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1. Introduction

Models of environments where traders are randomly matched in pairs, in which \double co-

incidence of wants" is absent, have recently undergone rapid development. They have already

become an important class of models in the foundations of monetary economics.

Early versions of random-matching models speci�ed that a trader can hold only a single unit

of money, which is taken to come in indivisible units. This assumption makes the model highly

arti�cial, and in particular it is responsible for some very peculiar results about welfare. In

previous work (Green and Zhou [2], Zhou [5]), we have developed a random-matching model with

divisible money and without inventory constraint. Surprisingly, we have found that the model

possesses a continuum of steady-state, single-price, equilibria (for essentially any parameter values

where equilibrium exists at all) that support distinct real allocations yielding di�erent levels of

welfare.

Our primary reason for undertaking the present research is to understand more clearly the

signi�cance of this indeterminacy of steady-state, single-price, equilibrium. On one view, the

indeterminacy might be unimportant because possibly only one (or perhaps �nitely many) of the

equilibria could be reached from a given initial state of the economy. To examine this view, we

need to de�ne and analyze monetary equilibrium from an initial state. Moreover, to examine

the possibility that several distinct equilibria from the same initial state might exist, we need to

study nonstationary equilibria. This study is begun in the present paper, which reports research

in progress.

In particular, in the current draft of this paper, we study equilibrium with indivisible money,

although without an inventory constraint on money holdings. Also, we consider only the limiting

case of an economy with perfectly patient traders, whose preferences we model in an overtaking-

criterion framework. We restrict attention to this framework for two reasons. It is analytically

more tractable than the analogous framework with discounting studied in Zhou [5], and it has the

feature that all stationary Markov-perfect equilibria are single-price equilibria (which we establish

in a companion paper, Green and Zhou [3]).

We �nd that single-price equilibrium from an initial state exists under a mild condition about

the initial money-holdings distribution, and that this equilibrium is asymptotically stationary.

Furthermore, for a given single-price steady state, we characterize a range of initial distributions

from which single-price equilibria converge to that steady state. We conjecture that the results

we obtain here can be generalized to a divisible-money environment. If that is so, then we will be

able to show that single-price equilibrium from an initial state, as well as steady-state equilibrium,

is indeterminate in this environment. The reason is that there would be a distinct equilibrium

path corresponding to each alternative level of aggregate real money balances in the economy.
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Even in its present interim state, our research has some intrinsic interest. The exclusive focus

on stationary equilibria in study of random-matching monetary economies to date has made

it diÆcult to draw comparisons between results about these models and results about models

in a Walrasian spirit, in which equilibrium is de�ned with respect to an initial situation that

generically is not stationary. Moreover, since adoption of a new monetary policy would typically

be expected to move the economy from one steady state to another, the eventual usefulness

of random-matching models to address policy questions in monetary economics is likely to be

enhanced greatly by being able to characterize and analyze nonstationary equilibria beginning

from an exogenous initial situation. For these reasons, the study of nonstationary equilibrium in

this paper enhances the usefulness of the random-matching framework for money.

2. The Environment

Economic activity occurs at dates 0; 1; 2; : : :. Agents are in�nitely lived, and they are nonatomic.

For convenience, we assume that the measure of the set of all agents is one. Each agent has a

type in (0; 1]. The mapping from the agents to their types is a uniformly distributed random

variable, independent of all other random variables in the model. Similarly, there is a continuum

of di�erentiated goods, each indexed by a number j 2 (0; 1]. These goods are indivisible and

nonstorable. Each agent of type i receives an endowment of one unit of \brand" i good in each

period. An agent can consume his own endowment and half of the other brands in the economy;

agent i consumes goods j 2 [i, mod(i+ 1
2)] (for example, agent 0:3 consumes goods j 2 [0:3; 0:8],

and agent 0:7 consumes goods j 2 [0:7; 1] [ (0; 0:2]). He prefers other goods in his consumption

range to his endowment good; while consumption of his endowment yields utility c, consumption

of any other good in his feasible range yields utility u, and u > c > 0. In addition to the consump-

tion goods, there is a �at money.1 Money comes in indivisible units, and an agent can costless

hold any number of units of money. The total nominal stock of money remains constant at M

units per capita. We assume that agents do not discount future utility. Their preferences are

characterized by an overtaking criterion with respect to expected utility, which will be formalized

below.

Agents randomly meet pairwise each period. By the assumed pattern of endowments and

consumption sets, there is no double coincidence of wants in any pairwise meeting.2 Each agent

meets a partner endowed with one of his consumption goods with probability one-half, and a

1Logically, �at money is an economy-wide accounting system that satis�es restrictions such as we now describe.
It is customary in the money/search literature, but not logically necessary, to interpret �at money as some physical
object.

2Strictly speaking, there is a double coincidence of wants only when types i and j are matched, with i � j+1=2
(mod 1). Such a match occurs with probability zero. Hence, we ignore this possibility.
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partner who can consume his endowment good with probability one-half. So, in every meeting,

one partner is a potential buyer and the other is a potential seller.

Consumption goods cannot be used as a commodity money because they are nonstorable, so

money is the only medium of exchange available. An agent is characterized by his type and the

amount of money he holds. Each agent has an initial money holdings, which, like the agent's

type, is exogenously and deterministically given. Within the population, types and initial money

holdings are independently distributed. The economy-wide initial money-holdings distribution is

common knowledge.

Within a pairwise meeting, each agent observes the other's type, but not the trading partner's

money holdings and trading history. They cannot communicate about this information either. For

simplicity, we assume that each transaction occurs according to the following simultaneous-move

game. The potential buyer and seller submit a bid and o�er respectively. Trade occurs if and

only if the bid is at least as high as the o�er, and in that case, the buyer pays the seller's o�er

price.3

3. The De�nition of Equilibrium

The domain of agents' money holdings is N. Let � be the space of probability measures on

in�nite-dimensional probability simplex, � = fp j p = (p0; p1; : : :); 8k 2 N pk � 0;
P1

k=0 pk = 1g.

Suppose that the initial money-holdings distribution is given by p0.

At each date, the set of agents is randomly partitioned into pairs. Within each pair, one of

the agents desires to consume the other's endowment. Thus, a bid and o�er are associated with

each pair.

Now we provide an intuitive discussion of the distributions of bids and o�ers, and we state some

formal assumptions about those distributions. Our assumptions are in the spirit of a \continuum

law of large numbers."4 For each random partition � of the agents into pairs at date t, there is

a sample distribution B�
t of bids and a sample distribution O�

t of o�ers. We assume that these

sample distributions do not depend on the partition. That is, there are bid and o�er distributions

Bt and Ot such that for all partitions �, B�
t = Bt and O�

t = Ot. Moreover, because each agent

has a trading partner assigned at random, the probability distribution of the trading partner's bid

and o�er should be identical to the sample distribution. That is, Bt and Ot are the probability

3In Green and Zhou [2] and Zhou [5], the o�er was assumed to be made before the bid. Equilibrium in that game
corresponds exactly to equilibrium in the simultaneous-move game. The re�nement of equilibrium in undominated
strategies, applied in this context by Zhou [5], also applies straightforwardly to the simultaneous-move game.

4That is, we believe that they are logically consistent with the results from probability theory that we will apply
in our analysis, although they cannot be derived from those results. See Green [1] and Gilboa and Matsui [4] for
further discussion.
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distributions of bid and o�er respectively that are received at date t by each individual agent, as

well as being the sample distribution in each random pairing of the population of agents.

Now let the probability space (
;B;P) represent the stochastic process of encounters faced

by a generic agent. This agent faces a sequence ! of random encounters, one at each date. His

date-t encounter, with some agent of type j, is characterized by her trading type (buyer or seller)

in the meeting and her bid/o�er, denote it by !t = (!t1; !t2),

if i meets a buyer, !t1 = b; !t2 is her bid

if i meets a seller, !t1 = s; !t2 is her o�er:

The encounters f!tg
1
t=0 � ! are independent across time. 
 is the set of all possible sequences of

encounters that an arbitrary agent in the economy faces.

At each date t, pairwise meetings are independent across the population. That is, for each

agent, !t1 follows a Bernoulli distribution, a potential buyer's bid price !t2 is drawn from the

bid distribution Bt, and a potential seller's o�er price !t2 is drawn from the o�er distribution Ot.

For t � 1, let Bt be the smallest �-algebra on 
 that makes the vector of the �rst t coordinates,

!t = (!0; !1; : : : ; !t�1), measurable, and B0 = f�;
g. Let Pt be the probability measure de�ned

on Bt. Then, for all t � 0, and k 2 N,

Ptf!t1 = bg = Ptf!t1 = sg =
1

2
(1)

Pt

n
!t2 = k j!t1 = b

o
= Btk (2)

Pt

n
!t2 = k j!t1 = s

o
= Otk: (3)

De�ne B = B1 and P = P1.

We focus on symmetric equilibrium, that is, equilibrium in which agents are anonymous, an

agent's strategy is a function only of his own trading history and initial money holdings, and

strategy is symmetric with respect to agents' types. Let � be the trading strategy of a generic

agent with initial money holdings �0. His date-t strategy �t speci�es his bid �t1|his maximum

willingness to pay if he is paired with a seller of his consumption goods|and his o�er �t2|the

price he is willing to sell if he meets a consumer of his endowment good|as a function of his

initial money holdings and his encounter history !. The strategy �t is measurable with respect to

Bt. As a buyer, the agent has to be able to pay his bid. Let �
�
t denote the agent's money holdings

at the beginning of date t by adopting strategy �. Then

�t1(�0; !) � ��t (�0; !): (4)

Given the agent's initial money holdings �0, encounter history !, and strategy � = f�tg
1
t=0,
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his money holdings evolves recursively as follows: ��0 (�0; !) = �0 and, for t � 0,

��t+1(�0; !) =

8<
:

��t (�0; !) + �t2(�0; !) if !t1 = b and �t2(�0; !) � !t2
��t (�0; !)� !t2 if !t1 = s and �t1(�0; !) � !t2
��t (�0; !) otherwise

(5)

Let v�t denote the agent's date-t utility from his date-t trading by adopting strategy �. Then

v�t (�0; !) =

8<
:

0 if !t1 = b and �t2(�0; !) � !t2
u+ c if !t1 = s and �t1(�0; !) � !t2
c otherwise

(6)

Then, strategy � overtakes another strategy �̂ if for all �0 2 N,

lim inf
t!1

E

h tX
�=0

v�� (�0; !)�
tX

�=0

v�̂� (�0; !)
i
> 0 (7)

where E is the expectation operator with respect to the probability measure P.

At the beginning of date t, given all agents' trading strategy �t and the initial money-holdings

distribution p0, rational expectation requires that agents' belief regarding the bid distribution Bt

and the o�er distribution Ot that prevail during date-t trading con�rm with the actual distribu-

tions implied by the strategy. That is, for all k 2 N,

Btk =

1X
l=0

p0lP
n
�t1(l; !) = k

o
(8)

Otk =

1X
l=0

p0lP
n
�t2(l; !) = k

o
: (9)

The equilibrium concept that we adopt is Bayesian Nash equilibrium with respect to the

overtaking criterion.

Definition. A Bayesian Nash equilibrium is a four-tuple h�; p0; fBtg
1
t=0; fOtg

1
t=0i that satis-

�es

(i) p0 is the initial money-holdings distribution in the environment.

(ii) Given the bid distributions fBtg
1
t=0 and the o�er distributions fOtg

1
t=0, and given that

all other agents adopt strategy �, it is optimal for an arbitrary agent to adopt strategy

� as well, that is, there is no strategy that overtakes strategy �.

(iii) Given that all agents adopt trading strategy �, for each t � 0, Bt and Ot satisfy equations

(8) and (9).

We are going to study one particular equilibrium at which at all dates, all traders o�er to

buy their desired consumption goods at price 1 as long as they have money, and accept price

1 in exchange for their endowment goods, hence, all trades occur at price 1. We call it price-1
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equilibrium. This equilibrium is markovian in the sense that the dependence of agents' strategy

on time and trading history is only through their own current money holdings to satisfy feasibility

condition (4), despite the dynamic environment. Formally, de�ne the strategy ~� as follows, for

all �0 2 N, encounter history ! 2 
, and t � 0,

~�t1(�0; !) = minf�~�t (�0; !); 1g; ~�t2(�0; !) = 1: (10)

Let ~pt 2 � denote the money-holdings distribution at the beginning of date t induced by strategy

~�. The bid distribution implied by strategy ~� puts measure 1 � ~pt0 on price 1 to re
ect the bid

of each agent with money, and it puts measure ~pt0 on price 0 to re
ect the agents who have no

money and cannot buy. The o�er distribution implied by ~� is stationary and degenerate with

mass at price 1. That is

~Bt0 = ~pt0;
~Bt1 = 1� ~pt0 (11)

~Ot0 = 0; ~Ot1 = 1: (12)

The evolution of the money-holdings distribution ~pt is speci�ed in the next section. In the next

two sections, we are going to show that h~�; p0; f ~Btg
1
t=0; f

~Otg
1
t=0i is an equilibrium.

4. The Convergence of Money-Holdings Distribution at Price-1 Equilibrium

In this section, we show that if all agents adopt the stationary strategy ~�, and if the initial

money-holdings distribution p0 satis�es certain condition, then the economywide money-holdings

distribution converges weakly to a unique geometric distribution at which the economy is station-

ary. Furthermore, we show that given the economywide money-holding distribution converges,

the distribution of a generic agent with an arbitrary initial money holdings converges to the ag-

gregate limit distribution, and the mean of his money holdings converges to the per capita money

holdings in the economy M .

From the speci�cation of the conjectured price-1 equilibrium, for each agent, there are two

decision-relevant objects at any date: the agent's own money holdings which determines his

feasible bid price, and the economywide money-holdings distribution which determines the bid

distribution. Hence, the decision-relevant state at date t can be represented by his money holdings

�t and the money holdings distribution pt instead of initial money holdings �0, encounter history

!, bid distribution Bt and o�er distribution Ot. Given that all agents adopt strategy ~�, given the

initial distribution p0, the money-holdings distribution evolves deterministically as follows: for

any t � 0,

pt+10 = (1�
m(pt)

2
)pt0 +

1

2
pt1 (13)

8k � 1 pt+1k = (1�
m(pt)

2
�
1

2
)ptk +

1

2
ptk+1 +

m(pt)

2
ptk�1 (14)
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where m(pt) is the measure of agents who have money, m(pt) =
P1

k=1 p
t
k. The sequence fp

tg1t=0

of money-holdings distributions can be obtained by applying (13) and (14) recursively. It is easy

to check that at any point of time t � 0, the distribution satis�es the aggregation condition: the

nominal money stock remains at M , that is,
P1

k=1 kp
t
k =M .

For technical convenience, we work with a transformation of the probability measure p instead

of p itself. De�ne a mapping L:�! [0; 1]1 as follows,

8p 2 � 8k 2 N Lk(p) =
X
j�k

pj: (15)

Obviously, L0(p) = 1, Lk(p) 2 [0; 1] and Lk(p) � Lk+1(p) for all k 2 N. Let � = L(�). Then, for

any x 2 �, x satis�es that x0 = 1, xk 2 [0; 1] and xk � xk+1 for all k 2 N. By de�nition, L is a

one-to-one linear mapping from � to �. To prove that the sequence of probability measure fptg1t=0

converges weakly, we will �rst show that the corresponding sequence fL(pt)g1t=0 converges in the

`1 metric. The aggregation condition for the distribution can be written as
P1

k=1 Lk(p
t) = M ,

for any t � 0. De�ne S to be the space of all transformations of probability measure de�ned by

(15) that satis�es the aggregation condition,

S =
n
x jx 2 �;

1X
k=1

xk =M
o
: (16)

The set S is the space we are going to work with primarily in this section. It is easy to show the

following.

Lemma 1. Both S and � are convex. That is, for X = S or X = �, 8x; y 2 X and

8� 2 [0; 1], �x+ (1� �)y 2 X.

By equations (13) and (14), the law of motion of the transformation of money-holdings distri-

bution L(p) is a mapping T :S ! S such that for all x 2 S, for all k � 1,

Tk(x) =
1� x1
2

xk +
1

2
xk+1 +

x1
2
xk�1 (17)

It is easy to check that T0(x) = 1 and T (x) 2 S. Given that x0 = L(p0), xt = T (xt�1) = L(pt)

for all t � 1. The following lemma states that the mapping T has a unique �xed point.

Lemma 2. The mapping T has a unique �xed point �x 2 S such that �x = T (�x):

8k 2 N �xk = �mk; where �m =
M

M + 1
: (18)
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Proof. For all x 2 S, by equation (17), T (x) = x requires that for all k � 1,

xk = (
1� x1
2

)xk +
1

2
xk+1 +

x1
2
xk�1 (19)

and x0 = 1. This system of equations has a unique solution �x, 8k 2 N �xk = (�x1)
k. Since �x 2 S,

M =
P1

k=1 �xk =
P1

k=1(�x1)
k, which implies that �x1 =

M
M+1 = �m.

The unique �xed point �x of T given in Lemma 2 corresponds to the geometric money-holdings

distribution with parameter �m: �p = L�1(�x), �pk = (1� �m) �mk for all k 2 N. We want to show that

starting from a given initial state x0, the economy as a dynamic system evolving according to

mapping T , converge asymptotically to the steady state characterized by �x. Toward this objective,

we construct a Liapunov function which is a function of the state of the dynamic system. We show

that the Liapunov function decreases over time and approaches to its minimum asymptotically.

Therefore, by a standard argument of dynamical-systems theory, the economy asymptotically

approaches a steady state, which is represented by the unique �xed point of T , �x, and does not

depend on the initial state.

The Liapunov function we choose to use can be interpreted as the expected hazard rate for

the corresponding distribution. De�ne Z: �! R+ , for all x 2 �,

Z(x) =

1X
k=0

(xk � xk+1)
2

xk
: (20)

If for some l, xl = 0, then by de�nition, xk = 0 for all k � l. In such a case, let
P1

k=l
(xk�xk+1)

2

xk
= 0.

For technical reasons, we de�ne the function Z on the larger space � instead of on S. For Z to

be a Liapunov function, it should be continuous in some metric, it should be decreasing along

the trajectory of the system de�ned by T , and it should have a unique minimum on S where it is

applied. We will show that Z has these properties one by one.

Lemma 3. The function Z is strictly convex on �.

Proof. Take arbitrary x; y 2 �, x 6= y, and � 2 (0; 1). Let w(�) = (1��)x+�y = x+�(y�x).

The set � is convex, hence w(�) 2 �. For all k 2 N, de�ne Æk � yk � xk and

zk(w(�)) �
(wk(�) � wk+1(�))

2

wk(�)
=

(xk � xk�1 + �(Æk � Æk+1))
2

xk + �Æk
:

Direct computation reveals that

d2Z(w(�))

d�2
=

1X
k=0

d2zk(w(�))

d�2
=

1X
k=0

2

xk + �Æk

�
Æk � Æk+1 �

Æk(xk � xk+1 + �(Æk � Æk+1)

xk + �Æk

�2
� 0:
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Moreover d2Z(w(�))
d�2

= 0 if an only if 8k 2 N
d2zk(w(�))

d�2
= 0, which is equivalent to 8k 2 N yk+1xk =

ykxk+1, that is (since x0 = y0 = 1), 8k 2 N xk = yk. Given that x 6= y, d2Z(w(�))
d�2

> 0. Hence, Z

is strictly convex on �.

Using Lemma 3, the following proposition show that the function Z satis�es a crucial criterion

of a Liapunov function: it is strictly decreasing along the trajectory of the system de�ned by T .

Proposition 1. For all x 2 S, Z(T (x)) < Z(x), unless x = T (x).

Proof. De�ne mappings �:S ! � and �:S ! � as follows: for all x 2 S, k 2 N,

�k(x) =
xk+1
x1

; �0(x) = 1; �k+1(x) = x1xk:

It is easy to check that �(x) 2 � and �(x) 2 �.5 The measure � is a normalized left-shift of x,

and � is a normalized right-shift of x. Then by (17), we can rewrite T (x) as convex combinations

of x, �(x) and �(x). That is,

T (x) =
x1
2
�(x) +

1

2
�(x) +

1� x1
2

x:

Since Z is strictly convex on � by Lemma 3, unless �(x) = �(x) = x,

Z(T (x)) <
x1
2
Z(�(x)) +

1

2
Z(�(x)) +

1� x1
2

Z(x)

=
x1
2

1

x1

�
Z(x)� (1� x1)

2
�
+
1

2

�
(1� x1)

2 + x1Z(x)
�
+
1� x1
2

Z(x)

= Z(x):

It is easy to verify that �(x) = x if and only if x = T (x). Therefore, unless x = T (x), we have

Z(T (x)) < Z(x).

Because of the aggregation condition (
P1

k=1 xk = M), S is a subset of the complete metric

space (X ; d), where X = fx 2 [0; 1]1 j
P1

k=0 jxkj < 1g and d is the usual `1-metric associated

with X , for any x; y 2 X ,

d(x; y) =

1X
k=0

jxk � ykj: (21)

By standard argument, (S; d) is a complete metric subspace of (X ; d). Next, we show that both

Z and T are continuous mappings in metric d.

Proposition 2. The function Z is continuous on S.

5In general, for any x 2 S, �(x) 62 S and �(x) 62 S. This is the reason we de�ne Z on � instead of on S.
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Proof. We need to show that for any given " > 0, for any x 2 S, there exists a Æ-neighborhood

of x such that for all y satisfying d(x; y) < Æ, jZ(x)� Z(y)j < ".

Fix an arbitrary " > 0, and an arbitrary x 2 S. Since xk is decreasing in k and
P1

k=1 xk =M ,

there exists an I � 1 such that

xI < "=8: (22)

Let J = max fj j j � I; xj > 0g. So xJ > 0. Without loss of generality, assume J � I � 1. Let

Æ = ("=8)xJ > 0. (Otherwise xJ+1 = 0, so J + 1 satis�es xJ+1 < "=8.) Then for any y such that

d(x; y) < Æ,

yI � jyI � xI j+ xI � d(x; y) + xI < ("=8)xJ + "=8 � "=4: (23)

For all k 2 N, de�ne �k(x) � (xk � xk+1)=xk � 1, and �k(y) � (yk � yk+1)=yk � 1. Then, for

k � I � 1, xk � xJ ,

j�k(x)� �k(y)j �
1

xk

�
jxk+1 � yk+1j+ jxk � ykj

yk+1
yk

�
<

2

xJ

"

8
xJ =

"

4
: (24)

Now, applying (22){(24), we have

jZ(x)� Z(y)j

=
I�1X
k=0

���(xk � xk+1)�k(x)� (yk � yk+1)�k(y)
���+X

k�I

(xk � xk+1)�k(x) +
X
k�I

(yk � yk+1)�k(y)

�

I�1X
k=0

�
(xk � xk+1)j�k(x)� �k(y)j+ jxk � ykj�k(y) + jxk+1 � yk+1j�k(y)

�
+ xI + yI

<

I�1X
k=0

(xk � xk+1)
"

4
+

I�1X
k=0

jxk � ykj+

I�1X
k=0

jxk+1 � yk+1j+ "=8 + "=4

< "=4 + "=8 + "=8 + "=8 + "=4 < ":

We have shown that for any given " > 0, for any x 2 S, there is Æ > 0 such that for all y satisfying

d(x; y) < Æ, jZ(y)� Z(x)j < ". Hence, Z is continuous on S.

Proposition 3. The mapping T is continuous on S.

Proof. We need to show that for any given " > 0 and x 2 S, there is a Æ > 0 such that for all

y satisfying d(x; y) < Æ, d(T (x); T (y)) < ".

Fix an arbitrary " > 0 and an arbitrary x 2 S. By (17), for all y 2 S, for all k � 1,

Tk(y) =
1� y1
2

yk +
1

2
yk+1 +

y1
2
yk�1:

10



Take Æ = "=3 > 0, and let y be such that d(y; x) < Æ. Then,

d(T (x); T (y)) =

1X
k=1

jTk(y)� Tk(x)j

=

1X
k=1

1

2

�
jxk � ykj+ jxk+1 � yk+1j+ x1jxk � ykj+ x1jxk+1 � yk+1j+ (yk + yk+1)jx1 � y1j

�

<
1

2

�
"=3 + "=3 + "=3 + "=3 + "=3 + "=3

�
= "

Therefore, T is continuous on S.

The set S we have been working with is unfortunately not compact. To insure the convergence

of the system from some initial state, we introduce a subset of S that is compact. De�ne an

ordering relation between two vectors x and y: y dominates x, denote x � y, if and only if for all

k 2 N xk � yk. For a given strictly positive vector � 2 X , let S� be the set of vectors in S that

are dominated by �,

S� = fx 2 S jx � �g: (25)

Proposition 4. For a given strictly positive vector � 2 X , the set S� is compact.

Proof. To prove S� is compact, we need to show that S� is complete and totally bounded

subset of X . The completeness of S� is trivial given that S is complete, and the proof is omitted

here. To show that S� is totally bounded, we need to show that there exist a �nite "-net for S�

in X for any " > 0.

Fix an arbitrary " > 0. Since � is strictly positive and � 2 X ,
P1

k=0 �k < 1. Hence, there

exists an I > 0 such that
P

k>I �k < "=2. For any x 2 S�, let x̂ be the vector of x truncated at

I, x̂ = (x0; x1; : : : ; xI ; 0; 0; : : :). Then d(x; x̂) =
P

k>I xk �
P

k>I �k < "=2. Let Ŝ� be the set of x̂

associated with x 2 S�. The set Ŝ� is a totally bounded in I-dimensional Euclidean space (with

the usual metric). Let A be a �nite "=2-net for Ŝ�. Then A is a �nite "-net for S�.

The vector � can be any strictly positive element of X . In particular, let �� denote the

geometric vector de�ned by some � 2 (0; 1): for all k 2 N,

��k = �k: (26)

The vector �� as de�ned above is an element of X as well as �. Also, it is a �xed point of T . The

following lemma states that for ��, S�� is closed under T .

Lemma 4. For any x 2 S and any � 2 (0; 1), if x � ��, then T (x) � ��.

11



Proof. Suppose that there exists a � 2 (0; 1) such that x � ��. By de�nition, x � �� implies

that xk � �k for all k 2 N. By equation (17), for all k � 1,

Tk(x) =
1

2

�
(1� x1)xk + xk+1 + x1xk�1

�
�

1

2

�
(1� x1)�

k + �k+1 + x1�
k�1

�
:

Since the expression in the righthand side of the above inequality is an increasing function of x1

and by assumption, x1 � �,

Tk(x) �
1

2

�
(1� �)�k + �k+1 + ��k�1

�
= �k:

By de�nition, T0(x) = 1 = ��0. Therefore, T (x) � ��.

By Lemma 4, if a given initial state x0 satis�es the following condition,

(?) there exists a � 2 (0; 1) and a t > 0 such that T t(x0) � ��

then all the subsequent states of the dynamic system T n(x0), n � t, are dominated by �� as well,

hence, they are elements of S�� .

Proposition 5. If the initial state x0 satis�es condition (?), and if all agents adopt strategy

~�, then the economy as a dynamic system evolving from x0 according to mapping T converges

asymptotically to the steady state characterized by distribution �x which uniquely satis�es T (�x) = �x

and d(�x; 0) = d(x0; 0).

Proof. Suppose that condition (?) holds, that is, there exists � 2 (0; 1) and a t > 0 such

that T t(x0) � ��, then T n(x0) 2 S�� for all n � t. By Proposition 4, S�� is a compact set,

and by Proposition 2, the function Z is continuous on S, hence on S�� , Z achieves its minimum

on S�� . Furthermore, by Lemma 3, Z is strictly convex on S, hence on S�� , Z has a unique

minimum on S�� . Last, Z is strictly decreasing along the trajectory of the system de�ned by T

by Proposition 1. Therefore, Z is a Liapunov function. With this Liapunov function, we show

next the convergence of the system from the initial state x0.

From the given x0, construct a sequence fxng1n=1 by applying T recursively, xn = T n(x0).

Consider the sequence excluding the �rst t elements, fxng1n=t, which is in S�� by assumption. By

Proposition 1, the corresponding sequence fZ(xn)g1n=t is monotonically decreasing. Since S�� is

compact, there exists a subsequence fxnkg that converges to some x̂ 2 S�� . Suppose that x̂ is

not a �xed point of T . Then by Proposition 1, Z(T (x̂)) < Z(x̂). Since Z is continuous and T

is continuous, there exists a Æ > 0 such that for all y satisfying d(x̂; y) < Æ, Z(T (y)) < Z(x̂).

Since fxnkg converges to x̂, there exists an K such that for all k � K, d(x̂; xnk) < Æ, hence,

Z(T (xnk)) < Z(x̂), or,

Z(xnk+1) < Z(x̂): (27)

12



But since fZ(xn)g1n=t is monotonically decreasing, and since x̂ is the limit of xnk , regardless of

the arrangement of the subsequence,

Z(xnk+1) � Z(x̂) (28)

which contradicts (27). Therefore, the limit x̂ has to be a �xed point of T . Since T has a unique

�xed point �x in S by Lemma 2, �x = x̂ 2 S�� . Hence, for the given initial state x0, T n(x0)! �x as

n!1. This strengthened statement, that the entire sequence (rather than only the subsequence

selected above) converges to �x, follows from a standard argument involving the Liapunov function

Z.

The convergence of T t(x0) to �x as t!1 in `1-metric implies that for each k, T t
k(x

0)! �xk as

t!1, which by de�nition, implies weak convergence of the corresponding sequence of probability

measures fptg1t=0.

The assumption made in Proposition 5, that the initial state x0, a linear transformation of

the initial distribution p0, satis�es condition (?), is not a strong assumption as it seems. The

following proposition states a class of initial state that satis�es the condition.

Proposition 6. If the initial money-holdings distribution p0 has a thin tail that is dominated

by the tail of a geometric distribution, that is, there is a J > 0 and an � 2 (0; 1) such that

p0j � (1� �)�j for all j > J , then x0 = L(p0) satis�es condition (?).

Proof. The condition states that there is a J > 0 and an � 2 (0; 1) such that p0j � (1 � �)�j

for all i > J , or equivalently, x0j � �j for all j > J . Let K be the minimum of the support of p0,

K = minfj j p0j 6= 0g. Then by de�nition, x0j = 1 for all j � K.

First, suppose that x01 < 1 (p00 > 0 and K = 0). Then, there exists a � 2 [�; 1) such that

x01 � �J . Since x0j is decreasing in j, for j � J , x0j � x01 � �J � �j. For j > J , x0j � �j � �j since

� � �. Therefore, x0 � ��. That is, condition (?) holds for x0.

Next, consider the case where x01 = 1 (p00 = 0 and K � 1). Then, x0j = 1 for all j � K and

x0K+1 < 1. By equation (17), T 1
K(x

0) = (x0K+1 + 1)=2 < 1, and T 1
j+1(x

0) � �j for all j > J .

Similarly, after K repeated operations of T on x0, we have TK
1 (x0) < 1, TK

j+K(x
0) � �j for

all j > J . Now we can treat TK(x0) as the x0 in the case above. Speci�cally, there exists a

� 2 [�
J

J+K ; 1) such that TK
1 (x0) < �J+K. For j � J + K, TK

j (x0) � TK
1 (x0) � �J+K � �j.

For j > J +K, x0j � �j�K � �j given � � �
J

J+K . Therefore, TK(x0) � ��, which implies that

condition (?) holds.

As a practical matter, economists are not likely to �nd that the condition in Proposition 6

is a restrictive one. An initial money-holdings distribution p0 with �nite support (that is, there
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is a J > 0 such that p0j = 0 for all j > J) satis�es the condition. Distributions with �nite

support are dense in the space of probability simplex �. The condition is also satis�ed if one is

to increase the nominal money stock in an economy from a steady-state geometric distribution

by distributing a �nite amount of money to people whose money holdings are less than certain

�nite amount (e.g. \poor" people), in other words, if the money injection has �nite support. We

can conclude now that if the initial money-holdings distribution satis�es the condition given in

Proposition 6, and if all agents adopt strategy ~�, then by Proposition 5, the economywide money-

holdings distribution converges asymptotically to a unique geometric distribution with which the

environment is stationary.

Given that there is a large number of nonatomic agents, and that all agents adopt strategy

~�, the convergence path of the money-holdings distribution over time is deterministic. However,

for a single representative agent in the economy, trading path is random, and the probability

structure introduced in section 3 is de�ned in terms of the stochastic process of encounters faced

by such an agent. For a generic agent with initial money-holdings �0, the distribution for his

possible money holdings at date t is not given by pt, which is the money-holdings distribution

of potential trading partner at date t. In order to study the optimality of strategy ~�, we need

to know the evolution of the money-holdings distribution for a single agent with arbitrary initial

money holdings �0.

Consider an agent with initial money holdings �0 = lp, l 2 N. Let qlt 2 � represent the

probability measure for the agent's date-t money-holdings ~�t(lp; !) given that all agents adopt

strategy ~�. Then, ql0l = 1 and ql0k = 0 for all k 6= l. For any qlt 2 �, de�ne

8t � 0 8k 2 N yltk =
X
j�k

qltk (29)

hence, ylt 2 �. Obviously, qlt and ylt uniquely determine each other. As xt represents the date-t

aggregate state of the economy, ylt represents the distribution of the date-t personal state for

the agent with initial money holdings lp. Given that the distribution of money holdings in the

population follows the path of fxtg1t=0 almost surely, the transformation of the distribution of the

agent's personal state from date t to date t+ 1 is a mapping U t : �! � such that for all y 2 �,

for all k � 1,

U t
k(y) =

1� xt1
2

yk +
1

2
yk+1 +

xt1
2
yk�1 (30)

and U t
0(y) = 1, where xt1 is the measure of agents holding money at date t (hence able to purchase)

as de�ned above, which is taken as given for each agent. That is, if ylt represents the distribution of

the agent's date-t state, then the distribution of his date-(t+1) state is given by yl(t+1) = U t(ylt).

The following proposition states that each agent's money-holding distribution converges to the

same geometric distribution as the economywide money-holdings distribution does. The initial
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money holdings of an agent does not matter in the limit.

Proposition 7. If the initial state x0 satis�es condition (?), and if all other agents adopt

strategy ~�, then the money-holdings of a generic agent adopting strategy ~�, ~�t(�0; !), converges

weakly to the same aggregate limit regardless of his initial money holdings �0.

Proof. Consider a trader with initial money holdings �0 = lp, l 2 N who, as everyone else in

the economy, adopts strategy ~�. To prove that the trader's money-holdings ~�t(�0; !) converges

weakly to the aggregate limit, we need to show that for all k, jyltk � �xkj ! 0 as t ! 1. Given

that the aggregate state xt converges to �x, i.e., for any k � 1, xtk ! �xk as t!1, it is suÆcient

to show that for all k, jyltk � xtkj ! 0 as t!1. We show this by induction on k.

For any t � 0, given that the date-t aggregate state xt and the distribution of the agent's

personal state ylt, by equations (17) and (30), the corresponding date-(t + 1) states are de�ned

as follows, for any k � 1,

xt+1k =
1� xt1
2

xtk +
1

2
xtk+1 +

xt1
2
xtk�1

y
l(t+1)
k =

1� xt1
2

yltk +
1

2
yltk+1 +

xt1
2
yltk�1:

The di�erence of the above two equations are, for any k � 1,

y
l(t+1)
k � xt+1k =

1� xt1
2

(yltk � xtk) +
1

2
(yltk+1 � xtk+1) +

xt1
2
(yltk�1 � xtk�1): (31)

Then, given that ylt0 = xt0 = 1,

d(yl(t+1); xt+1) =

1X
k=1

jy
l(t+1)
k � xt+1k j �

1

2

� 1X
k=1

jyltk � xtkj+

1X
k=2

jyltk � xtkj
�

or

d(yl(t+1); xt+1) = d(ylt; xt)�
1

2
jylt1 � xt1j: (32)

That is, fd(ylt; xt)g1t=0 is a weakly decreasing sequence, and since it is bounded below by zero, it

has a limit �. Then, by (32), jylt1 � xt1j ! 0.

Now suppose that for all j � k, jyltj � xtj j ! 0, we want to show that jyltk+1 � xtk+1j ! 0.

By induction hypothesis,
Pk

j=1 jy
lt
j � xtj j ! 0. Since d(ylt; xt) =

P1
j=1 jy

lt
j � xtj j ! �, we haveP1

j=k+1 jy
lt
j � xtjj ! �. Then,

���
1X

j=k+1

jy
l(t+1)
j � xt+1j j �

1X
j=k+1

jyltj � xtjj
���! 0 as t!1: (33)
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By equation (31),

1X
j=k+1

jy
l(t+1)
j � xt+1j j �

1X
j=k+1

jyltj � xtjj �
1

2
jyltk+1 � xtk+1j+

xt1
2
jyltk � xtkj

or

1

2
jyltk+1 � xtk+1j �

���
1X

j=k+1

jy
l(t+1)
j � xt+1j j �

1X
j=k+1

jyltj � xtj j
���+ jyltk � xtkj: (34)

Applying (33) and induction hypothesis to the above inequality (34), we have jyltk+1 � xtk+1j ! 0

as t!1. Hence, by induction for all k � 1, jyltk � xtkj ! 0 as t!1.

A direct consequence of the weak convergence of the random variable ~�t(�0; !) by Proposition

7 is the convergence of E[~�t(�0; !)] to the aggregate mean money holdings M .

Proposition 8. If the initial state x0 satis�es condition (?), and if all other agents adopt

strategy ~�, then the expected money-holdings of a generic agent adopting strategy ~� converges to

the per capita money holdings M regardless of the initial money holding �0. That is, for any

�0 2 N,

lim
t!1

E[~�t(�0; !)] =M: (35)

Proof. Consider a generic agent with initial money holdings �0 = lp, l 2 N, who, as everyone

else in the economy, adopts strategy ~�. We �rst show that there exists a date tl such that the

sequence of distributions of the trader's money-holdings from tl on f~�t(lp; !)g
1
t=tl

is dominated by

a geometric distribution. Note that since condition (?) is satis�ed, there exists t0 and �0 2 (0; 1)

such that for all t � t0, xt � ��
0
.

Given that the agent's initial money holdings is lp, yl0k = 1 for all k � l and yl0k = 0 for all

k > l. By the law of motion (30), after l repeated operations of U l on yl0, yll1 = U l
1(y

l0) < 1,

and for all k > 2l, yllk = 0. For all t > l, ylt1 = U t
1(y

l0) < 1, and for all k > l + t, yltk = 0.

Take tl = maxfl; t0g. Choose �l 2 [�0; 1) such that yltl1 < (�l)
l+tl . Since yltlk is decreasing in k, for

k � t+tl, y
ltl
k � yltl1 � (�l)

t+tl � (�l)
k. For k > t+tl, y

ltl
k = 0 � (�l)

k. Therefore, yltl � ��l . Given

that �0 � �l and tl � t0, xtl � ��
0
� ��l . That is, both yltl and xtl are dominated by ��l . Then, by

a similar argument as in the proof of Lemma 4, for all t � tl, y
lt = (U l)t(yl0) = (U l)t�tl(yltl) � ��l .

A random variable with geometric distribution corresponding to ��l (i.e., with parameter �l)

is uniformly integrable. Because the distributions of the sequence of trader's money-holdings from

tl on f~�t(lp; !)g
1
t=tl

is dominated by the same geometric distribution, ~�t(lp; !) is also uniformly

integrable for t � tl. Then, by Theorem 25.12 (Billingsley, 1995), weak convergence of ~�t(lp; !) to
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a random variable with the aggregate limit distribution which is geometric with mean M , given

by Proposition 7, implies that the expectation of ~�t(lp; !) converge to the same mean M .

5. The Existence of Price-1 Equilibrium

In this section, we show that from an initial distribution p0 such that the assumption in Propo-

sition 6 is satis�ed, the price-1 equilibrium de�ned in Section 3 is a Bayesian Nash equilibrium.

In particular, we show that for an arbitrary agent, given that all other agents in the economy

adopt the strategy ~� de�ned in (10) (hence the bid and o�er distributions are given by f ~Btg
1
t=0

and f ~Otg
1
t=0 de�ned in (11) and (12)), it is optimal for the agent in question to adopt strategy ~�

as well, that is, no strategy overtakes ~�.

Consider an arbitrary agent of type i. Suppose that the agent's initial money holdings is

�0. Since �0 is �xed and is taken as given when we compare di�erent strategies, for notational

convenience, we will suppress �0 as an argument of all functions such as � and ��t in the rest of

the section, and write them as functions of ! alone. Also note that given all the other agents

adopt strategy ~� and the agent in question has measure 0, although his trading history will be

determined by his strategy �, his encounter history ! is independent of the strategy he adopts.

Let ��t (!) denote the agent's money holdings at the beginning of date t with encounter history

! if he adopts strategy �, ��0 (!) = �0. De�ne the agent's achievement function at the beginning

of date t if he adopts strategy �, A�
t : 
! R+ , to be the sum of his total utility up to date t and

the future utility that will be brought by the money accumulated up to date t, ��t , given that the

agent buys his future consumption goods at price 1. That is, for any encounter history ! 2 
,

A�
t (!) =

t�1X
�=0

v�� (!) + ��t (!)u (36)

where v�� (!) is de�ned in (6), and ��t (!) is de�ned recursively by (5). For notational convenience,

de�ne for all t � 0,

~At = A~�
t ; ~vt = v~�t ; ~�t = �~�t : (37)

Note that by the de�nition (7) of the overtaking criterion, given that all other agents adopt

strategy ~�, any strategy that speci�es at any time to o�er to sell at price 0 is obviously overtaken

by some strategy since the seller in transaction gains nothing but su�ers a utility loss c by forgoing

the consumption of his own endowment good. In the rest of the paper when we compare strategies

with ~�, we exclude those strategies with 0 o�er price at any time. The following lemma shows

that strategy ~� is associated with the highest achievement function of any strategy.
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Lemma 5. If all other agents adopt strategy ~�, then for an arbitrary agent facing any encounter

history ! 2 
, adopting a strategy �, for all t � 0, A�
t (!) �

~At(!):

Proof. Consider an agent of type i with a history ! 2 
. Obviously, A�
0 (!) =

~A0(!) = �0u.

We compare an arbitrary strategy � with ~� at the begining of date t+ 1, t � 0.

Case (1). !t1 = s and !t2 = 1. In this case, regardless the agent's strategy (including ~�),

A�
t+1(!) = A�

t (!) + c.

Case (2). !t1 = b and !t2 = 0. This is a case that the buyer encountered has no money, hence,

has bid price 0. By remark above, �t2(!) > 0. So regardless of the strategy (including ~�), no

trade can take place, A�
t+1(!) = A�

t (!) + c.

Case (3). !t1 = b and !t2 = 1. If �t2(!) = 1 = ~�(!), A�
t+1(!)�A�

t (!) = u = ~At+1(!)� ~At(!):

If �t2(!) > 1, the encountered buyer is not able to buy, hence trade does not take place with �,

but it does take place with ~�, A�
t+1(!)�A�

t (!) = c < u = ~At+1(!)� ~At(!):

Combine the above three cases, we conclude that for any strategy �, for all history ! 2 
,

A�
0 (!)�

~A0(!) = 0, and for all t � 0,

A�
t+1(!)�

~At+1(!) � A�
t (!)�

~At(!):

Hence, by induction for all t � 0, A�
t (!) �

~At(!).

Proposition 8 states that if all other agents adopt strategy ~�, and if the initial distribution

p0 satis�es the assumption in Proposition 6, the expected money holdings of an agent adopting

strategy ~� converges to M . The next lemma is about the expected money holdings if an agent

adopt some other strategy �.

Lemma 6. Under the assumption in Proposition 6, given that an arbitrary agent adopts strat-

egy � while all other agents adopt strategy ~�, if E[A�
t (!) � ~At(!)] 6! �1 as t ! 1, then

lim inft!1 E[��t (!)] �M .

Proof. For strategy �, for all ! 2 
, de�ne Æ�(!) to be the set of dates at which the agent who

adopts strategy � meets a buyer, but his o�er price is above 1, Æ�(!) = ft j!t1 = b; �t2(!) > 1g.

For any ! 2 
; let #Æ�(!) denote the cardinality of Æ�(!).

Claim 1. If E[A�
t (!)�

~At(!)] 6! �1 as t!1, #Æ� <1 a.s.

To prove this, consider an arbitrary encounter sequence ! 2 
. For t 2 Æ�(!), given that the agent

adopts strategy �, there is no trade takes place (�t2(!) > 1 = !t2), hence, A
�
t+1(!)�A�

t (!) = c,

while if the agent adopts strategy ~�, then trade takes place at price 1, ~At+1(!)� ~At(!) = u > c.

Therefore,

8t 2 Æ�(!) A�
t+1(!)� ~At+1(!) = A�

t (!)� ~At(!)� (u� c): (38)

18



For t 62 Æ�(!), it is easy to check, for cases (1){(3) as in the proof of Lemma 5, that A�
t+1(!) �

~At+1(!) = A�
t (!)�

~At(!). Hence, by (38), if #Æ
�(!) =1, limt!1[A

�
t (!)�

~At(!)] = �1, which

implies that if Pf! j#Æ�(!) = 1g > 0, limt!1 E[A�
t (!) �

~At(!)] = �1, which contradicts to

the assumption. That is, the claim holds.

Given claim 1, for any " > 0, there exists a t" > 0 such that Pf! j max Æ�(!) � t"g > 1� "=2.

Recall that for all t 2 Æ�(!), ~�t2(!) = 1. De�ne �"(!) � min ft j t � t"; ~�t(!) = 0g.

Claim 2. �" <1 a.s.

Suppose to the contrary, let Q = f! j 8t ~�t(!) > 0 g and P (Q) > 0. Take an arbitrary date t, for

all n 2 N, de�ne Dn � f! j ~�t(!) = n g. Then Q =
S
n2N(Q\Dn). Since P (Q) > 0, there exists a

n such that P (Q\Dn) > 0. Given the fact that all other agents play strategy ~� and the random

matching each date is independent of that of any other dates, for agents having n units of money

on date t, the probability of spending all of it on consumption goods in next n consecutive dates

is (1=2)n. That is,

P
n
! j ~�t+n(!) = 0 and ! 2 Q \Dn

o
=
�1
2

�n
P (Q \Dn) > 0

which contradicts the de�nition of the set Q. Hence, the claim holds.

Claim 3. For all ! 2 
 such that max Æ�(!) � t", for all t � �"(!), ~�t(!) � ��t (!).

This claim can be proved by induction. For t = �"(!), the claim holds automatically since

~�t(!) = 0 � ��t (!). Suppose that it holds for some t � �"(!), consider date-(t+ 1) transaction.

if !t1 = b; !t2 = 1; then ~�t+1(!) = ~�t(!) + 1 � ��t (!) + 1 = ��t+1(!)

if !t1 = b; !t2 = 0; then ~�t+1(!) = ~�t(!) � ��t (!) = ��t+1(!)

if !t1 = s; ~�t(!) = 0; then ~�t+1(!) = 0 � ��t+1(!)

if !t1 = s; ~�t(!) � 1; �t1(!) � 1; then ~�t+1(!) = ~�t(!)� 1 � ��t (!)� 1 = ��t+1(!)

if !t1 = s; ~�t(!) � 1; �t1(!) = 0; then ~�t+1(!) = ~�t(!)� 1 < ��t (!) = ��t+1(!)

That is, ~�t+1(!) � ��t+1(!). Hence, the claim holds for all t � �"(!).

Since �" <1 a.s., for the " chosen above, there exists a �" > 0 such that Pf! j�"(!) � �"g >

1� "=2. De�ne


1(") = f! j max Æ�(!) � t" and �"(!) � �"g


2(") = f! j max Æ�(!) > t" or �"(!) > �"g:

Then 
 = 
1(") [
2("), P(
1(")) > 1� " and P(
2(")) � ". Take " = 1=n2. For ! 2 
1(1=n
2),

t1=n2 � �1=n2(!) � �1=n2 . For a �xed n, consider the sequence f��t (!)� ~�t(!)g for t � �1=n2 . Let
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1n = 
1(1=n
2) and 
2n = 
2(1=n

2).

lim inf
t!1

E[�
�
t (!)� ~�t(!)] � lim inf

t!1

Z

1n

(��t (!)� ~�t(!))dP(!)

+ lim inf
t!1

�Z

2n

��t (!)dP(!) �

Z

2n

~�t(!)dP(!)
�
: (39)

The �rst term of the right hand side of (39) is nonnegative by claim 3 since ! 2 
1n. By

Proposition 8, the limit of E[~�t(!)] exists and equals M .

Claim 4. For any n � 1, limt!1

R

2n

~�t(!)dP(!) =MP (
2n).

To prove this claim, for any t � 0, de�ne

�t �
n
! j 9t̂ [t1=n2 < t̂ � t and t̂ 2 Æ�(!)] or �1=n2(!) > �1=n2

o
:

Then, for all t � 0, �t � �t+1, [
1
t=0�t = 
2n, and P(�t) ! P(
2n) as t ! 1. Hence, for any

" > 0, there exists a t1 � 0 such that for all t � t1,

jP(�t)�P(
2n)j <
"

3M
: (40)

Let � be the parameter such that the geometric vector �� dominates both the aggregate money-

holdings distribution as well as the agent's money-holdings distribution from some date on (see

the proof of Proposition 8 for the construction of �). For the " above, choose a k > 0 such that

X
j�k

j(1� �)�j < "=3:

By Proposition 7, the distribution of the agent's money holdings converges weakly to the aggregate

money-holdings distribution �x. That is, for the k chosen above, for all � 2 (0; �xk), there exists a

t2 � t1 such that for all t � t2, jPf~�t(!) � kg��xkj < �, which implies 0 < �xk�� < Pf~�t(!) � kg.

Since f
2nn�tg
1
t=0 is decreasing and P(
2nn�t) ! 0 as t ! 1, there exists a t3 � t2 such that

for all t � t3, P(
2nn�t) � �xk � � < Pf~�t(!) � kg. Then, for all t � t3,Z

2nn�t

~�t(!)dP(!) �

Z
f!: ~�t(!)�kg

~�t(!)dP(!): (41)

Furthermore, given that the agent's money-holdings distribution is dominated by �� from some

date on, there exists a t4 � t3 such that for all t � t4, Pf~�t(!) � kg � �k. Then, for all t � t4,Z
f!: ~�t(!)�kg

~�t(!)dP(!) �
X
j�k

j(1 � �)�j < "=3: (42)

By inequalities (41) and (42), for all t � t4,Z

2nn�t

~�t(!)dP(!) � "=3: (43)
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For any t � �1=n2 , �t 2 Bt. For any � > t, !� is independent of Bt, and in particular,

the distribution of the trading partner's money holdings conditional on Bt is given by x� , and

the conditional probability that the trading partner is a potential seller is one-half. Therefore,

analogously to Proposition 7 and Proposition 8, lim�!1 E[~�� (!)j�t] = M . Then, for all t � t4,

there is a ��t such that for all � � ��t,���
Z
�t

~�� (!)dP(!) �MP(�t)
��� < "=3: (44)

Combining the results given by (40), (43) and (44), for some t � t4, for all � � ��t, we have

���
Z

2n

~�� (!)dP(!) �MP (
2n)
���

�
���
Z
�t

~�� (!)dP(!) �MP (�t)
���+M

���P(�t)�P(
2n)
���+

Z

2nn�t

~�t(!)dP(!)

< "=3 +M ("=3M) + "=3 = ":

That is, the claim holds.

By Claim 4, the second lim inf on the right hand side of (39) can be broken down to two terms,

lim inf
t!1

�Z

2n

��t (!)dP(!) �

Z

2n

~�t(!)dP(!)
�
= lim inf

t!1

Z

2n

��t (!)dP(!) �MP(
2n): (45)

The �rst term of the right hand side of (45) is nonnegative. Combine (39) and (45), we have

lim inf
t!1

E[��t (!)� ~�t(!)] � �MP (
2n): (46)

Take limit of n!1 for inequality (46), the left hand side is unrelated to n, hence not a�ected,

and the right hand side goes to 0 since P(
2n) � 1=n2 ! 0. Therefore, lim inft!1 E[��t (!)] �

limt!1 E[~�t(!)] =M .

Now, we are ready to prove the main proposition of the paper.

Proposition 9. Under the assumption in Proposition 6, given that all other agents adopt

strategy ~�, it is optimal for an arbitrary agent to take strategy ~� as well. That is, there is no

strategy � that overtakes ~�.

Proof. For an arbitrary strategy �, consider the following two cases.

Case 1. lim supt!1 E[��t (!)] � M . Then, for any " > 0, there exists an ini�nite set

G�
" = ft jE[��t (!)] � M � "=2g. Since limt!1 E[~�t(!)] = M by (35), the set J�" = ft jE[~�t(!)] <

M + "=2g is also in�nite. For all t 2 G�
" \ J�" , by Lemma 5,

0 � E[A�
t �

~At] = E[
t�1X
�=0

v�� �
t�1X
�=0

~v� ] + E[��t � ~�t]u � E[
t�1X
�=0

v�� �
t�1X
�=0

~v� ]� u"
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(the ! is suppressed for convenience). Since " can be arbitrarily small, the above inequality implies

that

lim inf
t!1

E[
t�1X
�=0

v�� �
t�1X
�=0

~v� ] � 0:

By de�nition of overtaking criterion (7), strategy � does not overtake ~�.

Case 2. lim supt!1 E[��t (!)] < M . By the proof of Lemma 5, for all ! 2 
, fA�
t (!) �

~At(!)g
1
t=0 is a weakly decreasing sequence. If E[A�

t (!)� ~At(!)] 6! �1 as t!1, by Lemma 6,

lim inft!1 E[��t (!)] �M , which contradicts to the assumption. If E[A�
t � ~At]! �1 as t!1,

and since

E[A
�
t � ~At] = E[

t�1X
�=0

v�� �

t�1X
�=0

~v� ] + E[�
�
t � ~�t]u

we have

lim inf
t!1

E[
t�1X
�=0

v�� �
t�1X
�=0

~v� ] � lim inf
t!1

E[A�
t �

~At] + uM � u lim inf
t!1

E[��t ] = �1:

Again by the de�nition (7), strategy � does not overtake ~�.

By Proposition 9, strategy ~� is a Bayesian Nash strategy according to the overtaking criterion.

This proves (ii) of the equilibrium de�nition, and (iii) is evidently satis�ed. Hence, the price-1

equilibrium always exists.

6. Conclusion

We have shown that a price-1 equilibrium from an initial state exists (under a mild assumption)

and is asymptotically stationary. In fact, there can be other equilibria as well. For example,

suppose that the initial distribution is distributed on the lattice in multiples of six. Then there

would be equilibria with asymptotic distributions on the the lattices in multiples of one, two,

three and six. Because the asymptotic distributions di�er, the equilibria clearly are distinct. It

will be apparent from our earlier paper (Green and Zhou [2]) that the equilibrium asymptotically

distributed on the �nest lattice is the one that achieves the highest level of welfare for the economy,

since it facilitates the greatest amount of trade.
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