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1. Introduction

Models of environments where traders are randomly matched in pairs, in which “double co-
incidence of wants” is absent, have recently undergone rapid development. They have already
become an important class of models in the foundations of monetary economics.

Early versions of random-matching models specified that a trader can hold only a single unit
of money, which is taken to come in indivisible units. This assumption makes the model highly
artificial, and in particular it is responsible for some very peculiar results about welfare. In
previous work (Green and Zhou [2], Zhou [5]), we have developed a random-matching model with
divisible money and without inventory constraint. Surprisingly, we have found that the model
possesses a continuum of steady-state, single-price, equilibria (for essentially any parameter values
where equilibrium exists at all) that support distinct real allocations yielding different levels of
welfare.

Our primary reason for undertaking the present research is to understand more clearly the
significance of this indeterminacy of steady-state, single-price, equilibrium. On one view, the
indeterminacy might be unimportant because possibly only one (or perhaps finitely many) of the
equilibria could be reached from a given initial state of the economy. To examine this view, we
need to define and analyze monetary equilibrium from an initial state. Moreover, to examine
the possibility that several distinct equilibria from the same initial state might exist, we need to
study nonstationary equilibria. This study is begun in the present paper, which reports research
in progress.

In particular, in the current draft of this paper, we study equilibrium with indivisible money,
although without an inventory constraint on money holdings. Also, we consider only the limiting
case of an economy with perfectly patient traders, whose preferences we model in an overtaking-
criterion framework. We restrict attention to this framework for two reasons. It is analytically
more tractable than the analogous framework with discounting studied in Zhou [5], and it has the
feature that all stationary Markov-perfect equilibria are single-price equilibria (which we establish
in a companion paper, Green and Zhou [3]).

We find that single-price equilibrium from an initial state exists under a mild condition about
the initial money-holdings distribution, and that this equilibrium is asymptotically stationary.
Furthermore, for a given single-price steady state, we characterize a range of initial distributions
from which single-price equilibria converge to that steady state. We conjecture that the results
we obtain here can be generalized to a divisible-money environment. If that is so, then we will be
able to show that single-price equilibrium from an initial state, as well as steady-state equilibrium,
is indeterminate in this environment. The reason is that there would be a distinct equilibrium

path corresponding to each alternative level of aggregate real money balances in the economy.



Even in its present interim state, our research has some intrinsic interest. The exclusive focus
on stationary equilibria in study of random-matching monetary economies to date has made
it difficult to draw comparisons between results about these models and results about models
in a Walrasian spirit, in which equilibrium is defined with respect to an initial situation that
generically is not stationary. Moreover, since adoption of a new monetary policy would typically
be expected to move the economy from one steady state to another, the eventual usefulness
of random-matching models to address policy questions in monetary economics is likely to be
enhanced greatly by being able to characterize and analyze nonstationary equilibria beginning
from an exogenous initial situation. For these reasons, the study of nonstationary equilibrium in

this paper enhances the usefulness of the random-matching framework for money.
2. The Environment

Economic activity occurs at dates 0,1,2,.... Agents are infinitely lived, and they are nonatomic.
For convenience, we assume that the measure of the set of all agents is one. Each agent has a
type in (0,1]. The mapping from the agents to their types is a uniformly distributed random
variable, independent of all other random variables in the model. Similarly, there is a continuum
of differentiated goods, each indexed by a number j € (0,1]. These goods are indivisible and
nonstorable. Each agent of type i receives an endowment of one unit of “brand” ¢ good in each
period. An agent can consume his own endowment and half of the other brands in the economys;
agent ¢ consumes goods j € [i, mod(i + 1)] (for example, agent 0.3 consumes goods j € [0.3,0.8],
and agent 0.7 consumes goods j € [0.7,1] U (0,0.2]). He prefers other goods in his consumption
range to his endowment good; while consumption of his endowment yields utility ¢, consumption
of any other good in his feasible range yields utility u, and v > ¢ > 0. In addition to the consump-
tion goods, there is a fiat money.! Money comes in indivisible units, and an agent can costless
hold any number of units of money. The total nominal stock of money remains constant at M
units per capita. We assume that agents do not discount future utility. Their preferences are
characterized by an overtaking criterion with respect to expected utility, which will be formalized
below.

Agents randomly meet pairwise each period. By the assumed pattern of endowments and
consumption sets, there is no double coincidence of wants in any pairwise meeting.? Each agent

meets a partner endowed with one of his consumption goods with probability one-half, and a

! Logically, fiat money is an economy-wide accounting system that satisfies restrictions such as we now describe.
It is customary in the money/search literature, but not logically necessary, to interpret fiat money as some physical
object.

®Strictly speaking, there is a double coincidence of wants only when types i and j are matched, with i = j+1/2
(mod 1). Such a match occurs with probability zero. Hence, we ignore this possibility.



partner who can consume his endowment good with probability one-half. So, in every meeting,
one partner is a potential buyer and the other is a potential seller.

Consumption goods cannot be used as a commodity money because they are nonstorable, so
money is the only medium of exchange available. An agent is characterized by his type and the
amount of money he holds. Each agent has an initial money holdings, which, like the agent’s
type, is exogenously and deterministically given. Within the population, types and initial money
holdings are independently distributed. The economy-wide initial money-holdings distribution is
common knowledge.

Within a pairwise meeting, each agent observes the other’s type, but not the trading partner’s
money holdings and trading history. They cannot communicate about this information either. For
simplicity, we assume that each transaction occurs according to the following simultaneous-move
game. The potential buyer and seller submit a bid and offer respectively. Trade occurs if and
only if the bid is at least as high as the offer, and in that case, the buyer pays the seller’s offer

price.?

3. The Definition of Equilibrium

The domain of agents’” money holdings is N. Let A be the space of probability measures on
infinite-dimensional probability simplex, A = {p|p = (po,p1,...), Vk € Npy >0, > 7 o pr, = 1}.
Suppose that the initial money-holdings distribution is given by p°.

At each date, the set of agents is randomly partitioned into pairs. Within each pair, one of
the agents desires to consume the other’s endowment. Thus, a bid and offer are associated with
each pair.

Now we provide an intuitive discussion of the distributions of bids and offers, and we state some
formal assumptions about those distributions. Our assumptions are in the spirit of a “continuum
law of large numbers.”* For each random partition 7 of the agents into pairs at date ¢, there is
a sample distribution B of bids and a sample distribution Of of offers. We assume that these
sample distributions do not depend on the partition. That is, there are bid and offer distributions
B; and Oy such that for all partitions w, B = B; and O] = O;. Moreover, because each agent
has a trading partner assigned at random, the probability distribution of the trading partner’s bid

and offer should be identical to the sample distribution. That is, By and O, are the probability

3In Green and Zhou [2] and Zhou [5], the offer was assumed to be made before the bid. Equilibrium in that game
corresponds exactly to equilibrium in the simultaneous-move game. The refinement of equilibrium in undominated
strategies, applied in this context by Zhou [5], also applies straightforwardly to the simultaneous-move game.

4That is, we believe that they are logically consistent with the results from probability theory that we will apply
in our analysis, although they cannot be derived from those results. See Green [1] and Gilboa and Matsui [4] for
further discussion.



distributions of bid and offer respectively that are received at date ¢ by each individual agent, as
well as being the sample distribution in each random pairing of the population of agents.

Now let the probability space (€2, B,P) represent the stochastic process of encounters faced
by a generic agent. This agent faces a sequence w of random encounters, one at each date. His
date-t encounter, with some agent of type j, is characterized by her trading type (buyer or seller)

in the meeting and her bid/offer, denote it by w; = (w1, wy2),

if 7 meets a buyer, wy = b, wyy is her bid

if 7 meets a seller, wy = s, wyo is her offer.

The encounters {w;}?2, = w are independent across time.  is the set of all possible sequences of
encounters that an arbitrary agent in the economy faces.

At each date ¢, pairwise meetings are independent across the population. That is, for each
agent, wy follows a Bernoulli distribution, a potential buyer’s bid price we is drawn from the
bid distribution By, and a potential seller’s offer price wys is drawn from the offer distribution Oy.
For t > 1, let B; be the smallest o-algebra on 2 that makes the vector of the first ¢ coordinates,
w! = (wp, w1, ...,w; 1), measurable, and By = {¢, Q}. Let P; be the probability measure defined

on B;. Then, for all t > 0, and k£ € N,
1

Pl{wn = b} =P{wn = s} = 3 (1)
Pi{wi = k|wn =b} = By (2)
Pt{wtz =k|wn :5} = O (3)

Define B = By, and P = Pyo.

We focus on symmetric equilibrium, that is, equilibrium in which agents are anonymous, an
agent’s strategy is a function only of his own trading history and initial money holdings, and
strategy is symmetric with respect to agents’ types. Let o be the trading strategy of a generic
agent with initial money holdings 7ny. His date-t strategy o; specifies his bid o;1—his maximum
willingness to pay if he is paired with a seller of his consumption goods—and his offer o4o—the
price he is willing to sell if he meets a consumer of his endowment good—as a function of his
initial money holdings and his encounter history w. The strategy o, is measurable with respect to
B;. As a buyer, the agent has to be able to pay his bid. Let 5/ denote the agent’s money holdings
at the beginning of date ¢ by adopting strategy o. Then

o1 (no,w) < 07 (o, w). (4)

Given the agent’s initial money holdings 79, encounter history w, and strategy o = {0:}32,,



his money holdings evolves recursively as follows: 7 (1o, w) = 1o and, for ¢ > 0,

n{ (o, w) + o2(n0, w) if wyp =0 and o(no,w) < wiz
nie1(no,w) = ¢ 07 (N0, w) — w2 if wy =s and oy (no,w) > wo (5)
ng (no, w) otherwise

Let v{ denote the agent’s date-t utility from his date-¢ trading by adopting strategy o. Then

0 if wp =0 and op2(ny, w) < wp
vy (o, w) =1 u+c if wp=s and op(no,w) > wee (6)
c otherwise

Then, strategy o overtakes another strategy & if for all ny € N,

t t

litrg(i;lf E[Zv (no,w Zvﬁ(ng,w)] >0 (7)

=0 =0
where E is the expectation operator with respect to the probability measure P.

At the beginning of date ¢, given all agents’ trading strategy o; and the initial money-holdings
distribution p°, rational expectation requires that agents’ belief regarding the bid distribution B;
and the offer distribution O; that prevail during date-¢ trading confirm with the actual distribu-
tions implied by the strategy. That is, for all £k € N,

By = Zpl {onlt,w) =k} ®)

O, = sz {Ut2 (lw) = k} (9)

The equilibrium concept that we adopt is Bayesian Nash equilibrium with respect to the

overtaking criterion.

DEFINITION. A Bayesian Nash equilibrium is a four-tuple (o, p°, {B;}5°,, {0 }32,) that satis-
fies

(i) p" is the initial money-holdings distribution in the environment.
(ii) Given the bid distributions {B;}?°, and the offer distributions {O;}{°,, and given that
all other agents adopt strategy o, it is optimal for an arbitrary agent to adopt strategy
o as well, that is, there is no strategy that overtakes strategy o.
(iii) Given that all agents adopt trading strategy o, for each ¢ > 0, B; and O, satisfy equations
(8) and (9).

We are going to study one particular equilibrium at which at all dates, all traders offer to
buy their desired consumption goods at price 1 as long as they have money, and accept price

1 in exchange for their endowment goods, hence, all trades occur at price 1. We call it price-1



equilibrium. This equilibrium is markovian in the sense that the dependence of agents’ strategy
on time and trading history is only through their own current money holdings to satisfy feasibility
condition (4), despite the dynamic environment. Formally, define the strategy & as follows, for

all gy € N, encounter history w € €2, and ¢ > 0,
Ot1 (7707(")) = min{ng(noaw)a 1}7 5t2(7707w) =1 (10)

Let p' € A denote the money-holdings distribution at the beginning of date * induced by strategy
. The bid distribution implied by strategy ¢ puts measure 1 — p, on price 1 to reflect the bid
of each agent with money, and it puts measure p} on price 0 to reflect the agents who have no
money and cannot buy. The offer distribution implied by & is stationary and degenerate with

mass at price 1. That is
By = ph, By =1-p} (11)
O =0, On = 1. (12)

The evolution of the money-holdings distribution p¢ is specified in the next section. In the next

two sections, we are going to show that (7, p°, {Bt}gﬁo, {Ot}gﬁo) is an equilibrium.
4. The Convergence of Money-Holdings Distribution at Price-1 Equilibrium

In this section, we show that if all agents adopt the stationary strategy &, and if the initial
money-holdings distribution p® satisfies certain condition, then the economywide money-holdings
distribution converges weakly to a unique geometric distribution at which the economy is station-
ary. Furthermore, we show that given the economywide money-holding distribution converges,
the distribution of a generic agent with an arbitrary initial money holdings converges to the ag-
gregate limit distribution, and the mean of his money holdings converges to the per capita money
holdings in the economy M.

From the specification of the conjectured price-1 equilibrium, for each agent, there are two
decision-relevant objects at any date: the agent’s own money holdings which determines his
feasible bid price, and the economywide money-holdings distribution which determines the bid
distribution. Hence, the decision-relevant state at date ¢ can be represented by his money holdings
n; and the money holdings distribution p' instead of initial money holdings 79, encounter history
w, bid distribution B; and offer distribution O;. Given that all agents adopt strategy &, given the
initial distribution p°, the money-holdings distribution evolves deterministically as follows: for
any t > 0,

t
m(p 1
pit = ="y (13
t t
m(p 1 1 m(p
VE>1  pitt=(1- (2 ) _ 3Pk + 5Phe1 + —(2 )p}ifl (14)



where m(p') is the measure of agents who have money, m(p*) = > ;2 pi. The sequence {p'}{2
of money-holdings distributions can be obtained by applying (13) and (14) recursively. It is easy
to check that at any point of time ¢ > 0, the distribution satisfies the aggregation condition: the
nominal money stock remains at M, that is, > 72, kpj,tC =M.

For technical convenience, we work with a transformation of the probability measure p instead

of p itself. Define a mapping L: A — [0, 1]*° as follows,

VpeA VEEN  Li(p) =) p;. (15)
ik

Obviously, Lo(p) = 1, Lig(p) € [0,1] and Lk(p) > Liy1(p) for all k € N. Let I' = L(A). Then, for
any x € I, z satisfies that zp = 1, z € [0,1] and zy > x4 for all £ € N. By definition, L is a
one-to-one linear mapping from A to I'. To prove that the sequence of probability measure {p‘}22,
converges weakly, we will first show that the corresponding sequence {L(p')}°, converges in the
¢1 metric. The aggregation condition for the distribution can be written as Y o Li(p') = M,
for any ¢ > 0. Define S to be the space of all transformations of probability measure defined by
(15) that satisfies the aggregation condition,

S:{x|xer,§:mk:M}. (16)
k=1

The set S is the space we are going to work with primarily in this section. It is easy to show the

following.

LEMMA 1. Both S and T' are convex. That is, for X = S or X =T, Vx,y € X and
Va €10,1], az+ (1 —a)y € X.

By equations (13) and (14), the law of motion of the transformation of money-holdings distri-

bution L(p) is a mapping T: S — S such that for all z € S, for all &k > 1,

]_ _
Ty(z) = e

1 T
5 Tk T 5Tkl T 5 Tk (17)

It is easy to check that Tp(z) = 1 and T(z) € S. Given that 20 = L(p°), 2! = T(z"1) = L(p")
for all £ > 1. The following lemma states that the mapping 7" has a unique fixed point.

LEMMA 2. The mapping T has a unique fized point * € S such that z =T (Z):

M
M+1

VkeN 5, =m", where m =



Proof. For all 2 € S, by equation (17), T'(z) = x requires that for all k£ > 1,

]_—Il
2

1 T
)Tk + STt + o Tt (19)

and xp = 1. This system of equations has a unique solution Z, Vk € N 7, = (#1)*. Since T € S,

M =322, 7 = 372, (#1)F, which implies that z; = ML_H

=m. 1

The unique fixed point z of T" given in Lemma 2 corresponds to the geometric money-holdings
distribution with parameter m: p = L™'(Z), pp = (1 —m)m* for all k € N. We want to show that
starting from a given initial state 2°, the economy as a dynamic system evolving according to
mapping T', converge asymptotically to the steady state characterized by z. Toward this objective,
we construct a Liapunov function which is a function of the state of the dynamic system. We show
that the Liapunov function decreases over time and approaches to its minimum asymptotically.
Therefore, by a standard argument of dynamical-systems theory, the economy asymptotically
approaches a steady state, which is represented by the unique fixed point of T', Z, and does not
depend on the initial state.

The Liapunov function we choose to use can be interpreted as the expected hazard rate for

the corresponding distribution. Define Z:1T' — R, for all x € T,

e (@ — Tpg)?
Z(z) =) (20)

T
k=0 k

If for some [, z; = 0, then by definition, 2, = 0 for all £ > [. Insuch a case, let Y72, W =0.
For technical reasons, we define the function Z on the larger space I' instead of on S. For Z to
be a Liapunov function, it should be continuous in some metric, it should be decreasing along
the trajectory of the system defined by 7', and it should have a unique minimum on S where it is

applied. We will show that Z has these properties one by one.
LEMMA 3. The function Z is strictly convex on T'.

Proof. Take arbitrary z, y € I, z # y, and « € (0,1). Let w(a) = (l—a)z+ay = z+a(y—x).
The set ' is convex, hence w(a) € T'. For all k € N, define §;, = yr — 2 and

zi(w(a)) = (wy, (o) — wk+1(a))2 _ (zp — 21 + a0 — 5k+1))2
A ) on ¥l -

Direct computation reveals that

¢ Z(w(e) _ i zp(w(a)) _ i & (5k — 041 — Ouon = ey + 0Ok = 6k+1))2 2 0.

da? = da? = ap + ady, Tk + ady



#2(w(e)) — 0 if an only if Vk € N L2050 — o which is equivalent to Vk € N gy 1z, =

YkTr+1, that is (since zp = yo = 1), Vk € Nz = yi. Given that = # y, L) - g Hence, Z

da?

Moreover

is strictly convex on I'. 1

Using Lemma 3, the following proposition show that the function Z satisfies a crucial criterion

of a Liapunov function: it is strictly decreasing along the trajectory of the system defined by T'.
PROPOSITION 1. For all z € S, Z(T(x)) < Z(x), unless © = T(x).

Proof. Define mappings A: S — ' and p: S — T as follows: for all z € S, k € N,

Thk+1
Ak(z) = $—J1r, po(z) =1, ppi1(2) = 2178

It is easy to check that A\(z) € T and p(z) € I'.> The measure ) is a normalized left-shift of x,
and p is a normalized right-shift of z. Then by (17), we can rewrite T'(z) as convex combinations
of z, A(z) and p(z). That is,

T(z) = %A(x) + %p(x) + = _2$1

Z.

Since Z is strictly convex on I' by Lemma 3, unless A(z) = p(z) = =,

Z2(T(x)) < %Z(A(:p)) + %Z(p(@) +2 ;xIZ(x)
- %%(Z(i) —(1-m)) + %((1 —n) +iZ(@)) + L= )
= Z(x).

It is easy to verify that A(xz) = z if and only if x = T'(z). Therefore, unless x = T'(z), we have
Z(T(z)) < Z(x). W

Because of the aggregation condition ()", zx = M), S is a subset of the complete metric
space (X,d), where X = {z € [0,1]®°| 372, |zx| < oo} and d is the usual ¢;-metric associated
with X, for any z,y € X,

da,y) =3 lex - il (21)
k=0

By standard argument, (5,d) is a complete metric subspace of (X, d). Next, we show that both

Z and T are continuous mappings in metric d.

PROPOSITION 2. The function Z is continuous on S.

°In general, for any = € S, A(z) € S and p(x) ¢ S. This is the reason we define Z on T instead of on S.



Proof. We need to show that for any given ¢ > 0, for any z € .S, there exists a J-neighborhood
of z such that for all y satisfying d(z,y) < 4, |Z(z) — Z(y)| < e.
Fix an arbitrary € > 0, and an arbitrary « € S. Since z, is decreasing in k and >, | 2 = M,
there exists an I > 1 such that
xr < €/8. (22)

Let J = max{j|j < I, z; > 0}. So 7 > 0. Without loss of generality, assume J > I — 1. Let
d = (e/8)xy; > 0. (Otherwise 741 =0, so J + 1 satisfies z;4; < £/8.) Then for any y such that
d(z,y) <9,

yr <lyr —zr| +zr <d(z,y) + 21 < (¢/8)z; +¢/8 < /4. (23)

For all k € N, define &(z) = (2, — z11)/zx < 1, and &k(y) = (yk — Yrt1)/ye < 1. Then, for

kSI—l,ka(IIJ,

1 Yk 2 ¢ €
1€k(z) — Ee(y)| < —(|$k+1 = Yet1| + Tk — Ykl +1> < —sxg= . (24)
Tk Yk 58 4

Now, applying (22)—(24), we have
1Z(z) — Z(y)]

I-1
= Z‘ (@ — 1) &k (2) — (Y — yk+1)Ek(y ‘Jrz ok — )6k (2) + > (Uk — Yhs1)Er(Y)
k=0

k>1 k>1
I-1
< Z((xk — T8k (@) — ()] + 2k — Yrl&r () + [p41 — yk+1|€k(y)) +xr+yr
k=0
I-1 I-1
< Z(xk — Tpt1) 5 + Z |2k — Y| + Z |Tht1 — Yrs1| + /8 + /4
k=0 k=0

< 6/4+€/8+€/8+6/8+6/4 <e.

We have shown that for any given € > 0, for any « € S, there is 6 > 0 such that for all y satisfying
d(z,y) <9, |Z(y) — Z(z)| < e. Hence, Z is continuous on S. B

PROPOSITION 3. The mapping T is continuous on S.

Proof. We need to show that for any given € > 0 and « € S, there is a § > 0 such that for all
y satisfying d(z,y) < 0, d(T(z),T(y)) < €.
Fix an arbitrary e > 0 and an arbitrary z € S. By (17), for all y € S, for all £ > 1,

I—y
2

1
Ty (y) = Yk + 5 Y+ + Y 5 AT

10



Take 0 = ¢/3 > 0, and let y be such that d(y,z) < ¢. Then,
o0
d(T(2),T(y)) = > |Tk(y) — Tu(z)|
k=1

1
3 (|5L“k — k| + 121 — yr1| F zilTe — yr| + 212 — Yegr| F (ke + Yrgr) |z — yl|)

Il
T

< 6/3+€/3+6/3+6/3+6/3+6/3> =€

N —

Therefore, T' is continuous on S. N

The set S we have been working with is unfortunately not compact. To insure the convergence
of the system from some initial state, we introduce a subset of S that is compact. Define an
ordering relation between two vectors z and y: y dominates z, denote x < y, if and only if for all
ke N zp < yg. For a given strictly positive vector m € X', let S; be the set of vectors in S that
are dominated by ,

Se={z eS|z <} (25)

PROPOSITION 4. For a given strictly positive vector m € X, the set Sy is compact.

Proof. To prove Sy is compact, we need to show that S; is complete and totally bounded
subset of X. The completeness of S is trivial given that S is complete, and the proof is omitted
here. To show that S; is totally bounded, we need to show that there exist a finite e-net for S,
in X for any ¢ > 0.

Fix an arbitrary ¢ > 0. Since 7 is strictly positive and 7 € X, Y 72 7 < co. Hence, there
exists an I > 0 such that Zk>1 7 < €/2. For any = € Sy, let Z be the vector of z truncated at
I, & = (zo,21,...,21,0,0,...). Then d(z,2) = Y40 ; % < Yo Tk < /2. Let Sy be the set of &
associated with z € S;. The set S, is a totally bounded in I-dimensional Euclidean space (with
the usual metric). Let A be a finite /2-net for S.. Then A is a finite e-net for S,. N

The vector 7 can be any strictly positive element of X. In particular, let 7¥ denote the

geometric vector defined by some 0 € (0,1): for all £ € N,
) = ok (26)

The vector 7% as defined above is an element of X’ as well as I'. Also, it is a fixed point of 7. The

following lemma, states that for 7%, S s is closed under 7'
LEMMA 4. For any « € S and any 0 € (0,1), if x < 7%, then T(x) < =°.

11



Proof. Suppose that there exists a 6 € (0,1) such that 2 < 7%. By definition, z < 7% implies
that x;, < 0¥ for all k € N. By equation (17), for all k& > 1,

1 1
Tk(x) = B ((1 — :El)(L‘k + Tpy1 + Q’I,‘lxkfl) < B ((1 — x1)0k + gF+1 + (L‘lok_1> .

Since the expression in the righthand side of the above inequality is an increasing function of x;

and by assumption, x; < 6,
1
Ti(w) < 3 ((1 —0)0F + o+ 4 99’“) = oF.

By definition, Ty(z) = 1 = 7. Therefore, T'(z) < 7’.
By Lemma 4, if a given initial state 20 satisfies the following condition,
(%) there ezxists a 6 € (0,1) and a t > 0 such that T*(z°) < n?

then all the subsequent states of the dynamic system T"(z°), n > t, are dominated by 7’ as well,

hence, they are elements of S 0.

PROPOSITION 5. If the initial state x° satisfies condition (%), and if all agents adopt strategy

G, then the economy as a dynamic system evolving from z°

according to mapping T converges
asymptotically to the steady state characterized by distribution T which uniquely satisfies T(Z) = %

and d(z,0) = d(z°,0).

Proof. Suppose that condition (x) holds, that is, there exists § € (0,1) and a ¢t > 0 such
that T*(z°) < 7%, then T"(z°) € S, for all n > t. By Proposition 4, S, is a compact set,
and by Proposition 2, the function Z is continuous on S, hence on S ¢, Z achieves its minimum
on S,e. Furthermore, by Lemma 3, Z is strictly convex on S, hence on S,¢, Z has a unique
minimum on S, e. Last, Z is strictly decreasing along the trajectory of the system defined by 7'
by Proposition 1. Therefore, Z is a Liapunov function. With this Liapunov function, we show
next the convergence of the system from the initial state 2°.

0. construct a sequence {z"}>2, by applying T recursively, 2" = " ().

From the given z
Consider the sequence excluding the first ¢ elements, {z™}52,, which is in S, ¢ by assumption. By
Proposition 1, the corresponding sequence {Z(z™)}52, is monotonically decreasing. Since S, is
compact, there exists a subsequence {z"*} that converges to some & € S, 4. Suppose that & is
not a fixed point of T. Then by Proposition 1, Z(T(£)) < Z(%). Since Z is continuous and T
is continuous, there exists a § > 0 such that for all y satisfying d(z,y) < 9, Z(T(y)) < Z(%).
Since {z"k} converges to Z, there exists an K such that for all k& > K, d(Z,z™) < §, hence,
Z(T(z™)) < Z(%), or,

Z(z™ ) < Z(2). (27)
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But since {Z(z")}22, is monotonically decreasing, and since Z is the limit of 2%, regardless of

the arrangement of the subsequence,
Z(a"*) > Z(&) (28)

which contradicts (27). Therefore, the limit & has to be a fixed point of T'. Since T" has a unique
fixed point z in S by Lemma 2, z = # € S,s. Hence, for the given initial state z°, T"(z%) — 7 as
n — oo. This strengthened statement, that the entire sequence (rather than only the subsequence
selected above) converges to Z, follows from a standard argument involving the Liapunov function
Z. 1

The convergence of T%(z°) to Z as t — oo in £1-metric implies that for each k, T} (2°) — 7y, as
t — oo, which by definition, implies weak convergence of the corresponding sequence of probability
measures {p'}°,.

The assumption made in Proposition 5, that the initial state 2%, a linear transformation of
the initial distribution p°, satisfies condition (x), is not a strong assumption as it seems. The

following proposition states a class of initial state that satisfies the condition.

PROPOSITION 6. If the initial money-holdings distribution p° has a thin tail that is dominated
by the tail of a geometric distribution, that is, there is a J > 0 and an o € (0,1) such that
p? < (1 —a)ad for all j > J, then 2° = L(p°) satisfies condition (x).

Proof. The condition states that there is a J > 0 and an a € (0, 1) such that pg <(1-a)dd
for all ¢ > J, or equivalently, (II? < o for all j > J. Let K be the minimum of the support of p°,
K = min{j [p) # 0}. Then by definition, «§ =1 for all j < K.

First, suppose that z¥ < 1 (pJ > 0 and K = 0). Then, there exists a § € [, 1) such that
:1:(1) < 67, Since :1:2 is decreasing in j, for j < J, m? < :1:(1) <6’ <@i. Forj>J, m? < al < 67 since
« < 0. Therefore, z° < 7. That is, condition () holds for z°.

Next, consider the case where 2 = 1 (pg =0 and K > 1). Then, x? =1 for all j < K and
2%, < 1. By equation (17), Tj(z°) = (z%,, + 1)/2 < 1, and le_i_l(xo) < o forall j > J.
Similarly, after K repeated operations of T on z°, we have T (2°) < 1, ijiK(xO) < o for
all j > J. Now we can treat T5(z%) as the 2° in the case above. Specifically, there exists a
0 e [aﬁ,l) such that T (2°) < ¢/+K. For j < J+ K, TjK((IIO) < TE(2%) < 07+ < ¢l
For j > J+ K, :1:2 < oK < @ given 0 > QTR Therefore, T (%) < 7%, which implies that
condition (x) holds. ®

As a practical matter, economists are not likely to find that the condition in Proposition 6

is a restrictive one. An initial money-holdings distribution p® with finite support (that is, there
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is a J > 0 such that p?- = 0 for all j > J) satisfies the condition. Distributions with finite
support are dense in the space of probability simplex A. The condition is also satisfied if one is
to increase the nominal money stock in an economy from a steady-state geometric distribution
by distributing a finite amount of money to people whose money holdings are less than certain
finite amount (e.g. “poor” people), in other words, if the money injection has finite support. We
can conclude now that if the initial money-holdings distribution satisfies the condition given in
Proposition 6, and if all agents adopt strategy &, then by Proposition 5, the economywide money-
holdings distribution converges asymptotically to a unique geometric distribution with which the
environment is stationary.

Given that there is a large number of nonatomic agents, and that all agents adopt strategy
&, the convergence path of the money-holdings distribution over time is deterministic. However,
for a single representative agent in the economy, trading path is random, and the probability
structure introduced in section 3 is defined in terms of the stochastic process of encounters faced
by such an agent. For a generic agent with initial money-holdings 79, the distribution for his
possible money holdings at date ¢ is not given by p’, which is the money-holdings distribution
of potential trading partner at date t. In order to study the optimality of strategy &, we need
to know the evolution of the money-holdings distribution for a single agent with arbitrary initial
money holdings .

Consider an agent with initial money holdings 19 = Ip, | € N. Let ¢ € A represent the
probability measure for the agent’s date-t money-holdings 7j;(Ip, w) given that all agents adopt
strategy 6. Then, qfo =1 and q,lf0 =0 for all k # 1. For any ¢ € A, define

VE>0 VEEN gyl =) g (29)
i>k

hence, y* € T'. Obviously, ¢'* and ¢ uniquely determine each other. As z! represents the date-t
aggregate state of the economy, 3 represents the distribution of the date-t personal state for
the agent with initial money holdings Ip. Given that the distribution of money holdings in the
population follows the path of {z'}$°, almost surely, the transformation of the distribution of the
agent’s personal state from date ¢ to date ¢ + 1 is a mapping U’ : T' — T such that for all y € T,

forall k > 1,
1 -2t 1 !
Ut (1) = 1 < L
5(Y) 5 yk+2yk+1+ 9

and Ul (y) = 1, where z!} is the measure of agents holding money at date ¢ (hence able to purchase)

Yk-1 (30)

as defined above, which is taken as given for each agent. That is, if y** represents the distribution of
the agent’s date-t state, then the distribution of his date-(£+ 1) state is given by y!(+1) = Ut (yH).
The following proposition states that each agent’s money-holding distribution converges to the

same geometric distribution as the economywide money-holdings distribution does. The initial

14



money holdings of an agent does not matter in the limit.

PROPOSITION 7. If the initial state z° satisfies condition (x), and if all other agents adopt
strategy &, then the money-holdings of a generic agent adopting strategy &, m:(no, w), converges

weakly to the same aggregate limit regardless of his initial money holdings ny.

Proof. Consider a trader with initial money holdings ny = Ip, [ € N who, as everyone else in
the economy, adopts strategy . To prove that the trader’s money-holdings 7;(ny, w) converges
weakly to the aggregate limit, we need to show that for all k, |y§€t — Zg| — 0 as t — oo. Given
that the aggregate state ! converges to 7, i.e., for any k > 1, :Jc';c — Tj as t — oo, it is sufficient
to show that for all &, |y§€t —zt] = 0 as t — co. We show this by induction on .

For any ¢ > 0, given that the date-t aggregate state 2’ and the distribution of the agent’s
personal state g/, by equations (17) and (30), the corresponding date-(¢ + 1) states are defined
as follows, for any k£ > 1,

1—2at 1 t
+1 1t ot
T = T Tt Tk T G T
¢
w1y _ l—ay 1y
Y = 5 yk+2yk+1+ 2y 1
The difference of the above two equations are, for any k£ > 1,
I(t+1) i1 _ L — A ¢ Loy ¢ L1, 1t ¢
Y — Ty 22‘—75——(yk _'xk)+'§(yk+1_"$k+1)+'?;(yk—l_"$k—1)- (31)
Then, given that y¥ = 2z} = 1,
o0 o0
I(t+1)
d(y" Y, gt Z — < < (Z it — 2kl + >l — xil)
k= k=2
or
1
d(yl(t+1)7 $t+1) = d(ylta xt) - §|yl1t - ‘IEH (32)

That is, {d(y", 2')}5°, is a weakly decreasing sequence, and since it is bounded below by zero, it
has a limit a. Then, by (32), |y — | — 0.

Now suppose that for all j < k, |y§t — :1:§| — 0, we want to show that |y§f_H — mtk_|_1| — 0.
By induction hypothesis, Z?Zl |y§-lt —a%| — 0. Since dy', z') = PP |y§-t — a}| = @, we have
P |y§t —z%| = a. Then,

o0 o0
I(t+1
‘ Z |yj( ) —(II§-+1|— Z |y§t—x§|‘ =0 as t— oo. (33)

j=k+1 j=k+1
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By equation (31),

o0 l( ) o0 (I,'t
t+1 1
Dol T e < Y W -l Lyl — Tl + Uk — il
j=k+1 j=k+1

or

oo
I(t+1 [
Lt —obal <| 3 B = ot = 3 1l — b + o - ol (34)
j=k+1 j=k+1

Applying (33) and induction hypothesis to the above inequality (34), we have |yfct A zt 4l—0
as t — oo. Hence, by induction for all £ > 1, |y§clt —zl| > 0ast—oo0. W

A direct consequence of the weak convergence of the random variable 7j;(n, w) by Proposition

7 is the convergence of E[7:(no, w)] to the aggregate mean money holdings M.

PROPOSITION 8. If the initial state x° satisfies condition (x), and if all other agents adopt
strategy &, then the expected money-holdings of a generic agent adopting strateqy & converges to
the per capita money holdings M regardless of the initial money holding ng. That is, for any
no € N,

lim Efi (o, ) = M. (35)

Proof. Consider a generic agent with initial money holdings 19 = Ip, I € N, who, as everyone
else in the economy, adopts strategy . We first show that there exists a date ¢; such that the
sequence of distributions of the trader’s money-holdings from #; on {7j;(Ip, w)}{2;, is dominated by
a geometric distribution. Note that since condition () is satisfied, there exists ¢ and 6’ € (0,1)
such that for all t > ¢/, 2t < =?'.

Given that the agent’s initial money holdings is Ip, yfco =1 for all £ <[ and yfco = 0 for all
k > 1. By the law of motion (30), after I repeated operations of U' on ¢, ¢!/ = Ul (y'°) < 1,
and for all k > 2, yi! = 0. For all t > I, y{ = Uj(y'°) < 1, and for all k > [ +¢, yf =
Take #; = max{l, t'}. Choose 6; € [¢,1) such that y}"" < (8,)"*". Since y,lfl is decreasing in k, for
k<t+t, ykl <yl < (9)H < (B)F. For k > t+1y, yltl =0 < (6))*. Therefore, y"' < 7%. Given
that 0 < 6, and #; > ¢/, 2t < 7 < x%. That is, both y'“ and mtl are dominated by 7%. Then, by
a similar argument as in the proof of Lemma, 4, for all t > t;, y* = (U"')! ( 0y = (Ut (ytt) < 7.

A random variable with geometric distribution corresponding to 7% (i.e., with parameter 6;)
is uniformly integrable. Because the distributions of the sequence of trader’s money-holdings from
t, on {7 (Ip, w)}72,, is dominated by the same geometric distribution, 7j;(Ip, w) is also uniformly

integrable for ¢ > ¢;. Then, by Theorem 25.12 (Billingsley, 1995), weak convergence of 7;(Ip, w) to

16



a random variable with the aggregate limit distribution which is geometric with mean M, given

by Proposition 7, implies that the expectation of 7;(Ip, w) converge to the same mean M. W

5. The Existence of Price-1 Equilibrium

In this section, we show that from an initial distribution p° such that the assumption in Propo-
sition 6 is satisfied, the price-1 equilibrium defined in Section 3 is a Bayesian Nash equilibrium.
In particular, we show that for an arbitrary agent, given that all other agents in the economy
adopt the strategy & defined in (10) (hence the bid and offer distributions are given by {B;}32,
and {0}, defined in (11) and (12)), it is optimal for the agent in question to adopt strategy &
as well, that is, no strategy overtakes &.

Consider an arbitrary agent of type i. Suppose that the agent’s initial money holdings is
no. Since 7o is fixed and is taken as given when we compare different strategies, for notational
convenience, we will suppress 79 as an argument of all functions such as o and 77 in the rest of
the section, and write them as functions of w alone. Also note that given all the other agents
adopt strategy 6 and the agent in question has measure 0, although his trading history will be
determined by his strategy o, his encounter history w is independent of the strategy he adopts.

Let n{ (w) denote the agent’s money holdings at the beginning of date ¢ with encounter history
w if he adopts strategy o, nf(w) = 1. Define the agent’s achievement function at the beginning
of date t if he adopts strategy o, A7:{2 — R, to be the sum of his total utility up to date ¢ and
the future utility that will be brought by the money accumulated up to date ¢, n7, given that the

agent buys his future consumption goods at price 1. That is, for any encounter history w € €2,

t—1
A7 (@) = 3 07 () + ¢ (@) (36)
7=0

where v?(w) is defined in (6), and 1/ (w) is defined recursively by (5). For notational convenience,
define for all £ > 0,
Ay =47, =9, d=my. (37)

Note that by the definition (7) of the overtaking criterion, given that all other agents adopt
strategy &, any strategy that specifies at any time to offer to sell at price 0 is obviously overtaken
by some strategy since the seller in transaction gains nothing but suffers a utility loss ¢ by forgoing
the consumption of his own endowment good. In the rest of the paper when we compare strategies
with &, we exclude those strategies with O offer price at any time. The following lemma shows

that strategy & is associated with the highest achievement function of any strategy.

17



LEMMA 5. If all other agents adopt strategy &, then for an arbitrary agent facing any encounter
history w € Q, adopting a strategy o, for all t >0, A7 (w) < As(w).

Proof. Consider an agent of type ¢ with a history w € Q. Obviously, Af(w) = Ag(w) = nou.
We compare an arbitrary strategy o with ¢ at the begining of date t + 1, ¢ > 0.

Case (1). wy = s and wp = 1. In this case, regardless the agent’s strategy (including &),
A7, () = A7 (@) +c.

Case (2). wy; = band wye = 0. This is a case that the buyer encountered has no money, hence,
has bid price 0. By remark above, oi(w) > 0. So regardless of the strategy (including &), no
trade can take place, A7, | (w) = A7 (w) +c.

Case (3). wy =band wyp = 1. If opp(w) =1 = 6(w), A7 (w) — A7 (W) =u = Appr (w) — Ay (w).
If o49(w) > 1, the encountered buyer is not able to buy, hence trade does not take place with o,
but it does take place with &, A7 ;(w) — A7 (w) =c<u = Apyi(w) — Ag(w).

Combine the above three cases, we conclude that for any strategy o, for all history w € €,

A% (w) — Ap(w) = 0, and for all t > 0,

A7 (@) = App () < A7 () = Ai(w).

Hence, by induction for all £ > 0, A7 (w) < Ay(w). ®

Proposition 8 states that if all other agents adopt strategy &, and if the initial distribution
p? satisfies the assumption in Proposition 6, the expected money holdings of an agent adopting
strategy ¢ converges to M. The next lemma is about the expected money holdings if an agent

adopt some other strategy o.

LEMMA 6. Under the assumption in Proposition 6, given that an arbitrary agent adopts strat-
egy o while all other agents adopt strategy &, if E[AY(w) — Ay(w)] 4 —oo as t — oo, then
liminf, , E[nf (w)] > M.

Proof. For strategy o, for all w € 2, define §” (w) to be the set of dates at which the agent who
adopts strategy o meets a buyer, but his offer price is above 1, 07 (w) = {t|wy = b, o2(w) > 1}.
For any w € (, let #6(w) denote the cardinality of 67 (w).

Claim 1. If E[A7(w) — Ai(w)] A —o0 as t — oo, #67 < 00 a.s.
To prove this, consider an arbitrary encounter sequence w € 2. For ¢t € §7 (w), given that the agent
adopts strategy o, there is no trade takes place (042(w) > 1 = wy2), hence, A7, | (w) — A7 (w) = c,
while if the agent adopts strategy &, then trade takes place at price 1, Ay (w) — Ay(w) = u > c.

Therefore,

Vi€ 07(w) Afy (W) = Api(w) = A7 (W) — Ayw) = (u —c). (38)
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For t ¢ §°(w), it is easy to check, for cases (1)—(3) as in the proof of Lemma 5, that A7 ;(w) —
Asy1(w) = A? (w) — Ay(w). Hence, by (38), if #47(w) = 0o, limy_,5o[A7 (w) — As(w)] = —o0, which
implies that if P{w|#67 (w) = 0o} > 0, limy_,o E[A7(w) — Ay(w)] = —o0, which contradicts to
the assumption. That is, the claim holds.

Given claim 1, for any ¢ > 0, there exists a . > 0 such that P{w| max 67 (w) <t.} > 1—¢/2.
Recall that for all ¢t € §7 (w), 642(w) = 1. Define p.(w) = min{t|t > t., 7 (w) = 0}.

Claim 2. p: < o0 a.s.
Suppose to the contrary, let @ = {w |Vt 7 (w) > 0} and P(Q) > 0. Take an arbitrary date ¢, for
all n € N, define D, = {w]|7(w) =n}. Then Q = J,cn(QNDy). Since P(Q) > 0, there exists a
n such that P(Q N D,) > 0. Given the fact that all other agents play strategy ¢ and the random
matching each date is independent of that of any other dates, for agents having n units of money
on date t, the probability of spending all of it on consumption goods in next n consecutive dates
is (1/2)™. That is,

P{w|ﬁt+n(w) =0 and weQND, } = (%)nP(QﬂDn) >0

which contradicts the definition of the set (). Hence, the claim holds.

Claim 3. For all w € Q such that max 6% (w) < t., for all t > pe(w), M(w) < nf (w).
This claim can be proved by induction. For ¢ = p.(w), the claim holds automatically since

Mi(w) =0 < nf (w). Suppose that it holds for some ¢ > u.(w), consider date-(¢ + 1) transaction.

if wp =b, wp =1, then 741 (w) =M (w) +1 <nf (w) +1 =ni}, (w)
if wy =0, wp =0, then 7ji1(w) = M (w) < nf (w) =04 (w)

if wy =s, MN(w) =0, then 7;11(w) =0 < nf}y (w)

if wp=s, Mw)>1, on(w) =1,  then fy1(w) =Mp(w) =1 <nf (w) — 1 =17, ()
if wy=s, Mw)>1, op(w)=0, then M1 (w)=M(w) —1 <nf(w) =l (w)

That is, 7;41(w) < 17, (w). Hence, the claim holds for all £ > p. (w).
Since p. < 00 a.s., for the e chosen above, there exists a & > 0 such that P{w | pe(w) <&} >
1 —¢/2. Define
Qi (e) = {w]| max 07 (w) <t. and p.(w) <&}
Qy(e) = {w| max 6°(w) > t. or p-(w)> &}
Then Q = Q4 () UQa(g), P(Q1(e)) > 1 — e and P(Qa(e)) < e. Take e = 1/n?. For w € Q(1/n?),
t1/n2 < p1/p2(w) < &2 For a fixed n, consider the sequence {nf (w) — 7jz(w)} for t > &; /2. Let
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an = Ql(l/’l’LZ) and an = QQ(I/TL2)
liminf E[77 (o) = ()] > Timint | (07 ) = ) dP(e)
+litr£1)(i)£1f (/Q ng (w)dP(w) — /§22n

The first term of the right hand side of (39) is nonnegative by claim 3 since w € ,. By

w)dPw)).  (39)

2n

Proposition 8, the limit of E[7;(w)] exists and equals M.

Claim 4. For any n > 1, lim;_ s fQQn N (w)dP(w) = MP(Qsay,).
To prove this claim, for any ¢ > 0, define

Ay = {w | Hf[tl/nz <t<tandte€ §(w)] or 1 /2 (W) > & jn2 }

Then, for all t > 0, Ay C Apyq, U2oAy = Qap, and P(Ay) — P(Qay,) as t — oo. Hence, for any
e > 0, there exists a ¢; > 0 such that for all £ > ¢,
€

[P(Ar) = P(Rn)| < 5o

(40)

Let 6 be the parameter such that the geometric vector 7’ dominates both the aggregate money-
holdings distribution as well as the agent’s money-holdings distribution from some date on (see

the proof of Proposition 8 for the construction of ). For the e above, choose a k > 0 such that
i -0 <e/3.
i>k
By Proposition 7, the distribution of the agent’s money holdings converges weakly to the aggregate
money-holdings distribution z. That is, for the & chosen above, for all v € (0, zy), there exists a
to > t1 such that for all ¢ > to, |P{f(w) > k} —Zx| < v, which implies 0 < T —v < P{f(w) > k}.
Since {Qa2p\At}52, is decreasing and P(Q2,\A¢) — 0 as ¢ — oo, there exists a t3 > t2 such that
for all t > t3, P(Qon\A¢) <z — v < P{ni(w) > k}. Then, for all ¢ > t3,

/ i (w)dP(w) < / 7 () dP(w). (41)
Qan \ At

{w: e (w) >k}
Furthermore, given that the agent’s money-holdings distribution is dominated by 7’ from some
date on, there exists a t; > t3 such that for all t > ¢4, P{f;(w) > k} < 6*. Then, for all t > 4,

i (w)dP(w) < i(1—0)9 3. 42
/{w:ﬁt(w}n() W) < i1 -0 <ef (42)

ik

By inequalities (41) and (42), for all ¢ > t4,

/ (W) dP(w) < /3. (43)
an\At
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For any t > &/y2, Ay € B;. For any 7 > t, w; is independent of By, and in particular,
the distribution of the trading partner’s money holdings conditional on B; is given by x”, and
the conditional probability that the trading partner is a potential seller is one-half. Therefore,
analogously to Proposition 7 and Proposition 8, lim,_, E[7:(w)|A¢] = M. Then, for all ¢ > #4,

there is a 7; such that for all 7 > 7,

| /A T w)dP() - MP(A)| < /3. (44)

Combining the results given by (40), (43) and (44), for some ¢ > t4, for all 7 > 74, we have

[ i) ~ppis)

< ‘/At i (@)dP(w) — MP(8)| + M|P(A) = P(0)

+ / M (w)dP(w)

Qan \A¢

<e/3+M(e/3M) +¢e/3=c¢.

That is, the claim holds.

By Claim 4, the second lim inf on the right hand side of (39) can be broken down to two terms,

timint ( / 0 (@) dP(w) — / ()dP(w)) = limint / 07 (@)dP(w) — MP(Qa).  (45)

t—00 Qon Qon t—00 Qon
The first term of the right hand side of (45) is nonnegative. Combine (39) and (45), we have
lim inf E[n? () — ()] > —MP(). (46)
t—00

Take limit of n — oo for inequality (46), the left hand side is unrelated to n, hence not affected,
and the right hand side goes to 0 since P(Qg,) < 1/n? — 0. Therefore, liminf; ,,, E[n{ (w)] >
limy o0 E[t(w)] =M. W

Now, we are ready to prove the main proposition of the paper.

PROPOSITION 9. Under the assumption in Proposition 6, given that all other agents adopt
strategy &, it is optimal for an arbitrary agent to take strategy ¢ as well. That is, there is no

strategy o that overtakes &.

Proof. For an arbitrary strategy o, consider the following two cases.
Case 1. limsup, . E[n/(w)] > M. Then, for any ¢ > 0, there exists an inifinite set

G? = {t|E[n{ (w)] > M — ¢/2}. Since lim;_,, E[¢(w)] = M by (35), the set JZ = {t|E[7:(w)] <
M + ¢/2} is also infinite. For all t € GZ N J?, by Lemma 5,

t—1 t—1 t—1 -1
0> E[A7 — A] =E]D> o7 = > &) +Enf —iJu > E[Y ol = o] —ue
7=0 7=0 7=0 7=0
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(the w is suppressed for convenience). Since € can be arbitrarily small, the above inequality implies
that

t—1 t—1
. o -
hgclxrjlf E[Z vl — ZUT] <0.
7=0 7=0
By definition of overtaking criterion (7), strategy o does not overtake &.

Case 2. limsup;_, E[nf(w)] < M. By the proof of Lemma 5, for all w € Q, {A7(w) —
Ay(w)}$2, is a weakly decreasing sequence. If E[A? (w) — As(w)] /4 —o0 as t — oo, by Lemma 6,
lim inf;_, o E[n{ (w)] > M, which contradicts to the assumption. If E[A7 — A;] — —oc as t — oo,

and since
. t—1 t—1
E[A7 — A =E[Y_v7 = > _ o]+ Ef —inu
7=0 7=0
we have
t—1 t—1 }
o - 21 < i o _ .. T — o,
htrg(l)glf E[ZO v? ZOUT] < htrg(l)glf E[A] — A +uM uhgg(l)glf E[n7] 00

Again by the definition (7), strategy o does not overtake 5. W

By Proposition 9, strategy ¢ is a Bayesian Nash strategy according to the overtaking criterion.
This proves (ii) of the equilibrium definition, and (iii) is evidently satisfied. Hence, the price-1

equilibrium always exists.

6. Conclusion

We have shown that a price-1 equilibrium from an initial state exists (under a mild assumption)
and is asymptotically stationary. In fact, there can be other equilibria as well. For example,
suppose that the initial distribution is distributed on the lattice in multiples of six. Then there
would be equilibria with asymptotic distributions on the the lattices in multiples of one, two,
three and six. Because the asymptotic distributions differ, the equilibria clearly are distinct. It
will be apparent from our earlier paper (Green and Zhou [2]) that the equilibrium asymptotically
distributed on the finest lattice is the one that achieves the highest level of welfare for the economy,

since it facilitates the greatest amount of trade.
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