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Abstract

We analyze matching models of the exchange process, with particu-
lar emphasis on the role of money, under the assumption that agents get
to choose endogenously the individuals (or at least the types of individ-
uals) they meet, rather than having them matched exogenously and at
random, as in most of the previous literature. We show that as long as
agents are restricted to one bilateral trade per period and specialization
entails a double coincidence problem, there is still a role for money. We
use the framework to revisit some issues that had been addressed in the
literature with random matching. In particular, we characterize condi-
tions under which fiat money may be used as a medium of exchange and
may be essential for supporting efficient allocations. We also show how
the implications of a standard commodity money model are affected by
making matching endogenous. Some basic insights from random matching
theory go through, although the details change; other times the results
are quite different when we assume endogenous rather than exogenous
random matching.

*These notes have been prepared for the Conference on Strategic Rationality in Economics.
They are highly preliminary and incomplete.
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1 Introduction

The standard search or matching model of monetary exchange assumes a large
number of agents who meet bilaterally and at random (see, e.g., Kiyotaki and
Wright [1989, 1991]). Given specialization in production or consumption, bilat-
eral meetings can make exchange difficult due to the double coincidence problem.
This seems like a reasonable friction upon which to base a theory of the role of
money as a medium of exchange. However, bilateral exchange is not the only
friction in the typical version of the model in the literature. Other frictions
include an absence of commitment, so that agents cannot simply agree to any
outcome that may seem desirable ex ante, and an absence of publicly observable
trading histories (memory), so that agents cannot use punishment strategies to
implement allocations to which they would like to commit. It seems clear that
we need some sort of double coincidence problem combined with a lack of com-
mitment and memory in order to generate an essential role for money. What is
not so clear is the extent to which we need random matching.

In this paper we explore models with endogenous meetings, rather than
exogenous random meetings. This seems desirable not only because it is easy
to criticize the random matching assumption as being “unrealistic,” but also
because one would like to know the extent to which a role for money does or does
not depend on whether we allow agents to have some control over who they meet.
Our way of modeling the meeting process is related, at least in spirit, to the
game-theoretic literature on matching dating back to Gale and Shapley (1962).
In that framework, agents are matched into pairs subject to a stability condition
— roughly, no agents prefer to be matched with each other, or by themselves,

rather than with their current partners. However, unlike this literature, we
1



analyze an intertemporal environment because we are interested in money. We
study the implications of endogenizing the meeting process for several monetary
exchange models in the literature, and discuss some new models as well.

The first thing we do is to try to formalize what one might mean by endoge-
nous matching in a dynamic framework, a discussion of which is contained in
Section 2. In Section 3, we apply these ideas to a very simple model, exploring
in particular the role played by memory or the lack thereof. This is similar in
spirit to work by Kocherlakota (1998) and Kocherlakota and Wallace (1998)
in random matching monetary models, although we pay particular attention to
the distinction between private and public memory (which is relevant because
we assume a finite number of agents). As in the random matching models, as
long as agents are relatively patient, it is simple to show that with complete
public memory we can sustain an efficient pattern of exchange without money,
and that with no memory money becomes essential. However, one thing we
emphasize is that money works better in an endogenous matching model than
in a random matching model: in our framework, money can substitute perfectly
for memory, while in a random matching model it cannot.

In Section 4 we pursue these ideas by extending the framework proposed
in Kiyotaki and Wright (1993) for analyzing fiat money to allow endogenous
matching. We show that many of the basic insights of this model continue to
hold, although some results can change in interesting ways. For example, with
random matching, money can be valued only if specialization is not too extreme,
while in our endogenous matching framework the degree of specialization does
not matter for the existence of monetary equilibrium. In Section 5 we consider

the of extension of this model by Shi (1995) and Trejos and Wright (1995)



to include bilateral bargaining, and see how it is affected by moving to an
endogenous matching formulation. Again, some of the basic insights go through,
although other can change in interesting ways.

Finally, in Section 6, we consider a version of the commodity money model in
Kiyotaki and Wright (1989), where again we make matching endogenous instead
of random. In this framework, we are interested in determining which goods
will be used as media of exchange. The results here can differ a lot between the
random and endogenous matching models. For example, for one specification,
we find that the so-called fundamental equilibrium, in which the commodity
with the best intrinsic properties emerges as money, always exists, and indeed is
the unique (symmetric, steady state, pure strategy) equilibrium. In this version
of the model with random matching, a fundamental equilibrium exists only for
some parameters, while for other parameters there exists a so-called speculative
equilibrium where another good circulates as money.

The general conclusions of our analysis are as follows. First, in terms of
details, it is possible to ask the same kinds of questions here that one asks in the
random matching model, and while some of the basic results go through, others
change in interesting ways. Second, in terms of the bigger picture, we conclude
that idea of building a theory of monetary exchange based on specialization and
a lack of commitment and memory can be pursued using matching models, but

one does not especially require randomness in matching.

2 Matching

We begin with a somewhat abstract description of an environment, and the

applications to follow will constitute special cases. Time is discrete: t =0,1,...
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T, where T' may or may not be finite. Let A be a set of agents; in some
applications, A may be finite while in others it may be a continuum. Agents
are, in general, characterized by two indices: their type i (e.g., their tastes or
technology); and their individual state j, which typically will describe their
inventory (e.g., which good they are holding). We assume i and j are elements
of finite sets, i = 1,2,... T and j = 1,2,...J. At every date, the aggregate state
is given by the distribution p; = [...p¢(¢,7) . ..], where p.(4, j) is the measure of
agents of type 7 in state j at .

The approach in the random matching literature is to assume that any indi-
vidual meets and trades with other agents bilaterally and at random; typically,
it is assumed that the probability of any agent meeting type ¢ in state j is pro-
portional to p;(i,7). The approach adopted here is quite different. Although
agents in our framework are still restricted to meet and trade bilaterally, they
are allowed to choose who they meet. In some cases they may get to choose
to meet a particular individual, in other cases we will allow them to choose a
type 7 in state j but not a particular individual (e.g., they draw an individual
at random from the set of agents who are of type ¢ in state j).

Given a sequence {p;}, a pattern of matches can be described by a sequence
of assignment rules {¢,}, where ¢, : A — A is a bijection that assigns to every
individual a partner of a certain type in a certain state. Note that an agent
could be assigned to himself, meaning he is in autarchy that period. We need
to impose some consistency conditions. First, we need to assume (y(i)) = ¢
(you are your partner’s partner). Second, in the case where A is a continuum,
we need to assume that i is measure-preserving: if Iihjlc is the set of agents

of type 7 in state j assigned by ¥ to a type h agent in state k, we require
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s (I}‘jk) =pu (I;;Jk) where p is Lebesgue measure.® The sequence {1} simply
describes who meets whom. In principle, one may also consider randomizing
over different assignment rules, for example, if agents use mixed strategies for
choosing who to meet.

At every date t, ¢, induces a partition 6; of A into subsets of size 1 or 2. Let
O be the set of feasible partitions. In general, after agents match (i.e., given
6;), they must decide whether to “trade,” which may generate an instantaneous
payoff and can change their state (e.g., they could swap inventories). For now,
however, we simplify the presentation by assuming that matching and trading
are the same thing. Thus, given 6;, we can generate instantaneous payoffs for
all agents as functions of their state (e.g., if different inventories have different
storage costs) and their partners that period (e.g., if they trade for a good they
consume), and we can also generate a new state, py+1 = f(pg, 0¢). A history at
t is a list hy = (po,00,p1,61, ..., Dt—1,0+—1,p¢) which describes current and past
states and past partitions. Let H; be the set of all possible histories at t.

A matching process is a sequence ® = {®;}2, where &, : H, — O gives
the current partition (and hence the current trades and payoffs, since here we
assume that matching and trading are the same thing) as a function of history.
A memoryless matching process is one for which the current partition depends
only on the current state and date, 6; = ®,(p;). By randomizing over such
matching processes, one can generate a random matching model in which each
agent meets a partner of type ¢ with inventory j with a probability proportional

to p¢(i, 7). A matching process ® generates a sequence of instantaneous payofls,

1The model with a continuum of agents is closely related to the ideas in Kaneko and Wood-
ers (1986), except that they allow coalitions of any finite size k, while we restrict £ < 2 (you
can match with at most one other agent per period). See also Cole, Mailath and Postlewaite
(1998). A critical difference, however, is that our environment is genuinely dynamic.
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from which we can compute agents’ lifetime utility at any date from any history
(if T = oo we will assume that agents discount). We will be more precise about
agents’ preferences over alternative matches, but for now it will suffice to simply

say that ® generates payoffs.

Definition 1 We say ®* is an equilibrium matching process if there is no date
t and history hy such that at hy there exists a partition 0, # ®(hy) with the
property that some subset in 0] is better off than they were under the partition

implied by O*.

Remark 1 In some applications, one might want to require that every agent in
6, in the above definition is strictly better off, while in other applications one
may only want to require that some agent in 0} is strictly better off. We will use

each notion in different applications below.

We can illustrate this with a very simple example. There are two agents and
two dates: A = {1,2} and ¢t = 0,1. The set of possible partitions © at each date
includes only two elements: the partition where the agents are in autarchy, or
single, [{1},{2}]; and the partition where they are matched, or married, {1,2}.
Agents carry no inventories, so we can get away with ignoring the state variable
p for now; however, we assume preferences are history dependent in the following
way. At t = 0 a married agent receives period utility U,, > 0 and one who is
single receives Us > U,,. At t = 1 a married agent also receives U,,, but a
single agent receives Uy if he was single at ¢ = 0 and U; — D if he was married
at t = 0. Here D is the cost of divorce — which can only occur at ¢ = 1 in the
history where agents were married at t = 0, i.e. where hy = ({1,2}). Assume

D > Uy — U,,. Agents do not discount in this example.
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2Us gl U+UcD 2Un,

where s = {1},{2} and M = {1,2}

Figure 1: Possible histories in the marriage model

Figure 1 shows all possible histories. A matching process ® gives a partition
in © at each node in the figure (i.e. for each history). Using backward induction,
given the parameter assumptions, married agents at ¢ = 1 agree to stay married
and single agents stay single. Given this, at ¢ = 0, agents choose to stay single.
Hence, the unique equilibrium ®* is as follows: & = [{1}, {2}] (stay single at
t =0); ©7([{1},{2}]) = [{1},{2}] (given you are single at ¢t = 1, stay single);
and ®7({1,2}) = {1,2} (given you are married at ¢t = 1, stay married). The
equilibrium path is 5 = ({1},{2}) and 67 = ({1}, {2}).2

This example is different from most of what we do in the paper for several

20ne could also describe an equilibrium by the assignment rule v; at each node. With
two agents, it suffices to specify the assignment of agent 1. In the example, the equilibrium
is given by: at t = 0, 9§(1) = 1 (1 is matched with himself); at t = 1 and h1 = ([{1}, {2}]),
Pi(1) =1;and at t =1 and h; = ({1,2}), ¥ (1) = 2.



reasons. First, T < oo, which allows us to use backward induction. Second,
there are only 2 agents, which drastically limits one’s options (you can leave your
spouse for bachelorhood but not for anther person). Finally, at each date, the two
agents have a so-called a double coincidence of wants: agent 1 always wants to be
with agent 2, and agent 2 always wants to be with agent 1. In more interesting
environments considered below, there is not always this double coincidence at
any given point in time, and this means that intertemporal considerations may
have to play a crucial role. These intertemporal considerations are the focus of

most of the remainder of the paper.

3 Matching, Memory, and Money

In this section we assume there is a double coincidence of wants problem, so that
intertemporal considerations are crucial, and explore the implications of various
scenarios regarding memory and money. Something similar in spirit has been
done in random matching models by Kocherlakota (1998) and Kocherlakota
and Wallace (1998), in models with a continuum of agents, which combined
with random matching (and no public memory) implies that agents are anony-
mous: they have no knowledge of the histories of people they meet. We proceed
instead, for now, with a finite set of agents, A = {1,2,..., N}, where N > 3.
Even with (especially with) a finite set A, it is possible to discuss the impli-
cations of different assumptions regarding memory, including: complete public
memory; no memory; and private but not public memory, by which we mean
that each agent can perfectly recall anything he has directly observed and can
make inferences from this information, but cannot directly observe what hap-

pens in meetings that do not involve him directly. And some new implications
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arise with a finite A.

We need to be more precise about goods and preferences here. Let us assume,
to keep things close to the simplest random matching models, there are N (the
same as the number of agents) indivisible and non-storable goods.> Each agent
1 produces only good 7 and consumes only good ¢ + 1, mod N, which implies
that in any bilateral meeting there is not a double coincidence of wants. When
agent ¢ produces he receives instantaneous disutility —c¢ and when he consumes
he receives utility u > c. Hence, if ¢ is matched with 7 + 1 his instantaneous
payoff is wu, if 7 is matched with ¢ — 1 his instantaneous payoff is —c, and if ¢
is matched with anyone else (including himself) his instantaneous payoff is 0.
Note that we continue to assume matching and trading are the same thing, for
now, where in this context trading means ¢+ 1 produces for ¢ but not vice-versa,
since i+ 1 does not want the good i produces. Agents discount the future at rate
B=1/(1+r), r > 0. A maintained assumption will be ¢ < fu, or, equivalently,
r<(u-—c)/ec

Consider for now the case N = 3 (the interesting results easily generalize to
any N; see below). The set © of feasible partitions of A is simply the following:
autarchy, [{1},{2},{3}], which we denote a; 1 and 2 matched, [{1,2},{3}]; 2
and 3 matched, [{2,3},{1}]; and 3 and 1 matched, [{3,1}, {2}].

We begin by considering the case of perfect public memory, which means
that everyone knows the history of matches h; at t. One equilibrium is given by
global autarchy each period for any possible history: ®* = {®¢}, where ®¢ = a
for every hy = (0q, 01, ...0;_1) (note that we do not include p; in the history here

because there is no state variable as of yet). This implies a lifetime payoff of 0.

3Note that there is no money in the model as of yet.



To see that it is an equilibrium, consider a history where there is a deviation
from ®¢ by a pair of agents who decide to match. Without loss of generality,
suppose it is {1,2} at t = 0; i.e., suppose, agent 2 and agent 1 get together,
which entails 2 producing for 1. As this provides an instantaneous payoff to
agent 2 of —¢, and a continuation payoff the same as before (since 2 takes as
given that agents will play ®* in the future), clearly he will not deviate from
®“. Hence, autarchy is an equilibrium.

Given we have public memory, however, there are other equilibria.. One
class of equilibria contains those in which along the equilibrium path all agents
iterate between production, consumption, and autarchy every three periods, and
off the equilibrium path trigger to permanent global autarchy. Consider the case
where agent 1 consumes first, then 2, then 3, denoted ®'. That is, along the
equilibrium path, 65 = [{1,2}, {3}] (first 1 and 2 match while 3 sits out); then
61 = [{2,3},{1}] (2 and 3 match while 1 sits out); then 63 = [{3,1},{2}] (3 and
1 match while 2 sits out); then we return to 63 = 6}; and so on. And off the
equilibrium path — i.e., at any history other than those induced by ®! — agents
go to permanent global autarchy. This case is illustrated in Figure 2. The
lifetime payoffs along the equilibrium path are: (u— 3%¢)/(1— %) when one is a
consumer; (—c+ fBu)/(1— 3%) when one is a producer; and 3(—c+ Bu)/(1— %)
when one is in autarchy that period. These are all positive by the maintained
assumptions on preferences.

We argued above that ®¢ is an equilibrium, and so it is indeed an equilibrium
for agents to go to autarchy at any node off the equilibrium path. To check the
equilibrium path, we need to check that there is no coalition consisting of one

or two members that can improve the payoffs of its members by deviating from
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Figure 2: Possible Histories Under ®!with Public Memory

the candidate equilibrium matching process. Without loss in generality, consider
what happens when agent 2 is supposed to match with (i.e., produce for) agent
1. There are several potential deviations. First, 2 could stay in autarchy that
period, giving a lifetime payoff of 0, which is less than what he gets along the
equilibrium path since ¢ < fu. Next, 2 could try to match with 3, but it is clear
that 3 would not agree, since he would get instantaneous payoff —c¢ and then we
move to permanent autarchy. Similarly, no other potential deviating coalition
can improve its payoff.

Hence, ®! is an equilibrium.* Notice that ®! is efficient, in the sense that
there is no way to improve the lot of all the agents over the outcome where
they consume once every three periods, given preferences, technology and the

restriction to bilateral trade. Omne interpretation of this equilibrium is that

4Similarly, so is ®2 or ®3, which are the same except that agent 2 or 3 gets to consume first.
For sufficiently high 3, there are other equilibria where, say, agent ¢« matches with i+ 1 several
periods in a row; agents stay in autarchy for a while and then begin matching according to
one of these rules; agents match randomly each period; and so on.
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agent ¢ is willing to extend credit to ¢« — 1, which is repaid two periods hence,
by the third party ¢ + 1. Moreover, the generalization to N types is simple.
For example, with N an even number, we can support the outcome where every
agent consumes and produces every second period (say, i matches with ¢ + 1 if
t is even and with ¢ — 1 if ¢ is odd) in exactly the same manner. With NV odd
the only complication is that ¢ has to sit out once every N periods. But in any
case, the binding constraint is always to get ¢ to produce, which we can always
do by allowing him to consume one period hence as long as ¢ < fu.

To compare this to an exogenous random matching model, suppose now that
each period every agent meets someone else with probability o < 1, and when he
does he meets every agent ¢ with equal probability, 1/(N—1). Now agents choose
to produce or not in each meeting. The efficient outcome is for ¢ to produce
every time he meets ¢ — 1. If agents have complete memory, we can support
this as an equilibrium by triggering to permanent global autarchy (which is
always an equilibrium) iff 3 > 1/[1 + £ “=<]. This condition is necessarily more
difficult to satisfy than the condition we needed in the endogenous matching
model, 3 > c/u, as long as & < 1, which it obviously must be. Hence, it is more
difficult to support an efficient credit arrangement in this model, simply because
the long term payoffs to extending credit are lower, while the cost is still c,
when you are forced to match randomly rather than endogenously selecting the
appropriate partner. Moreover, observe that credit becomes harder to sustain
the more agents there are in the random matching world, while credit can be
supported in our model whenever 8 > ¢/u, which does not depend on N.

Let us now suppose that there is no memory: for whatever reason, agents

12



simply do not know h;.> In this case, ®® is the unique equilibrium, simply
because agent ¢ has absolutely no incentive to match with (produce for) i — 1
when ®; cannot depend on what happened at s < t. Clearly, without memory
there can be no credit and the only possible equilibrium outcome is autarky.
However, let us now introduce money. Thus, in addition to the above-mentioned
goods, there now exists M < N indivisible but perfectly storable units of an
object that no one produces or consumes, say coins. We initially give coins to
some of the agents. We now need to re-introduce the state variable for an agent,
which will be his money inventory, j € {0,1}. Agents know each other’s state,
although they cannot observe history. As the main point can be made with
N =3 and M =1 (three agents, one coin), this is what we assume for now.
First, it is obvious that permanent global autarchy is still an equilibrium after
we introduce money, since agents can always ignore coins. However, now there
are other equilibria. To proceed, first note that agent i would ever match with
(produce for) agent ¢ — 1 unless the latter gave him money, since the matching
process cannot depend on whether he produced, unless the state changes (that is,
a memoryless matching process must have the partition at ¢ depend only on p;).
As always, the state can be described by p;, where p;(7, 1) is the probability that
agent ¢ has money, but in this case it suffices to simply keep track of which agent
has the money. Letting p;(¢) = 1 if i has money and p;(i) = 0 otherwise, a non-
autarchic equilibrium is described as follows. In each period where p;(i) = 1,

¢ matches with ¢ + 1 and swaps money for goods while ¢ — 1 sits out. Given

5As mentioned above, anonymity is what is often assumed in a random matching envi-
ronment with a large number of agents, where it is realtively easy to motivate. One way
to motivate no memory in a model with a small number of agents is to assume that every
period agents reproduce offspring who are indentical to themselves except that they have no
recollection of the past. In any case, the concern here is mainly to highlight the interaction
between memory and money, which is easiest to see by simply ruling out memory, regardless
of the motivation. We move to a large number of agents in the next section.
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no agents will match unless money changes hands, the only feasible alternative
when ¢ has money is for either 7 or i + 1 to deviate by remaining in autarchy
that period. This clearly makes ¢ no better off, and makes i + 1 no better off
given the maintained assumption Su > c. Hence, this is an equilibrium.

For example, if we initially give the money to agent 1, this equilibrium repli-
cates the efficient allocation achieved by the credit arrangement ®!, even though
agents have no knowledge of history, except what is conveyed by money hold-
ings. This illustrates the role of money in overcoming the lack of memory in
a world with a double coincidence problem. What is different, as compared to
previous analyses in random matching models, is that money works much better
when you get to pick who you meet. First, as should become clear in the next
section (if not from then above analysis of credit), it is harder to support mone-
tary exchange equilibria with random matching than with endogenous matching
(i.e., B needs to be greater in the former case). Second even if a monetary equi-
librium exists in the random matching environment, it does not work that well,
in the sense that it is an imperfect substitute for the credit arrangement.

To see why money does not work very well in the random matching model
consider the following argument. One problem is that you may meet an agent
who produces the good you like but you have run out of money. Another reason
is that you may meet an agent who produces the good you like, but, even though
you do have money, he will not produce for you because he does not want your
money (either because there is an exogenous bound on how much money he can
hold, or because he already has so much money he endogenously decides not to

trade).5 Our endogenous matching model precludes such meetings — you would

6This second reason may be less convincing than the first, as it depends on some agents
sometimes not wanting money. No matter, since the first reason is inescapable: sometimes
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never choose to meet an agent who produces your good if you cannot trade, for
any reason, whether because you have run out of money or he will not take your
money. With endogenous matching, money is a perfect substitute for memory:
it is as effective as credit in supporting the efficient outcome.

Before pursuing monetary economics further, as we do in the rest of the paper
in models with a large number of anonymous agents, where the assumption on
no public memory is perhaps easier to motivate, we want to present two results
about the case of private but not public memory in the finite agent economy.
Assume now that h; is not observable to an agent, but he does only know the
history of his own previous matches. First, note that ®¢ remains an equilibrium
under this assumption. Now consider as a candidate equilibrium the process that
is identical to ®!, except that agents go to permanent global autarchy after they
have directly observed someone not match with (produce for) them. This case
is illustrated in Figure 3. Consider agent 2 at ¢ = 0, when he is supposed
to match with 1, and suppose he deviates to autarchy that period. Agent 1
observes this but agent 3 does not; as far as 3 knows, at ¢ = 1 we are still on the
equilibrium path. We represent agent 3’s lack of information by the set (rather
than singleton) of nodes in his information partition in Figure 3. Thus, at t =1
agent 3 matches with 2. Only at ¢t = 2 will agent 3 experiences a deviation, when
agent 1 refuses to match with him, at which point we are in global autarchy.
Again, we must also check that agent 2 does not choose to match with agent
3 at t = 0. But in this case, all agents know about 2’s deviation from ®! and
their payoff is simply 0 from punishment to autarchy.

Agent 2 chooses not to deviate to autarchy at ¢t = 0 only if f*u > ¢. This is a

you run out of money.
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Figure 3: Possible Histories Under ®!with Private Memory

much stronger condition than what we needed with publicly observable histories,
[u > c. However, notice that the monetary equilibrium still exists with private
but no public memory under the original parameter restriction, Su > ¢. Thus,
we have demonstrated that for some parameters the credit arrangement breaks
down, while money still works to support an efficient outcome (with endogenous
matching in both cases). The result is, in fact general, the simple intuition is as
follows. Since the actions of agents are not publicly observable, a deviation will
trigger the autarchy only by the person that experienced it. This will create
a chain of punishments by other agents that takes time to reach the deviator.
So if agents are sufficiently impatient, they will want to deviate and credit will

collapse. Summarizing, we have the following.

Proposition 1 There exist regions of the parameter space where credit with

private memory cannot support the first best outcome while money can.

A direct implication of this is the next proposition, which asserts that equi-
16



libria involving credit become harder to support as the number of agents grows,
but no so for monetary equilibria. The intuition is simple. The larger the popu-
lation, the longer it takes a deviator to be discovered and punished in the credit
arrangement. But we can always give money to some agents in such a way as
to support the efficient process of exchange. For example, suppose N is an even
number, and we give every second agent a unit of money to start. There is a
monetary equilibrium in which they each consume every second period, again

under the maintained assumption that fu > c.

Proposition 2 Credit becomes harder to support as the number of agents in

the economy, N, increases. Monetary exchange does not.

To close this section, we mention that punishment to permanent global
autarchy may seem extreme, but our goal was to give credit the best chance
by making deviations as painful as possible. Even given this, the monetary
equilibrium that implements the efficient allocation exists under more general
conditions than the credit equilibrium. In our setup, an agent will meet with
the same producer every two periods regardless of the number of agents in the
economy. In a more general setup, with many potential producers producing
the good that agent ¢ likes, it could be the case that agent i might not wish to
trigger the autarchy punishment if he experiences a deviation and, rather, try
to hide it, since he might hope that he will not interact with the same deviator-
producer in the near future. Clearly, the credit equilibrium studied here will be
even harder to support in that case. In fact, in the next section we will move
to a finite number of agent types but large number of agents, and assume that
while you get to choose the type you meet you cannot choose to meet a par-

ticular agent, which implies that punishment strategies are useless and credit
17



cannot work. Hence, some form of money is obviously essential, and the goal

will be to see how this works.

4 Generalizing the Monetary Model

The following version of the environment in Kiyotaki and Wright (1993) is the
simplest model of monetary exchange with a continuum of agents, A = [0, 1],
equally divided into N types. By analogy to the previous section, now there
are N indivisible and non-storable goods, each agent of type 7 can produce
good i and can consume good ¢ + 1 (mod N). As before, production costs c,
consumption yields u, and agents discount at rate § = 1/(1 + r). Now the
amount of money is given by M € (0,1). Further, we now let v > 0 be the per
period storage cost of holding money; if v = 0 this reduces to fiat money, as in
the previous section. The state variable for agent 7 is again his money inventory,
j €{0,1}. In the symmetric outcomes considered below, the fraction of agents
with money is always the same for all types: p;1(t) = M, Vi, t.

In Kiyotaki and Wright (1993) agents meet randomly, and the histories of
people you meet are not observable to you (traders are anonymous). As in the
previous section, this precludes any exchange that is not quid pro quo, and the
only possible trades involve an agent of type i giving money to an agent of type
i+ 1 in exchange for good ¢ + 1. If and when such trades actually do occur is
what needs to be determined. Let 7 denote the probability that a random agent
accepts money in exchange, and let V; be the value function of an agent with
J units of money in inventory, j € {0,1}. Since we only consider symmetric
outcomes, ™ and V; are not indexed by type. If « is the probability of meeting

someone at any date and z = 1/N, the probability a type i agent with money
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meeting a type ¢ + 1 without money is a] = axz(l — M) and the probability a
type i + 1 agent without money meeting a type ¢ with money is afj = cx M (the
superscript indicates we are in a random matching environment).

Hence, the value functions in steady state satisfy the flow Bellman equations:

Vi = ajr(u+Vy—V) —~ (1)

Vo = agn(—c+ Vi — Vo). (2)

An equilibrium is defined as a list (V3, Vg, ) satisfying (1) and (2), as well as
the best response condition: m# = 1if —c+V;—Vy > 0;m =0if —c+ V71— Vo < 0;
and 7 € (0,1) implies —c 4+ V; — Vp = 0. The set of (symmetric, steady state)
equilibria is described by the following result, the proof of which is omitted, as

it simply involves a routine check of the above conditions.

Proposition 3 In the random matching model, there is a critical value 7 =
al(u — ¢) — re such that: v <7 implies there are three equilibria, m =0, m =1,

and m = =42 € (0,1); and v > 7 implies the only equilibrium is ™ = 0.

@ ()

We want to reformulate the above model with endogenous, as opposed to
random, matching. We want to maintain the assumption that traders are anony-
mous. If we assume that an agent can literally meet any individual he chooses,
we must rule out memory by brute force, as in the previous section. Alterna-
tively, we can assume that an agent gets to choose the type ¢ and state j of the
person he meets, but not a particular individual: he draws a partner at random
from the set of agents who are type ¢ with money inventory j. We will frame the
discussion here as though an agent can choose the type and state of the person

he meets but not the individual.
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It is clear along the equilibrium path, the only relevant matches specified by
® are between type ¢ agents with money and type ¢ + 1 without money, since
these are the only meetings in which there are possible trades. So we focus
on equilibria where each period @, simply specifies the following: if M < 1/2,
then every type 7 agent with money meets a type ¢ + 1 agent without money
drawn at random from the set of such agents, while exactly % of the type
i+ 1 agents without money drawn at random meet a type ¢ agent with money;
and if M > 1/2, then every type i + 1 agent without money meets a type i
agent with money drawn at random from the set of such agents, while exactly
17—1\}4 of the type 7 agents with money drawn at random meet a type i + 1 agent
with money. This implies the probabilities of agents with and without money
meeting someone each period are af{ = min {%, 1} and af = min {%, 1}.
By way of contrast with the random search model, in this model everyone on
the short side of the market meets someone each period, and meetings always
involve the right types, and hence aj < af, j =0, 1.

Here we want to distinguish between matching and trading. Thus, after
agents are matched according to @, the following happens: the type i agent
with money proposes (this will be his equilibrium strategy) to exchange his
money for good i + 1, and the type i + 1 accepts with probability 7.7 Now
an equilibrium is defined by a pattern of meetings, ® with the property that

no coalition wants to deviate in the sense of Definition 1 (we cannot find an

agent who strictly prefers to be unmatched in any period rather than to be

7If the i + 1 agent rejects the trade offer, the agent with money cannot meet with any one
else until next period; it would be equivalent here to say that the type ¢ + 1 agent accepts
the proposed meeting with probability m, rather than agreeing to meet and then accepting
the trade offer with probability 7. These assumptions are made to keep the model as close
as possible to the random matching model along dimensions other than the meetings. In any
case, this is only relevant to the extent than one finds mixed strategy equilibria 7 € (0, 1)
especially interesting.
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matched according to ®, and we cannot find two agents who strictly prefer to
be matched with each other rather than to be matched according to @), as well
as a list (11, Vp, 7) satisfying analogs of the Bellman equations and best response
conditions in the random matching model given below.

Without going into too much detail about what happens after a deviation,
it should be clear that no individual or pair strictly prefers to deviate from the
matching pattern ® described above (i.e., the pattern where if M < 1/2 every
type i agent with money matches with an agent of type ¢ + 1 without money,
etc.). Although some agents on the long side of the market meet no one and
would strictly prefer to meet someone, they cannot find anyone who strictly
prefers to meet them over the meetings specified by the above pattern. Given

these observations, the value functions satisfy

Vi = ajm(u+Vo—Vi) — v (3)

Vo = ajm(—c+ Vi —W). (4)

Comparing (1) and (2) with (3) and (4), we see that, at least in this very simple
model, making the matching pattern endogenous alters the Bellman equations
simply by changing the arrival rates. Moreover, the best response condition for
trading is exactly the same as above: m = 1if —c+V; —Vy > 0; 7 = 0 if
—c+ V1 —Vp <0; and 7 € (0,1) implies —c+ V5 — Vp = 0.

Hence, this simple model actually ends up looking qualitatively quite similar
whether we have random or endogenous matching. The analogue of the previous

proposition is the following.®

Proposition 4 In the endogenous matching model, there is a critical value 7 =

8The discussion that follows depends on the maintained assumption ¢ < u/(1 + 7).
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a$(u — ¢) —re such that: v < 7 implies there are three equilibria, m =0, m =1,

and T = #c:'jc—) € (0,1); and vy > 7 implies the only equilibrium is m = 0.
1

Recall that in the random matching model monetary equilibria exist iff v is
below 7, while here monetary equilibria exist iff v is below 7. The first thing
to note is that ¥ < 7, and so monetary equilibria are easier to support in the
endogenous matching model. Intuitively, this is because it is easier to spend
money, and so money tends to be more valuable, when you get to choose the
type and inventory of the agents that you meet.? Moreover, since 7 is increasing
in = 1/N, it becomes more difficult in the random matching model to support
monetary equilibria when the number of goods/types grows. However, since ¥
is independent of IV, the existence of monetary equilibria in no way depends on
the number of goods in the endogenous matching model, again because you get
to choose the type and inventory of the agents you meet.

The results can also be stated in terms of the maximum value of M for
which monetary equilibria exist, say M and M in the random and endogenous
matching models, respectively. Then we have M < M. In the case where
v = 0, it is worth mentioning that in the limit as » — 0 the two models
converge, in the sense that both M and M converge to 1 and, in both models,
the mixed strategy acceptance probability = converges to 0. The intuition for
this is simple. As mentioned earlier, what distinguishes the two models in this
section is essentially the arrival rates, and in particular the fact that aj < aj.

This distinction becomes less relevant as agents become more patient. However,

9A related point is that, given the parameters, the probability that money is accepted
in the mixed strategy equilibrium 7 is higher in the random matching model. Intuitively, if
agents are to randomize they must be indifferent between accepting and rejecting money, and
since in the endogenous matching version money tends to be more valuable, it has to have a
lower acceptance rate to keep agents indifferent.
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this conclusion depends on v = 0; if v > 0, the two models are different even
when r — 0, because by reducing the average amount of time an agent needs to
hold money before he can spend it, endogenous matching allows them to reduce
their storage costs.

So far we have focused on stationary equilibria, where strategies and payoffs
do not change over time. At least in the random matching version, however,
there are other equilibria, and it seems interesting to ask how moving to an en-
dogenous matching technology affects the potential for such equilibria. Follow-
ing the procedure in Wright (1997) for a random matching model, we can look for
sunspot equilibria, for the endogenous matching model, as follows. Suppose there
is a Markov process for an aggregate state variable s; € {m,n} which switches
according to Pr{s’ =n | s =m} = Apn and Pr{s =m | s = n} = Apyn. We
now construct equilibria where {¢(¢)} is as above (if M < 1/2 then every type ¢
agent with money matches with an agent of type ¢+ 1 without money, etc.), but
now, even though nothing fundamental in the economy depends on s, agents
accept money in one state but not the other: 7,,, =1 and 7, = 0.

If V7 is the value function of an agent with j units of money in state s, then

we have: !0
VI = (1= A )@ (w4 VI — V) 4 A (VI — V™)
T‘/i" = )‘nma‘i(u + VOm - Vv]_n) + )‘nm(l - allz)(vlm - V'l")
TVOm = (]' - A'r)’LTl,)CLS(*C + ‘/im - VOm) + )\"”"<V0n o Vom)
TVOn - )\nma(e](_c + ‘/'1771 - Von) + )"nﬂ’L(l - a(e])(VO’n - ‘/E]n)

For 7, = 1 and 7, = 0 to be an equilibrium, we require V{"* — V" —c > 0

9For simplicity, in the rest of this section we set v = 0.

23



and 7, = 0 if V" — Vi* — ¢ < 0. Straightforward algebra implies that these

conditions are satisfied in the region in (Aym, Amn) space bounded by two lines:

~af(u—c)—rc .
Amn = rla$(u —¢) + ¢ (r+ Aum) (5)

A = [af(1 +7)(u —¢) —re(l — af — a§)]Awm — re(af +af + 7’), (6)

re(l —a§ —a§)

Figure 7?7 shows this region. It also shows the region in which a sunspot equi-
librium with 7, =1 and 7, = 0 exists in the random matching model, which
is defined by replacing a§ by af and a$ by af (5) and (6).

As can be seen in the diagram, we are more likely to have a sunspot equi-
librium in the random matching model than in the endogenous matching model
when Apim/Amn is large, and more likely to have a sunspot equilibrium in the
endogenous matching model when A, /Ay, is small. These results seem inter-
esting for the following reason. First, it is understood that monetary economies,
especially those with fiat money, are susceptible to endogenous fluctuations like
those that occur in these sunspot equilibria. One might have thought that
the region in which sunspot equilibria exist would be smaller in an endogenous
matching model — that is, eliminating the randommness in meetings would re-
duce the parameter values for which sunspots matter. This is not the case.
Intuitively, since money is easier to spend and hence tends to be more valu-
able in the endogenous matching model, it is easier to satisfy the condition for
T = 1 and harder to satisfy the condition for m,, = 0 in that model; hence, we
need to have \,,, smaller or \,,, larger with endogenous matching for sunspot
equilibria to exist.

We conclude this section by saying, at least in the very simplest environment,

it is possible to construct a theory of money based on a double coincidence prob-
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lem arising out of a restriction to bilateral trade (in combination with a lack of
commitment and memory) without assuming random matching. Some of the
basic insights of the random matching model go through, although some of the
results change in interesting ways, such as the result that the existence of mon-
etary equilibrium does not depend on the number of goods in the endogenous
matching model. The next step will be to see what happens in more general
or alternative matching models, including models where goods are divisible and
hence quantities (and hence prices) are endogenous, models with commodity

money, and so on.

5 Endogenous Prices

In this section, following Shi (1995) and Trejos and Wright (1995), we now
assume that goods are divisible (but retain the assumption that money is indi-
visible). Any ¢ > 0 units of good ¢ good can be produced by type i at cost ¢(q)
and, consumed by an type i + 1 for utility u(q). Assume ¢/(q) > 0, ¢’(q) > 0,
limg .o ¢/(¢) = 0, and limy .o /(q) = oo, as well as u/(¢) > 0, v”’(q) < 0,
lim, .9 u/(¢) = oo, and lim,_.o v/(¢) = 0. Also, there exists ¢ > 0 such that
u(q) = ¢(q). Let ¢* satisfy u'(¢*) = ¢/(¢*). Further, let v > 0 be a storage cost
of holding money. All other assumptions regarding the physical environment
are identical to the preceding section.

If we assume random matching, for any given ¢, the value functions satisfy

io= arfu(g) +Vo—-WVi] -~ (7)
Vo = ag[—clg) + V1 — Vol (8)

where as in the previous section a] = az(1— M) and af = cwM. To determine
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¢, and the price level p = 1/¢, the literature assumes that when agents meet g is
determined as the equilibrium of a bargaining game as in Rubinstein (1982), or
— what amounts to the same thing — ¢ is given by the generalized Nash (1950)

solution. We adopt the generalized Nash solution here:
max [u(q) + Vo = Vi [=e(g) + Vi = Vo] 9)

st.u(q)+ Vo > Vi and —c(q) + V4 > W, (10)

where w is the bargaining power of an agent with money and the threat points
of an agent with j units of money is equal to V;.!! An equilibrium is defined
as a list (g, V1, Vo) satisfying the Bellman equations (7), (8), and the bargaining
solution.

There always exists a nonmonetary equilibrium with ¢ = 0; from now on,
we focus on equilibria with ¢ > 0. Taking the first order conditions from the
bargaining equation (9), inserting the value functions, and simplifying we see

that an equilibrium ¢ satisfies the following condition

T(q) = wlai(u(g) — ¢(g)) — 7 = re(@)] w'(a)—(1-w) [ap(u(g) — e(9)) + ru(g) +7]¢'(q) = 0.

One can show (as in Trejos and Wright (1995)) that for v = 0, T(0) = 0 and
there exists a unique ¢ € (0, §) such that T'(¢) = 0. See Figure 2. Fory > 0, T'(q)
shifts down. Hence there exists a critical 7 such that if v € (0,7), there exists an
even number of monetary equilibria (i.e. an even number of positive solutions
to T =0), and if v > 7, there exists no monetary equilibrium. Moreover, T'(q)
is increasing in a/ and decreasing in afy, which implies 9¢/0M < 0 in the case of

a unique monetary equilibrium, v = 0. Similarly, d¢/0r < 0 in this case. Also,

11Gee Coles and Wright (1998) for the details of the relationship between strategic and
axiomatic bargaining in monetary theory.
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when v =0,asr — 0,

(@) (Q1—-w)ay (1—-—w)M

d(q) wa]  w(l-M)’
Since v/ (q) = ¢/(¢q) describes the efficient outcome, even for » — 0, deviations
from efficiency can occur if w or M is not right.

We want to consider an endogenous matching version of this model. One
issue that arises immediately is the extent to which agents can commit or equiv-
alently when does bargaining occur. One possibility is that agents can choose
any type of agent that they want, but then leave the matching process and bar-
gain over the terms of trade bilaterally with their partner. Alternatively, agents
can negotiate the terms of trade while deciding with whom they should match.
But if there is no commitment, this reduces to the same thing (since agents may
renegotiate ¢ once they leave the matching process but before actually executing
the trade). We will consider each case in turn, beginning with the case without
commitment.

In the case where there is lack of commitment, the model with endogenous

meeting looks very similar to the random matching model except that we change

M
1-M>

aj to aj = min {%, 1} and aj to af = min{ 1}, once one recognizes
that an equilibrium matching pattern ®* implies the only consequential matches
are between type ¢ agents with money and type ¢ + 1 agents without money. In
particular, the bargaining solution is qualitatively the same as in the random
matching model: due to the lack of commitment, ¢ is still given by (9) even
though meetings are endogenous. Hence, equilibria are given by solutions to

T'(q) = 0 with a§ substituting for a7. This implies that the set of equilibria

A
e

in the endogenous matching model without commitment is qualitatively the

same as that in the exogenous matching model: if v = 0, there exists a unique
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monetary equilibrium; there exists a critical 4 such that if v € (0,%) then there
exists an even number of monetary equilibria; and if v > 4 then there exists no
monetary equilibrium.

Further, as in the random matching model, in the case of a unique monetary
equilibrium, we have dq/0M < 0 and 0q/0r < 0. Also, when v =0, as 7 — 0

the unique equilibrium ¢ solves

w(q) (1 — w) min (1,%) (1-w)M

ol T wmn(LESE)  w@—M)

As in the indivisible goods model in the previous section, if v and r are negligible,
endogenous matching (with no commitment) yields exactly the same outcome
and random matching. Intuitively, sense since if agents do not discount the
future and if there are no storage costs, then the advantages of being able to
choose the type and inventory of your partner does not matter.

Compare the two models, let 77 (¢) and T°(g) denote the T functions in
the random and endogenous matching models, respectively. At any ¢ such that

T7"(q) = 0, we can substitute

¢(g) = £1a1 () = cla) =7 = re(g)[ w'(a)

(1 —w)ag (u(g) —c(q)) +v +ru(g)]’

into T"(q) — T¢(q) to show that it is equal in sign to:

D = (a] —af)[ag (u(g) — cg)) +rula) +7] — (ag — ag) [ag (u(g) — ¢(g)) — re(q) — ]

= ru(qg) (ay — ay) +re(q) (ag — ag) +vag — ag +ay —aj] <0

(the last equality uses a§a] = afaj). Hence, at any ¢ such that T"(q) = 0, we
have T¢(g) > 0. This means that whenever a monetary equilibrium exists in
the random matching model, one also exist in the endogenous matching model;

thus, the critical storage cost below which monetary equilibria exist is greater
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in the endogenous matching model: 4 < 4. Moreover, if v = 0 so that there
is a unique equilibrium in both models, say ¢" and ¢°, we know that ¢® > ¢".
Intuitively, these results hold because money is more valuable in the endogenous
matching case.

All of the above results are for the case of no commitment. In the case of full
commitment, the model with endogenous meetings is fundamentally different
than the random matching model. When M < 1/2,a§ =1and a§ = M/(1—M)
so that agents with money constitute the short side of the market. In that case,
agents with money have all the bargaining power, and effectively make take-it-
or-leave-it offers to agents without money.This yields V; — Vi — ¢(¢) = 0, which

implies Vy = 0 by (8). Hence, ¢ satisfies

5(g) =ulg) =y — (1 +7)c(g) =0. (11)

It is easy to see that for v = 0, S(0) = 0 and there exists a unique g € (0, §)
such that S(q) = 0. For v > 0, S(g) shifts down. Hence there exists a critical
4 such that if v € (0,%), there exists an even number of monetary equilibria
(i.e. an even number of positive solutions to S = 0), and if v > ¥, there exists
no monetary equilibrium. Moreover, S(g) is independent of arrival rates (and
hence M). When M > 1/2, af =1 and af = (1—M)/M so that agents without
money constitute the short side of the market and effectively make take-it-or-
leave-it offers to agents with money. In this case, u(q) + Vo — V4 = 0, which
implies the only equilibrium is ¢ = 0.

Therefore, unlike the random matching model, there is a possibility of mon-
etary equilibria only when M < 1/2 in the endogenous matching model with

commitment. Furthermore, since all of the surplus in this case goes to the buyer,
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¢° > q" when M < 1/2. This can be shown formally since S(g) — T(q) > 0 at
M = 0 and ¢¢is independent of M when M < 1/2. See Figure ?? for the case

where v = 0.

6 Commodity Money

The model is very similar to Kiyotaki and Wright (1989). There is a continuum
of agents on [0, 1]. There are equal proportions of 3 types and there are 3 goods,
where type ¢ agents consume good ¢ and produce good ¢+ 1 mod 3. Each agent
derives utility u > 0 from his consumption good. Agents discount the future
at rate § € (0,1). Good are indivisible and storable, and the cost of storing
good j is given by c¢;. We consider two versions of the model: in model A,
c3 > cg > ¢; > 0; in model B, ¢; > ¢g > ¢ > 0.12 As for the matching
technology, we assume that an individual can choose the type of agent with
whom he wishes to trade, he draws an individual of that type at random. Hence,
the probability of meeting a particular agent with whom one has traded before
is zero, since there is a continuum of each type (the same thing would be true
with a countable infinity of agents).

As in Section 2, the aggregate inventory distribution at time ¢ is denoted
by [...pt(i,7)...], where p(i,7) is the proportion of type i agents holding good
j at t. We assume that any agent of type ¢ who acquires good i immediately
consumes it and produces good i + 1, which is not restrictive provided that
ﬁ —¢; > —c;j. Hence, we know that p;(i,4) = 0, and so the distribution of

commodity holdings at any point in time is completely characterized by three

12T hese are the only two relevant versions of the model — everything else is a relabeling. Also,
note that reordering storage costs here is equivalent to changing the preference-technology
specification between the two models, as was done in the original Kiyotaki and Wright (1989)
analysis.
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numbers p; = [pi(1,2),p4(2,3),p:(3,1)]. Given a sequence {p;}, we define an
assignment rule {¢;} which induces a partition {6;} of A into subsets of size 1
or 2 (i.e. the set of agents who are in autarchy or bilateral pairs) as in Section
2. In this section, we look for memoryless equilibrium matching processes.

To fix ideas, consider the aggregate state where all type ¢ agents are invento-
rying their production good, p = (111). We can easily enumerate all symmetric
allocation rules from this state. In particular, types 1 and 2 can be matched
and trade leading to state (011), types 1 and 3 can be matched and trade lead-
ing to state (110), or types 2 and 3 can be matched and trade leading to state
(101). From each of these states, we can again enumerate all symmetric allo-
cation rules that change the aggregate state.!3 From state (011), types 1 and
3 can be matched and trade leading back to state (111) or types 2 and 3 can
be matched and trade leading to state (001). We call the path of matches (and
trades) (111) L2 (011) L3 (111) a two-cycle. From (001), all types 1 and 2 can
trade leading back to state (111) or all types 1 and 3 can trade leading to state
(101). We call the path of trades (111) =¥ (011) 23 (001) ¥ (111) a three-cycle.
Table 1 in Appendix 1 enumerates all the possible cyclic patterns (we can have

up to 8 cycles) associated with symmetric allocation rules.There are also states

associated with asymmetric allocation rules. For instance, one candidate asym-

metric allocation rule has % of type 2 agents holding commodity 1 trade with

% of type 1 agents holding commodity 2 while % of type 2 agents holding com-

modity 3 trade with % of type 3 agents holding commodity 1. Such an allocation

rule is associated with state (1, %, 1) in each period. This allocation rule is a
1,

steady state version of a 111 23101 2111 two-cycle. In much of what follows,

13To economize on notation, we do not consider bilateral matches among agents inventorying
the same good.
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we will use the following Lemma.

Lemma 1 : It is a dominant strategy to trade for your consumption good when

holding your production good.

The first two Propositions assert the existence and uniqueness (among sym-
metric equilibria) of the fundamental equilibrium for our model A. In particular,
there is no equilibrium in which the high storage good serves as a medium of

exchange.

Proposition 5 The fundamental equilibrium 111 23101 B 111 is a symmetric

pure strategy equilibrium cycle for model A.
Proposition 6 Model A has no other symmetric pure strategy equilibria.

Finally, the next Proposition asserts the existence for at least some param-
eter values of an asymmetric equilibrium. This is an 1-period analog of the

symmetric fundamental equilibrium described earlier.

, 1) exists for all

Proposition 7 In Model A, the asymmetric equilibrium (1,%

t provided [3_2u < (e3 —¢q) and [3_2u < (g — 7).
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7 Appendix

7.1 Cycles from Initial State 111 in the Commodity Money

Model

(101)

2,3

Table 1
(111)
11,3
(110)

Cycle
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7.2 Proofs for Money and Memory

Proposition 1. There exist regions of the parameter space where credit with

private memory cannot support the first best outcome while money can.

Proof. Since the text proved the case for N =3 and M = 1, here we consider
the case with N = 4 and M = 2. With no public observability of histories, a
producer who considers deviating from s¢ by not producing when he is supposed
to and instead choosing to consume his autarchic amount will be punished only
after this deviation is discovered. Let i« — j stand for “agent ¢ produces for agent

7 Without loss of generality, suppose agent 2 does not produce for agent 1

j-
(i.e., 2 - 1 in t). This deviation by 2 does not effect the play of 3 or 4 pair at
t. At t+1 agent 1’s strategy calls for him not to produce for 4, but 3’s strategy
calls for him to produce for 2 and 2 has no reason to reveal that he is a deviator.
At t 4+ 2, agent 4’s strategy calls for him not to produce for 3, while 1 and 2 are
in autarchy. It is only at ¢t + 3 that 2 suffers the effects of his deviation, whence

he is forever into permanent autarchy and receives %. This is summarized in

the following table:

period actions payof f to deviator
t 21 4—3 0

t+1 1-»4 3—2 U

t+2 2-»1 4-»3 0

t+3 1-»4 R =3

Agent 2’s payoff if he deviates is

VD_0+ﬂ[u+ﬂ<0+1ﬂ_—0ﬂ>]. (12)

Hence, a producer will not deviate if V¢ > V2, or

¢ < u, (13)
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which differs from the condition in the monetary equilibrium. In particular,
it is harder to satisfy this condition. To complete the proof, notice that the
monetary equilibrium with no memory remains an equilibrium with private
memory; i.e., even though other equilibria where agents condition their actions
on their private histories may exist, there is always one equilibrium where agents

do not condition on their histories. W

Proposition 2. “Credit” equilibria become harder to support as the number

of agents in the economy, NV, increases.

Proof. Given preferences, the payoff along the credit equilibrium path does
not depend on Nj i.e., an agent along that path always consumes and produces
every other period. It is therefore sufficient to study how the payoff of a deviator
changes with N. Consider two economies, one with N agents and one with N +2

agents, for any even number N. We have

VP =04 Bu+ 20+ ...+ N Bu+ VN 20+ gV

0
Vitha :0+ﬁu+ﬁ2o+...+ﬁN*1u+ﬁNo+ﬁN+11— (15)

-8
Now, VJ\I’)+2 > Vje Su > %, which is always true since 8 € (0,1). The result

follows by a straightforward induction argument. ll
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7.3 Proofs for the Commodity Money Model

Lemma 1. It is a dominant strategy to trade for your consumption good when

holding your production good.

Proof. Doing so allows you to consume and produce your production good

immediately, putting you back on the equilibrium path with a boost in utility. l

Lemma A.1. In model A’s FE, no agent of type 3 accepts good 2.

Proof. Suppose 3 accepts 2 in state 111. First assume he holds it for exactly
1 period. Since next period the state is 101, he must trade for 1, which takes
him back to the equilibrium path, where he reverts to the candidate strategy
(using unimprovability) with a lower payoff since he incurred higher storage
cost ¢g > ¢;. Now assume he holds it for exactly 2 periods, when the state is
again 111. If he trades for 3, he consumes and produces 1, putting him back on
the equilibrium path, where he reverts to the candidate strategy with a lower
payoff since he incurred higher storage cost. If he trades for 1, he is back to the
equilibrium path without consuming, and he reverts to the candidate strategy
with an even lower payoff. Now assume he holds it more than 2 periods; by
stationarity, he should hold it forever, which obviously is a bad idea. Hence,
accepting 2 in state 111 and holding it any number of periods is a bad idea.
Now suppose 3 accepts 2 in state 101. If he holds it 1 period and trades for 3,
he consumes and produces 1, putting him back on the equilibrium path with a
lower payoff since co > ¢;. If he holds it exactly 1 period and trades for 1, he is

back to the equilibrium path without consuming, with an even lower payoff. If
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he holds it exactly 2 periods, the state will again be 101, and he must trade it
for 1, putting him back to the equilibrium path with lower payoff. If he holds
it more than 2 periods then, by stationarity, he should hold it forever, which
obviously is a bad idea. Hence, accepting 2 in state 101 is also a bad idea. We

conclude that accepting good 2 always makes 3 strictly worse off. B

Lemma A.2. In model A’s FE, no agent of type 1 accepts good 3.

Proof. Suppose 1 accepts 3, which must happen in 111. First assume he holds
it exactly 1 period and trades for 1, whereupon he consumes and is back on
the equilibrium path with a lower payoff since he would have consumed anyway
and cg > cg. If he holds it for exactly 1 period and trades for 2 he is back he is
on the equilibrium path without consuming for an even lower payoff. Hence it
is a bad idea to accept 3 and hold it for 1 period. Now assume he holds it for
exactly 2 periods, where the state is again 111. If he trades for 2 he is back on
the equilibrium path with a lower payoff. If he trades for 1 he consumes and
is back on the equilibrium path, but he has consumed one period later than he
would have on the equilibrium path and incurred higher storage cost. Hence it
is a bad idea to accept 3 and store it for 2 periods. If he holds it more than
2 periods then, by stationarity, he should hold it forever, which obviously is a

bad idea. We conclude that accepting 3 always makes 1 strictly worse off. B

Proposition 5. The fundamental equilibrium 111 28101 B 111isa symmetric

pure strategy equilibrium cycle for model A.

Proof. Possible deviations in 111 are:
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1. (2,3) — (1,2). Suboptimal by lemma A.2 for agent type 1.
2. (2,3) — (1, 3). Suboptimal by lemma 1.

3. (2,3) — 2. Suppose 2 stores commodity 3 in state 111. After he holds it for
one period, the agent has two options in 101. Let Vi”(101) be the utility
for a deviating agent type 2 associated with holding one’s production good
when all other type 2s are holding commodity 1. First, assume he holds it
another period. This puts him back on the equilibrium path and he has
incurred the highest storage costs for two periods rather than hold the
lowest storage cost and then consume. Obviously this is suboptimal. The
only other possibility in state 101 is to trade with a type 3 agent (since
by lemma A.2 type 1 won’t trade for commodity 3). In this case, in 111
he is holding commodity 1 (not his production good). He then has two
options. First, he can store commodity 1 another period. This puts him

back onto the equilibrium path with payoff:
—cg — e — fPer + °Vo(101)
which is obviously dominated by
—c1 + B(u— c3) — B%c1 + °Va(101).

Second, he can trade commodity 1 to agent 1 (agent 1 will accept by lemma
1) and consume which means he enters state 101 holding his production
good. But this puts him back to the two options he had in 101 and the

payoffs associated with this deviation strategy are uniformly lower
—c3 — fer + 57 (u— ¢3) + B2V5° (101).

By stationarity, other deviations are suboptimal as well.
43



4. (2,3) — 3. Suboptimal by lemma 1.
Possible deviations in 101 are:

1. (1,2) — (1,3). While agent type 1 would be indifferent, type 3 does not

trade by lemma A.1.

2. (1,2) — (2,3). Since both agents are inventorying the same good, this

amounts to storage of commodity 1 by type 2. See below.
3. (1,2) — 1. Suboptimal by lemma 1.

4. (1,2) — 2. Suppose 2 stores commodity 1 in state 101. After he holds it
for one period, the agent has two options in 111. First, assume he holds
it another period (since type 3 are also holding 1 this option is subsumed
here). This puts him back on the equilibrium path. The benefit is that
he has held the lowest storage cost good for two periods, the cost is he
has not consumed. This is suboptimal provided —c¢; < uw — ¢3. Second,
assume he trades the commodity to a type 1 agent in 111 (which is possible
applying lemma 1 for type 1). In this case, he consumes and enters 101
holding his production good rather than commodity 1 as all other type
2s are doing. Then, in 101, the deviating agent again has two options. If
he holds commodity 3 for one more period, he is back on the equilibrium

path. The payoff to this deviation is:
—c1+ Bu— c3) — BPes + BOVa(111)

which is dominated by the equilibrium strategy since —(1 — 8)c; < (1 —
B)(u— c3) + F?u. If instead, he trades commodity 3 to agent type 3 in 101

(which is possible applying lemma 1 for type 3) he lowers his storage cost
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and enters state 111 holding a commodity other than his production good
(i.e. off the equilibrium path). But he has exactly the same two options
for 111 as already discussed. By stationarity, provided he does no better

along the path, the strategy is suboptimal. The payoff is:

Blu—cs = fer]

—c1 + 13

But this is dominated by the equilibrium strategy if —¢; < u — c3.%

By stationarity, other deviations are suboptimal as well. Thus, we have

exhausted all possibilities. ll

Proposition 6. Model A has no other symmetric pure strategy equilibrium

cycles.

Proof. We exhaust the possibilities below:
2 Cycles
111 — 011 — 17T
V2(011) = —c3 + B(u — c3) + F?V>(011)
VL (011) = —¢1 + B(u — c3) + 32V (011)
Vi(111) = —c3 + B(u — ¢e2) + B2V4(111)
VP(111) = u — ¢y — feg + [2Vi(111)

T = TI0 = 11T

Va(111) = —c3 + B(u — c3) + F?Va(111)
VL (111) = —c1 + B(u — c3) + 2Va(111)

Va(111) = —ca 4 Blu — ¢1) + 2V3(111)

14T his deviation simply put off the proposed equilibrium strategy by one period.
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VP(111) = u — ¢1 — Bey + B2Vs(111)
V1(110) = —c2 + BV3(111)

ViP(110) = u — ¢o + AV (111)

3 Cycles

11T — 10T — 100 — 17111

V3(101) = —Cy — ,661 + ,62‘/3(111)

V3D(10].) = —C1 — ,66]_ + ,62‘/3(111)

JIT =110 - 010 — 17111

V3(111) = —co — Bea + B2 (u — 1) + 3V3(111)
VL (111) = —c1 — Ber + (% (u — ¢1) + B3V3(111)
V1(010) = —co + BV4(111)

VP (010) = u — co + BV (111)

IIT =011 — 001 — 1111

Vi(111) = —c3 — Bes + 2 (u — ¢2) + f3V4(111)
VP111) = —cy — fea + (2(u — ¢2) + F3VA(111)
V2(001) = —cs + BVa(111)

VP (001) = u — c3 + BVa(111)

4 Cycles

1T =011 — 001 — 10T — T1T11]

V1(011) = —c3+ ﬂ(u — 02) + ,5‘2‘/1(101)
VP (011) = u — co — fea + (2V4(101)

T =110=010 =011 = 1111

V1(110) = —c3 — Bes + B2 (u — e2) + B3V4(111)

VP (110) = —cg — Bes + B2 (u — c2) + B2Vi(111)

1T — 10T — 100 — 110 — TT1T]

46



V3(101) = —co — Beg + B2 (u — 1) + 2V3(111)
VL (101) = —c1 — Bea + (% (u — c1) + B2V3(111)
5 Cycles

IIT =110 - 010 = 01T — 00T — 17Tl

Vi(110) = —¢3 — fBes — [2e3 + 43V4(001)

VP(110) = —cg — Beg — B2es + F2V1(001)

IIT = 01T - 001 — 10T — 100 — 1117]

V3(101) = —co — By + B2V5(111)
VL (101) = —¢; — Bey + (?V3(111)

JIT = 10T - 100 — 110 — 010 — 17Tl

V3(101) = —co — fea — B%co + 53(u —c1)+ ,841/3(111)
V3D(10].) = —C1 — ,66]_ — ,6261 —|— ﬁ?’(u — Cl) + ,64‘/3(111)

6 Cycles

1T =011 =001 = 10T — 100 — 110 — 111]

V3(101) = —co — Bea + B2(u — ¢1) + 33V5(111)
V3D(101) =—c1 — PBea + ,82(u —c1)+ ,831/3(111)
V4(100) = u — ¢ + V4 (110)

VL(100) = u — ¢y + BV4(110)

T =101 — 100 — 110 = 010 —= 01T — 11T

V3(101) = —cg — Beg — B2co + [33(U —c)+ ,34‘/3(011)
VP (101) = —¢; — Bea — BPea + 3(u — ¢1) + 1V3(011)

I =110=010 =011 =001 — 101 — 111I

Vi(110) = —c3 — Beg — ez + (°(u — c2) + *V1(101)
‘/1D(1].0) = —Cy9 — ,663 - ,8263 + ﬁ?’(u - 62) + ,64‘/1(101)

1T =011 — 001 — 10T — 100 — 110 — 010 — 07111
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V3(101) = —C9 — ,662 - ,8262 + ﬁ3(u - Cl) + ,64‘/3(111)
VP (101) = —c1 — Ber — BPer + B(u — 1) + BHV3(111)

IIT—=10T - 100 — 170 — 010 — 01T — 00T — 107

Vi(110) = —c3 — Bes — B2z + 3 (u — ) + BV (111)

VlD(ll()) = —co — Beg — BPca + 53(u —c2)+ ,84V1(111)

T =110=010 =011 =001 - 101 = 11T — 110

V1(110) = —c3 — fBes — [Zes + 43V4(001)
VP (110) = —cy — Bey — Fes + 33V1(001)

7 Cycles

IIT =110 =010 - 01T — 00T — 10T — 100 — 1111

V3(101) = —ca — By + B2Va(111)

V3D(10].) = —C1 — ,66]_ + ,62‘/3(111)

1T =011 — 001 — 10T — 100 — 110 — 010 — 17111

V3(101) = —co — Bea — B2ea + 3 (u — c1) + BV3(111)
VP (101) = —¢; — Ber — BPer + 3(u — 1) + BHV3(111)

IIT = 10T - 100 — 170 — 010 — 011 — 00T — 1111

Vi(110) = —c3 — Beg — ez + [ (u — c2) + V1 (111)
‘/1D(1].0) = —Cy9 — ,662 - ,8262 + ﬁ?’(u - 62) + ,64‘/1(111) .

Proposition 7. Model B has no symmetric pure strategy equilibrium cycles.

Proof. We exhaust the possibilities below:
2 Cycles
111 — 011 — 17T
Vi(111) = —c3 + B(u — ¢2) + F2Vi(111)
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VP(111) > u—co + B(u—c2) + ﬂ%(ﬁu_fc")] spell out
Va(111) = —c1 + Blu — 1) + F2V5(111)

VL (111) = —co + B(u — ¢1) + B2V3(111)

011 — 101 — 111

Vo(111) = —c3 + B(u — c3) + F2Va(111)
VP (111) = u — c3 — feg + (2Va(111)
Vi(111) = —co + B(u — ¢2) + F2Vi(111)

VP(111) = —c3 + Blu — ¢2) + B2V4(111)

DT =110 — 11T spell out

Vi(110) = —co + B(u — ¢3) + #2V1(110)

VL(110) = —c3 + Bu — ¢z) 4 F2V1(110)

Va(110) = u — ¢z + Ve (111)

VP (110) = u — c3 + fVa(111)

Va(111) = u — ¢; — Bea — FPea + 3V3(110)

VPA11) = —co + Bu — ¢1) — FPea + F3V3(110)

VP (A11) > V3(111) & u—c¢; — Bea > Bu—c¢1) — e

3 Cycles

J1T —= 10T — 100 — 17111

Vo(111) = —c1 — Ber + B2 (u — c3) + $3Va(111)
VP (111) = —c3 — Bes + B2 (u — c3) + B2Va(111)

IIT =110 - 010 — 17111

Vg(].].O) = —Cg — ,B(u - Cl) + ,62‘/3(111)

VL (110) = u—¢1 + B(u — c1) + $2V3(111)

JIT —=01T - 00T — 17111

V3(001) = —c1 + ,8V3(111)
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VL (001) =u — ¢y + BV3(111)

4 Cycles

1T =011 =001 — 101 — 111]

V3(101) = —c; — Bey + 32V3(011)

VL (101) = —c + B(u — ¢1) + B2V3(011)

T =110 =010 = 01T — TT1] spell out

Vg(].].O) = —Cy + ,B(u - Cl) + ,62‘/3(011)

VL (110) = u — ¢; — Bey + (?V3(011)

JIT =101 = 100 = 110 — 111]

V1(110) = —co — Bea + 32V4(101)
ViP(110) = —c3 + B(u — ¢1) + (2V1(101)

5 Cycles

1T =110 =010 = 01T — 00T — 111

V3(001) = —¢q + BV3(111)
VL (001) = u — ¢y + BV3(111)

01T = 01T - 001 — 10T — 100 — 1717

Va(011) = —¢1 — Bey + 2Va(101)

VL(011) = —c3 — Bey + (2Va(101)

1T = 10T — 100 — 110 — 010 — 1111

V3(110) = —co + B(u — ¢1) + F?V3(111)
VL (110) = u—¢1 + B(u — ¢1) + (2V3(111)
V1(010) = —co + BV4(111)

VP (010) = u — co + BV4(111)

6 Cycles

1T =011 =001 — 10T — 100 — 110 — 11T
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Vo(011) = —¢; — Bey + (2Va(101)

VL (011) = —c3 — Bey + F2V(101)

[T = 10T = 100 — 110 — 010 = 01T — 117 spell out
Vo(111) = —c; — Bey + 2 (u — c3) + f°Va(110)

VPP (111) = —e3 — fez + 7 (u — ¢3) + (3Va(110)
V3(100) = —ca — Beg + (2V3(110)

VP (100) = u — ¢y — Beg + 2V3(110)

V1(110) = ¢3 — ez — B2V1(011)

VP (110) = u — co — feg + (2V4(011)

T =110=010 =011 =001 — 101 — 111]

Va(011) = —¢1 — Ber + 2V (101)

VL(011) = —c3 — Bey + F2Va(101)

1T =011 — 001 — 10T — 100 — 110 — 010 — 07111

V2(011) = —c; — Ber + 32V2(101)
VP (011) = —c3 — Bey + $2Va(101)

T =101 =100 = 110 — 010 — 01T — 00T — 101 spell out

Vo(111) = —¢; — Bey + B2(u — c3) + F3Va(110)
VP (111) = —e3 — Bes + B (u — c3) + B2V (110)
V5(100) = —co — Bey + B2V3(110)

VL (100) = u — ¢y — Bey + 52V3(110)

V1(110) = ¢3 — fBes — 42V4(011)

VP(110) = u — ¢o — Bes + F2V4(011)

T =110=010 =011 =001 - 101 = 11T — 110

Vo(011) = —¢; — Bey + (2Vo(101)

VL (011) = —c3 — Bey + $2V(101)
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7 Cycles

IIT =110 =010 - 01T — 00T — 10T — 100 — 1111

V3(101) = —co — Bey + 32V3(111)
VL (101) = —¢; — Bey + (2V3(111)

IIT =01T - 001 —- 10T — 100 - 110 — 010 — 1111

V3(101) = —C9 — ,662 - ,8262 + ﬁ3(u - Cl) + ,64‘/3(111)
VP (101) = —¢; — Bey — BPer + B3 (u — 1) + BV3(111)

IIT—=10T - 100 - 1710 — 010 — 01T — 00T — 1111

Vi(110) = —c3 — Bes — B2z + 3 (u — ) + BV (111)
VP (110) = —co — fBea — [Pea + B (u — c2) + A14(111) A

Lemma A.3. Suppose (1,%, 1) exists for all ¢ in Model A. Then agent type 1
does not accept commodity 3 if 6—2“ < (e3 — ¢2) and agent type 3 does not

accept commodity 2 if % <(ca—c1).

Proof. Suppose agent type 1 accepts commodity 3 in the current period then
plays according to the allocation rule that generates (1,%, 1) exists for all ¢.
Thus, 1 assures himself consumption next period (since he can always obtain
his consumption good from a type 3 trader inventorying commodity 1 by the
UL). In that case he receives:
7 (e

(1-5)

If instead, agent type 1 holds commodity 2 he receives:

B(gu—c)
(1-p)

The inequality follows. The proof for agent type 3 is analogous. B

—c3+ Blu —c2) +

—C2 +
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Proposition 7. In Model A, the asymmetric equilibrium (1,3, 1) exists for all

IR

t provided '62—“ < (c3 — ¢2) and '62—“ <(c2—c1).

Proof. Let 2; denote agent 2’s holding of good 7 = 1, 3. Possible deviations are

listed below:

1.

10.

11.

(1,21) — (1,3). Suboptimal by lemma A.3 for agent type 3.
(1,21) — (1,23). Suboptimal by lemma 1.

(1,21) — (21,3). Indifference (same good).

(23,3) — (1,3). Suboptimal by lemma 1.

(23,3) — (23,1). Suboptimal by lemma A.3 for agent type 1.
(23,3) — (21,3). Indifference (same good).

(1,21) — 1. Suboptimal by lemma 1.

(1,21) — 24. Suboptimal by lemma 1.

(23,3) — 23. Agent type 2 delays obtaining the low cost commodity which
assures him his consumption good in order to hold the high cost good and

thus cannot be optimal.
(23,3) — 3. Suboptimal by lemma 1.

Unmatched 1, unmatched 3 — (1, 3). Suboptimal by lemma A.3 for agent

type 3. 1
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