmark case, and hence (9) and

12 To facilitate the refereeing process, we provide the derivaton in Referee’s Appendix C.
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(10) continue to hold. Substituting (9) and (10) into the expression for ¼¤ in (6) and the expression

for ¼¤¤ in (23) yields

¼¤ =
°t+1

°t+1 +
y
¯x

(26)

and

¼¤¤ =
°t+1 + r

d°t
°t+1 + r

d°t +
y
¯x

: (27)

Substituting these into (25), we obtain the graph of the law of motion for °t,

°t =
°t+1 + r

d°t
°t+1 + r

d°t +
y
¯x

¡
Z °t+1+r

d°t

°t+1+r
d°t+

y
¯x

°t+1
°t+1+

y
¯x

F (¼) d¼: (28)

We can now state the following proposition.

Proposition 4 When there is a lender of last resort who charges an interest rate rd ¸ 0 on liquidity
loans, the economy displays a unique steady state equilibrium °c 2 [°b; °a] : When rd · y

¯x
, there

is a stationary equilibrium path for °0 = °c, and a continuum of inflationary equilibrium paths for
°0 2 (0; °c). When rd > y

¯x
, the economy displays a unique equilibrium, which is stationary with

°t = °c for all t:

The proof of Proposition 4 is presented in Appendix C. The case of rd > y
¯x

is illustrated in Fig. 4.

The case of no lender of last resort studied in Section 3 corresponds to rd = 1, while the case

of an unrestricted lender (Section 4) corresponds to rd = 0: The proposition here shows that when

rd is positive and finite, the steady state falls in between those of the first two cases. Having the

ability to borrow leads banks to reduce reserve holdings below °a: However, since borrowing is

costly, banks still hold some precautionary reserves and ° is above °b:

The proposition also shows that eliminating inflationary equilibria requires the interest rate to

be sufficiently high. In particular, rd must be above y
¯x
; the asymptotic rate of return to real lending

along any inflationary path. The reason for this is that such a high interest rate generates a lower

bound on the demand for base money. To see why, suppose that the economy follows an inflationary

trajectory; that is, suppose that the economy starts on the part of the law of motion that lies to the

left of °c in Fig. 4. In each period, the value of the stock of base money decreases and therefore

the rate of return to holding money must also decrease. As this happens, banks engage in more real

lending and the rate of return to real lending falls as well. Imagine a situation where ° has become

very close to zero, that is, where there has been sustained inflation for many periods. This implies
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that in practically every period, the bank will be borrowing currency at a cost of
³

pt
pt+1

+ rd
´
: At

the same time, the return the bank is receiving from its real lending is close to y
¯x
: If rd > y

¯x

holds, then regardless of pt
pt+1

the bank would be better off holding more reserves and engaging in

less lending, simply because borrowing is so expensive. This means there is a lower bound on the

demand for base money, even as the rate of return to holding money goes to zero. For this reason

there cannot be a sustained inflation. If, on the other hand, rd < y
¯x

holds, then as pt
pt+1

becomes

very low the real value of reserve holdings chosen by banks will also go to zero and inflation is an

equilibrium outcome. Roughly speaking, when borrowing is not very expensive, banks prefer to

put all of their deposits into real loans and hence there is no demand for base money.

7. Conclusions

We have studied a pure-exchange economy in which spatial separation, limited communication and

random relocation combine to create a role for money, even when it is dominated in rate of return.

Banks arise endogenously in this world to insure agents against the liquidity shocks implied by

random relocation. When the money supply is constant, the economy displays a unique equilibrium

that is not Pareto efficient. This equilibrium is marked by periodic crises in which high aggregate

liquidity demand leads to low consumption levels for agents in need of liquidity.

When we introduce a lender of last resort providing unlimited, zero nominal interest rate liq-

uidity loans to banks in distress, the stationary equilibrium is Pareto optimal. However, there is a

continuum of inflationary equilibria that are not Pareto efficient. Thus, while allowing the economy

to overcome the frictions associated with stochastic relocation, the introduction of an unrestricted

lender of last resort also makes the economy vulnerable to currency instability. We then show that

these inflationary equilibria disappear when the lender of last resort either (i) credibly commits to

a cap on liquidity loans that is sufficiently low or (ii) charges an interest rate on liquidity loans that

is sufficiently high.

There are several directions in which the present analysis could be extended to address additional

issues that figure prominently in discussions of the desirability and optimal design of lender of last

resort services. First, our model is set up so that the provision of liquidity loans does not affect

the government’s intertemporal budget constraint. Yet the fiscal cost of bank bailouts is a primary
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concern in the design of lender of last resort arrangements. Changes in the structure of the model

could be made to address this issue. Second, it is often argued that the explicit or implicit access to

liquidity loans provides banks with an incentive to take on ‘‘excessive’’ risk in its asset portfolio.

This could be addressed by adding technologies to the model that give banks a choice regarding the

riskiness of their investments. Third, in many emerging economies countries, and certainly in those

that are contemplating dollarization, a large fraction of banks’ liabilities and assets is denominated

in foreign currency. Hence, the provision of lender of last resort services, because of its effect on the

money supply and thus on the exchange rate, may affect the real value of that part of the portfolio

that is denominated in foreign exchange. Addressing this issue would require either a two-country

or an open-economy version of the model. We plan to address all these important questions in

future research.
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APPENDIX A: PROOF OF PROPOSITION 1

We cannot solve (11) explicitly for °t+1 as a function of °t, but we can derive some properties of

the implicit function. First note that when °t+1 = 0, which is its minimum value, °t is given by

°t = 1 ¡
R 1
0
F (¼) d¼ =

R 1
0
¼f (¼) d¼ = E (¼) : Thus the implicit function is not defined for

values of °t below the expected value of ¼: Next, when °t+1 = 1, which is its maximum value, °t

is strictly below one. Since the implicit function is continuous, there exists at least one steady state

for °:Moreover, at a steady state (11) implies that we have

° = 1¡
Z 1

°

°+
y
¯x

F (¼) d¼:

We know F < 1 always holds, so any steady state ° must satisfy

° > 1¡
Z 1

°

°+ y
¯x

d¼ =
°

° + y
¯x

:

Hence for any steady state

° > 1¡ y

¯x
(29)

must hold.

For the slope of (11), we can use Leibnitz’s integral rule to obtain

d°t
d°t+1

= F

Ã
°t+1

°t+1 +
y
¯x

!
y
¯x³

°t+1 +
y
¯x

´2 > 0:

Thus °t as a function of °t+1 is always increasing and hence is invertible. The inverse function is

the law of motion for °t, and it is also strictly increasing. By the inverse function rule we obtain

the slope of the law of motion,

d°t+1
d°t

=

³
°t+1 +

y
¯x

´2

y
¯x

1

F
³

°t+1
°t+1+

y
¯x

´ > 0: (30)

We can now evaluate the derivative of the law of motion, (30), at any steady state. Given (29) and

taking into account that the economy is a Samuelson case economy, which implies that y < ¯x, the

first term of (30) is greater than one for any steady state. The second term is always greater than or
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equal to one, so for any steady state the derivative itself must be greater than one. The law of motion

for °t must therefore cross the 45± line from below at every steady state. This implies that there is

exactly one steady state, which we will denote by °a and that this steady state is in the open interval

(E (¼) ; 1) : The steady state is globally unstable, and all nonstationary trajectories eventually leave

the feasible region. Hence the steady state is the only equilibrium of this economy.

APPENDIX B: PROOF OF PROPOSITION 2

The law of motion (15) starts at the origin, and is increasing and convex. The slope of (15)

at its origin is y
¯x
< 1, and hence there is a unique steady state, the value of which is given by

°b = 1 ¡ y
¯x
> 0. From Proposition 1, we know that 1 ¡ y

¯x
< °a, therefore °b < °a. The slope

of (15) evaluated at the steady state is ¯x
y
> 1: Hence the unique steady state is unstable. Each

°0 > °b generates a trajectory that leaves the feasible region and hence cannot be an equilibrium.

Each °0 2 (0; °b] is associated with a trajectory that remains within the feasible region, and hence

there is a continuum of equilibrium paths. For °0 = °b, the equilibrium path is stationary. For

°0 2 (0; °b), we have lim
t!1

°t =lim
t!1

zt = 0, and therefore we have lim
t!1

pt = 1 and the equilibrium

trajectories display sustained positive inflation rates.

APPENDIX C: PROOF OF PROPOSITION 4

We cannot solve (28) explicitly for °t+1 as a function of °t, but we can nevertheless derive some

properties of the law of motion for °t. First note that when °t+1 = 1, °t is strictly below one.

Moreover, when °t+1 = 0, (28) implies that we have

Z rd°t
rd°t+

y
¯x

0

F (¼) d¼ = °t

Ã
rd

rd°t +
y
¯x

¡ 1
!
: (31)

Clearly, °t = 0 satisfies (31), so the law of motion starts at the origin. Since (28) is continuous, we

can conclude that there exists at least one steady state.

However, °t = 0 may not be the only value for which °t+1 = 0. Indeed, when rd > y
¯x

then

there will exists at least one other °t 2 (0; 1) for which °t+1 = 0:
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Further, at any steady state, °, (28) simplifies to

° ¡
¡
1 + rd

¢
°

(1 + rd) ° + y
¯x

= ¡
Z (1+rd)°

(1+rd)°+ y
¯x

°

°+
y
¯x

F (¼) d¼:

Notice that this implies that for rd = 0,° = 1¡ y
¯x
= °b:Moreover, we know F < 1 always holds:

Thus, for rd > 0, the steady state level of ° must satisfy

° ¡
¡
1 + rd

¢
°

(1 + rd) ° + y
¯x

> ¡
Z (1+rd)°

(1+rd)°+ y
¯x

°

°+
y
¯x

d¼ =
°

° + y
¯x

¡
¡
1 + rd

¢
°

(1 + rd) ° + y
¯x

:

Hence, at any steady state, (29) is satisfied.

Next, it can be shown that

d°t+1
d°t

=

1¡ rd y
¯x

(°t+1+rd°t+ y
¯x)

2

h
1¡ F

³
°t+1+r

d°t
°t+1+r

d°t+
y
¯x

´i

y
¯x

(°t+1+rd°t+ y
¯x)

2

h
1¡ F

³
°t+1+r

d°t
°t+1+r

d°t+
y
¯x

´i
+

y
¯x

(°t+1+ y
¯x)

2F
³

°t+1
°t+1+

y
¯x

´ (32)

holds. Clearly the law of motion is increasing everywhere if rd · y
¯x
: However, when rd > y

¯x
,

that is no longer the case.

Indeed, for °t+1 = °t = 0, we obtain

d°t+1
d°t

j°t+1=°t=0=
y

¯x
¡ rd:

Hence we have

d°t+1
d°t

j°t+1=°t=0
(

2
h
0; y

¯x
< 1

i

< 0

)
if rd

½
·
>

¾
y

¯x
:

Moreover, using (26), (27), and (32), it is clear that at any steady state ° > 0, we have

d°t+1
d°t

j°t+1=°t=°> 1

if and only if ¡
1 + rd

¢
y
¯xh

(1 + rd) ° + y
¯x

i2 [1¡ F (¼¤¤)] +
y
¯x³

° + y
¯x

´2F (¼¤) < 1 (33)
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holds. Given that (29) holds at any steady state, (33) is equivalent to
¡
1 + rd

¢
°h

(1 + rd) ° + y
¯x

i [1¡ F (¼¤¤)] + °³
° + y

¯x

´F (¼¤) < °
y
¯x

;

which, using (26) and (27), can be expressed as

¼¤¤ [1¡ F (¼¤¤)] + ¼¤F (¼¤) <
°
y
¯x

:

But from (41) in Referee’s Appendix B, we have

¼¤¤ [1¡ F (¼¤¤)] + ¼¤F (¼¤) = ° ¡
Z ¼¤¤

¼¤
¼f (¼) d¼ < ° <

°
y
¯x

:

Hence d°t+1
d°t

j°t+1=°t=°> 1 always holds, and the law of motion must cross the 45± line from below

at every steady state. This implies that there is exactly one steady state, which we will denote by

°c. From (29) and Proposition 2, it is clear that °c > °b for rd > 0, while °c = °b for rd = 0.

Moreover, °c < °a also holds. Indeed, it can be shown that

d°c
drd

=

°c
y
¯x

·
1¡ F

µ
(1+rd)°
(1+rd)°+ y

¯x

¶¸

·
1¡ F

³
°

°+ y
¯x

´ y
¯x

(°+ y
¯x)

2

¸ h
(1 + rd) ° + y

¯x

i2
+ (1 + rd) y

¯x

·
1¡ F

µ
(1+rd)°
(1+rd)°+ y

¯x

¶¸ :

Clearly, given (29), we have d°c
drd
> 0: Moreover, as rdgoes to infinity, the case without a lender of

last resort, the expression °t+1+r
d°t

°t+1+r
d°t+

y
¯x

approaches unity and hence (28) collapses to (11). Hence

for rd ! 1, °c ! °a holds, while °c < °a for rd <1.

Given that the law of motion crosses the 45± line from below at any steady state, °c is globally

unstable. When rd · y
¯x

, each °0 2 (0; °c] is associated with a trajectory that remains within the

feasible region. Hence there is a continuum of equilibrium paths. For °0 = °c, the equilibrium

path is stationary. For °0 2 (0; °c), we have lim
t!1

°t = lim
t!1

mt = 0, and hence lim
t!1

pt = 1
and the equilibrium trajectories display sustained inflation. On the other hand, when rd > y

¯x
, all

nonstationary trajectories eventually leave the feasible region. Hence the steady state is the only

equilibrium.
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REFEREE’S APPENDIX A: DERIVATION OF (8)

Using (6), the first-order condition (7) can be written as

¼¤F (¼¤) +

Z 1

¼¤
¼f (¼) d¼ =

pt+1
pt
Rt¼

¤F (¼¤) +
°t

1¡ °t

Z 1

¼¤
(1¡ ¼) f (¼) d¼;

or

¼¤F (¼¤) +

Z 1

¼¤
¼f (¼) d¼ =

pt+1
pt
Rt¼

¤F (¼¤) +
°t

1¡ °t

½
[1¡ F (¼¤)]¡

Z 1

¼¤
¼f (¼) d¼

¾
:

If we add °t
1¡°t¼

¤F (¼¤) to both sides, we have

¼¤F (¼¤) +
°t

1¡ °t
¼¤F (¼¤) +

Z 1

¼¤
¼f (¼) d¼ =

µ
pt+1
pt
Rt +

°t
1¡ °t

¶
¼¤F (¼¤) +

°t
1¡ °t

½
[1¡ F (¼¤)]¡

Z 1

¼¤
¼f (¼) d¼

¾
;

which reduces to

¼¤F (¼¤) +

Z 1

¼¤
¼f (¼) d¼ =

·
(1¡ °t)

pt+1
pt
Rt + °t

¸
¼¤F (¼¤) + °t ¡ °tF (¼¤) :

Making use of (6) again, we obtain

¼¤F (¼¤) +

Z 1

¼¤
¼f (¼) d¼ = °tF (¼

¤) + °t ¡ °tF (¼¤) = °t (34)

This can be written in another form by noting that

d

dx
[xF (x)] = F (x) + xf (x) (35)

holds, which allows us to write
Z 1

¼¤
¼f (¼) d¼ =

Z 1

¼¤

½
d

d¼
[¼F (¼)]¡ F (¼)

¾
d¼

= ¼F (¼) j1¼¤ ¡
Z 1

¼¤
F (¼) d¼

= 1¡ ¼¤F (¼¤)¡
Z 1

¼¤
F (¼) d¼:
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This demonstrates that

1¡
Z 1

¼¤
F (¼) d¼ = ¼¤F (¼¤) +

Z 1

¼¤
¼f (¼) d¼:

Substituting this into (34) yields the solution presented in (8).

REFEREE’S APPENDIX B: DERIVATION OF (18)

Using the definition of ¼¤ given by (6), the first order condition (17) can be rewritten as:

(1¡Rt
pt+1
pt
)
¼¤

°t
F (¼¤¤) +

1

°t + c

1Z

¼¤¤

¼f(¼)d¼ =
Rt

(1¡ °t)Rt ¡ c pt
pt+1

1Z

¼¤¤

(1¡ ¼)f(¼)d¼: (36)

Now, note that (6) and (16) imply that we have

1

°t + c
=
¼¤

¼¤¤
1

°t

and

Rt
(1¡ °t)Rt ¡ c pt

pt+1

=
¼¤

1¡ ¼¤¤Rt
pt+1
pt

1

°t
:

This allows us to write (36) as

(1¡Rt
pt+1
pt
)¼¤¤F (¼¤¤) +

1Z

¼¤¤

¼f(¼)d¼ =
¼¤¤

1¡ ¼¤¤Rt
pt+1
pt

1Z

¼¤¤

(1¡ ¼)f(¼)d¼: (37)

Using (35), note that we have
Z 1

¼¤¤
¼f (¼) d¼ =

Z 1

¼¤¤

½
d

d¼
[¼F (¼)]¡ F (¼)

¾
d¼

= ¼F (¼) j1¼¤¤ ¡
Z 1

¼¤¤
F (¼) d¼

= 1¡ ¼¤¤F (¼¤¤)¡
1Z

¼¤¤

F (¼)d¼:

Hence, (37) reduces to

1¡
1Z

¼¤¤

F (¼)d¼ =
¼¤¤

1¡ ¼¤¤Rt
pt+1
pt

1Z

¼¤¤

F (¼)d¼: (38)
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Multiplying (38) by (1¡ ¼¤¤) and rearranging gives

1¡ ¼¤¤ =
µ
1¡ ¼¤¤ + ¼¤¤Rt

pt+1
pt

¶ 1Z

¼¤¤

F (¼)d¼: (39)

But (16) implies that we have

¼¤¤Rt
pt+1
pt

=
°t (1¡ ¼¤¤) + c

(1¡ °t)
:

Therefore, (39) becomes

1¡ ¼¤¤ =
·
1¡ ¼¤¤ + °t (1¡ ¼¤¤) + c

(1¡ °t)

¸ 1Z

¼¤¤

F (¼)d¼: (40)

Multiplying (40) (1¡ °t) and rearranging terms yields

1¡ °t =
·
(1¡ °t) (1¡ ¼¤¤) + °t (1¡ ¼¤¤) + c

(1¡ ¼¤¤)

¸ 1Z

¼¤¤

F (¼)d¼:

This clearly reduces to (18).

REFEREE’S APPENDIX C: DERIVATION OF (25)

Using (6) and (24) in the first-order condition ??, we obtain

¼¤F (¼¤) + ¼¤¤ [1¡ F (¼¤¤)] +
Z ¼¤¤

¼¤
¼f (¼) d¼ =

pt+1
pt
Rt¼

¤F (¼¤) +
Rt

pt
pt+1

+ rd
¼¤¤ [1¡ F (¼¤¤)] + °t

1¡ °t

Z ¼¤¤

¼¤
(1¡ ¼) f (¼) d¼;

or

¼¤F (¼¤) + ¼¤¤ [1¡ F (¼¤¤)] +
Z ¼¤¤

¼¤
¼f (¼) d¼ =

pt+1
pt
Rt¼

¤F (¼¤) +
Rt

pt
pt+1

+ rd
¼¤¤ [1¡ F (¼¤¤)] + °t

1¡ °t

½
[F (¼¤¤)¡ F (¼¤)]¡

Z ¼¤¤

¼¤
¼f (¼) d¼

¾
:

34



If we add °t
1¡°t¼

¤F (¼¤) + °t
1¡°t¼

¤¤ [1¡ F (¼¤¤)] to both sides, we have

¼¤F (¼¤) + ¼¤¤ [1¡ F (¼¤¤)] +
Z ¼¤¤

¼¤
¼f (¼) d¼ +

°t
1¡ °t

¼¤F (¼¤) +
°t

1¡ °t
¼¤¤ [1¡ F (¼¤¤)] =

µ
pt+1
pt
Rt +

°t
1¡ °t

¶
¼¤F (¼¤) +

Ã
Rt

pt
pt+1

+ rd
+

°t
1¡ °t

!
¼¤¤ [1¡ F (¼¤¤)] +

°t
1¡ °t

½
[F (¼¤¤)¡ F (¼¤)]¡

Z ¼¤¤

¼¤
¼f (¼) d¼

¾
:

This reduces to

¼¤F (¼¤) + ¼¤¤ [1¡ F (¼¤¤)] +
Z ¼¤¤

¼¤
¼f (¼) d¼ =

·
(1¡ °t)

pt+1
pt
Rt + °t

¸
¼¤F (¼¤) +

"
(1¡ °t)

Rt
pt
pt+1

+ rd
+ °t

#
¼¤¤ [1¡ F (¼¤¤)] + °t [F (¼¤¤)¡ F (¼¤)]

Making use of (6) and (23) again, we obtain

¼¤F (¼¤) + ¼¤¤ [1¡ F (¼¤¤)] +
Z ¼¤¤

¼¤
¼f (¼) d¼

= °tF (¼
¤) + °t [1¡ F (¼¤¤)] + °tF (¼¤¤)¡ °tF (¼¤)

Therefore, the solution to the problem is

°t = ¼
¤F (¼¤) + ¼¤¤ [1¡ F (¼¤¤)] +

Z ¼¤¤

¼¤
¼f (¼) d¼: (41)

Using (35), note that we have

Z ¼¤¤

¼¤
¼f (¼) d¼ =

Z ¼¤¤

¼¤

½
d

d¼
[¼F (¼)]¡ F (¼)

¾
d¼

= ¼F (¼) j¼¤¤¼¤ ¡
Z ¼¤¤

¼¤
F (¼) d¼

= ¼¤¤F (¼¤¤)¡ ¼¤F (¼¤)¡
Z ¼¤¤

¼¤
F (¼) d¼:

Therefore, it is the case that

¡
Z ¼¤¤

¼¤
F (¼) d¼ = ¼¤F (¼¤)¡ ¼¤¤F (¼¤¤) +

Z ¼¤¤

¼¤
¼f (¼) d¼

holds. Substituting this into (41) yields the solution presented in (25).
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Figure 1: No Lender of Last Resort
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Figure 2: An Unrestricted Lender of Last Resort
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Figure 3: An Upper Bound on Loanable Funds
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Figure 4: A Lender of Last Resort that Charges Interest
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