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Abstract

We present the case for procyclical capital regulation policy as opposed to the
generally accepted countercyclical policy in the current literature. Our argument is
based on the fact that banks move around their capital in and out of the regulation
umbrella depending on the severity of the regulation. The banks trade-off the
benefit of being regulated – cheaper funding/insurance – with the cost – restriction
on the portfolio risk. Tightening the capital requirement during a boom (as in a
countercyclical policy) forces the banks to move to the shadow banking sector
where they take too much risk. Therefore, the policy aimed at controlling the
systemic risk during booms should incentivize the banks to be regulated by relaxing
the regulation. These forces are reversed during busts. In our model, the optimal
capital regulation policy is specified as a schedule of a macro variable, delivering
several desirable features.
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1 Introduction

In this paper, we look for the capital regulation policy that achieves the optimal

systemic risk exposure when banks can choose to be unregulated. Our work is

motivated by the existence of regulatory arbitrage in the financial intermediation

sector before and during the crisis of 2007-2009. Before the crisis, we saw a bur-

geoning of the shadow banking sector (Coval, Jurek and Stafford (2009), Gorton

and Metrick (2010)). Figure 1 (reproduced from Pozsar et al. (2010)) illustrates

that the sector size doubled from $10 trillion in the year 2000 to $20 trillion at its

peak in March 2008. An important component of this is the widespread growth

of SIVs & SPVs by means of which the commercial banks take their investments

off balance sheet outside the regulation umbrella (Acharya, Schnabl, and Suarez

(2010), Figures 5 & 7 in Gorton and Metrick (2010)). We argue that this ex-

cessive flow of investment outside the regulated banking sector was the result of

‘too tight’ regulation. During the crisis, however, we witnessed a few investment

banks acquiring the status of bank holding company (NY Times, Sep 2009). More

generally, a number of hitherto unregulated sections of the intermediary sector

accepted the government support. This flow of investment under the regulation

umbrella was the result of ‘too loose’ regulation during the crisis.

To model this strategic behavior of financial institutions, we consider a setting

where banks can choose their types between regulated (commercial) and unreg-

ulated (shadow), depending on the current status of the (capital requirement)

regulation. In making this decision, the banks compare the cost of being regulated

– limit on risk exposure – with the benefit – access to cheaper funding. Knowing

this behavior of the banks, the government chooses a regulation that achieves the

‘right’ mix of the commercial and the shadow banking sectors in the economy. The

most interesting outcome of our analysis is the procyclical nature of the capital

regulation policy—capital requirement is loose during good times and tight during

bad times. This is opposite to the current stance on the capital requirement reg-

ulation, which argues for countercyclical regulation policy (example Kashyap and

Stein (2004)). We attribute this difference to the existing literature ignoring the

ability of banks to move around their capital in and out of the regulation umbrella.

The current literature proposes a higher capital requirement during good times

which can act as buffer against losses during bad times. However, this advice

ignores the fact that banks that are averse to raising costly capital will simply

switch their types from regulated to unregulated (move their investment outside

the regulator’s purview as they did before the crisis). This will in turn result in too

big a shadow banking sector and the corresponding high systemic risk. To limit

the risk in good times, we propose that the government actually requires a lower

capital ratio which will entice the banks to become regulated and thus will not take
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Figure 1: Shadow Bank Liabilities vs. Traditional Bank Liabilities, $ trillion (Pozsar et
al. (2010))

too much risk (since the regulated banks need to hold capital commensurate to

the risks of their investments). Similarly, the current view proposes lower capital

requirement during bad times so that banks are not forced to cut credit/fire sell

in order to maintain their capital ratio. However, too low capital requirement

would mean all banks would like to be regulated since they receive government’s

funding support at a low cost. So, there will be too many commercial banks

and the economy-wide investment profile will be overly conservative. To limit

this excessive conservatism during bad times, we propose that the government

actually requires a higher capital ratio so that some banks find it unprofitable to

be regulated. This will balance the systemic risk during bad times.1

Another important feature of our analysis is that we pursue a regulation policy

that is market-based. We will see that under the optimal policy, the capital re-

quirement λ varies according to some pre-specified time-invariant rule: λ = Ω(ξ).

The schedule Ω is independent of the economic fundamentals and is increasing in

ξ (Ω′ > 0). The state variable ξ is the relative size of the shadow banking sector

with respect to that of the commercial banking sector.2 We expect that the level

1In our baseline model, we ignore the traditional forces that generate countercyclical regulation.
However, in section 10 we consider an extension of our model where even when we introduce these
traditional forces, the procyclical regulation result survives.

2We will see ξ is closely related to the systemic risk exposure. For any given value of fundamentals,
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of capital requirement λ impacts the relative sector size ξ. However, under this

policy specification, the reverse causation also holds, ξ impacts λ. Due to this

feedback loop, once the policy schedule has been announced (‘etched in stone’),

the market self-adjusts to attain the optimal risk exposure as the underlying fun-

damentals change.3 In this sense, the policy is also robust to the business cycle

fluctuations. A feedback loop between the policy instrument and the macro vari-

able being targeted is also a feature of Taylor rule in monetary economics where

the federal funds rate (the policy instrument) is allowed to vary with the actual

inflation rate and the unemployment rate (the macro variables) according to a

pre-specified rule in order to arrive at their target values. Also, we show that

monotonicity of Ω makes the policy robust to small measurement errors on the

part of the government in that small errors lead to only a small deviation in the

risk exposure from the optimum. In addition to its own appeal, this robustness

feature also delivers the uniqueness of optimal regulation in a simple setup.

The capital requirement regulation considered in this paper takes the following

rule: the standard deviation of a bank’s asset portfolio return is upper bounded

by the scalar λ (the policy instrument; same for all banks) times the bank’s eq-

uity capital. This form is in accordance with Basel II in which the banks need to

hold capital commensurate with the risk of their investments. We show that the

optimal policy instrument λ varies with the underlying economic fundamentals in

a procyclical manner. Even though we consider capital requirement as the policy

instrument in our analysis, we would arrive at the same two key features, procycli-

cality and robustness, if we use deposit insurance premium that is increasing in

the risk of bank’s asset portfolio as the policy instrument.

In our economy, there are two assets available for investment: a riskless asset

and a risky asset. There are three agents: a government, banks and investors.

While the banks are risk-neutral, the investors are risk-averse. The investors are

unable to access the asset market themselves and invest in the banks’ securities.

The banks can access the asset market. If they are unregulated, the banks invest

only in the risky asset. The benefit of being regulated is cheaper financing due to

deposit insurance (we assume zero fee for deposit insurance). The cost of being

regulated is a government imposed limit on the maximum allowable risk of the

bank’s asset portfolio. Each bank compares the benefit and the cost of being

regulated in deciding its type. Under the absence of any regulation, all investment

flows into the risky asset (since banks are risk neutral) and there is too much

systemic risk.4 The government’s objective is to obtain the optimal systemic risk

there is an optimal/target value of ξ that the government is able to achieve using the policy Ω.
3Committing to the schedule Ω to implicitly obtain the optimal ξ rather than directly managing ξ

is analogous to managing prices (and not quantities) in the terminology of Weitzman (1974).
4We provide the rationale for the necessity of government intervention in more detail in section 2.4.
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exposure. The government, while deciding the capital requirement, takes into

account the banks’ incentive to become regulated. It is this consideration on

the government’s part that distinguishes our analysis from that of the current

literature.

There are three main empirical predictions of our model: (i) the relative size

of the shadow banking sector with respect to that of the commercial banking

sector is procyclical when the capital requirement is held fixed; (ii) the leverage of

the shadow banking sector is procyclical; and (iii) shadow banks offer procyclical

interest rate to their investors. The first two predictions find support in data.

It is also important to note that even when the form of regulation considered

in this paper is individual bank specific (that is, the regulation specifies the max-

imum risk that each bank can assume), the regulation actually controls economy-

wide/systemic risk. This is because there is only one risky asset in this economy

(the market portfolio) and thus all banks’ investments are perfectly correlated.

This is somewhat similar to the effect achieved by Gennaioli, Shleifer and Vishny

(2011) where banks, in order to satisfy the investors high demand for safe debt,

pool and tranch respective loan portfolios to diversify away idiosyncratic risk and

concentrate systematic risk. Also, in this sense, this paper is related to the litera-

ture on macro-prudential regulation. Our focus is closer to aggregate risk-shifting

incentive of Acharya (2009) compared to aggregate balance sheet shrinkage con-

sidered in Hanson, Kashyap, and Stein (2011).

The underlying spirit of this paper is very different from that of Gorton and

Metrick (2010), Hanson, Kashyap and Stein (2011) and Dodd-Frank Act 2010

where the focus is to bring the entire shadow banking sector under the regulation

umbrella. Irrespective of the outreach of the regulation, there will always exist

some banks in the shadows (due to regulatory arbitrage, for example). That being

the case, the best regulators can do is to implicitly influence (and not overtake) the

shadow banking sector by designing meaningful regulation.5 Regulatory arbitrage

as a result of the capital requirement has also been emphasized by Goodhart

et al. (2011). Like us, they introduce a ‘shadow banking’ sector that provides

intermediation along with a ‘banking’ sector. In their model, the disadvantage of a

big shadow banking sector is the exacerbation of the fire sale problem during a bust.

However, rather than proposing an optimal capital regulation, their focus is on

contrasting the relative performance of five different policy instruments commonly

advocated (that is, choose the ‘right policy instrument’ rather than the ‘right level’

of a given policy instrument).

Finally, we analyze the optimal regulation in a financial crisis. One of the

5Interestingly, for some values of the economic fundamentals, we show that one equilibrium in our
model is a loose enough regulation that all the banks find it profitable to be regulated. An immediate
disadvantage of having all the banks regulated is a huge deposit insurance cost bore by the government.
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notable features of a crisis is a ‘flight to quality’. In our model, this means that

the investors put their investment in the commercial banks during a crisis. One

simple way to achieve this is to define a crisis as a transitory jump in the investors’

risk aversion. The government’s objective is to obtain the right systemic risk

exposure even when it cannot track the investors’ risk aversion during the crisis.

This can be achieved if we assume that the duration of the crisis is short so that

the fundamentals do not vary much during the crisis. Under that assumption, we

derive a policy schedule robust to fluctuation in investors’ risk aversion in much

the same way as we derive the optimal policy schedule in the main analysis.

2 Setup

We model a real economy. Time is continuous, t ∈ [0, 1]. The final date is normal-

ized to 1.

2.1 Assets

There is a riskless asset and a risky asset (best thought of as a risky production

technology). The riskless asset returns 1 and the risky asset returns R̃ at t = 1.

The distribution of R̃ at time t ∈ [0, 1] is Ft, with mean µt and standard deviation

σt. The density ft is continuously differentiable as many times as necessary. Note

that the asset pays only at the terminal date and the agents’ beliefs about it

are changing over time. We impose µt ≡ Et[R̃] > 1 for all t. Ft is completely

determined by µt and σt, denoted by Fµt,σt . Moreover, all Fµt,σt belong to one

location-scale family, like normal distribution. Hence we write fµ,σ = 1
σf( R̃−µσ )

for some reference f , for instance, with µ = 0 and σ = 1. Since the asset pays

only at the terminal date and there is no time value of money, all decisions are

made in an identical way irrespective of its timing. In other words, if Ft = Ft′ ,

the economy should look exactly the same for t and t′. Despite this static nature,

we use a multiple (infinite) time setting because one of our objectives is to come

up with a regulation scheme that achieves our goal for any realized path of µt and

σt. This setup enables us to avoid bringing in another layer of complexity from

dynamic programming while it clearly exhibits how our mechanism delivers the

robustness.6

6There is a caveat in this setup: Since the assets pay nothing interim and agents can change their
decision freely any time, it is not possible to force the agents to behave optimally before t = 1. They
lose nothing from deferring making a decision in an arbitrary way. For instance, we can completely
ignore t ∈ [0, 12 ) with no influence on the economy for all t ∈ [ 12 , 1]. Note that we adopt this setting
solely for the purpose to show how the regulation is robust to economic fluctuations and what forces
take the economy to a new equilibrium. Thus, instead of changing our setting so that procrastination
is strictly dominated, we make a behavioral assumption that at any t all agents participate; that is,
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The assets can be acquired and liquidated at the same price of one at any

time. The assets can be thought of investment projects and incur no loss when

liquidated.

2.2 Banks

Banks of measure 1 are risk-neutral so invest only in the risky asset if there is no

constraint. Risk-neutrality greatly simplifies the banks’ portfolio choice problem

but is not essential for our results. However, we still require that the banks are

less risk averse than the investors so that when they are unregulated, the banks

undertake more risks than socially optimal (see regulator’s objective below). We

assume that the investors are unable to monitor or enforce the portfolio choice of

the banks, so it is not contractible. As will be discussed later, the contract is on

how the total return will be distributed between the bank and the investor.

Each banker has her own equity capital, k, which is distributed according to G.

So the entire wealth owned by the banks is
∫
kdG. Except for the size of their own

capital, the banks are identical. They have the same information and investment

opportunity. We assume no heterogeneity in their skills or effort levels.

Therefore, if a bank raises d from investors, the (gross) return of its portfolio

realized at t = 1 is

β(k + d)R̃+ (1− β)(k + d), (1)

where β is the weight on the risky asset and 0 ≤ β ≤ 1.

The key feature of this paper is that the banks can choose whether to be reg-

ulated. We call the regulated banks commercial banks, CB, while we use shadow

banks, SB, for the unregulated banks.7 In our model, SBs set β = 1 and CBs set

β equal to the maximum value allowed under the regulation (details to follow).

Examples of CBs are Bank of America and Citigroup that take deposits from

investors. These deposits are insured by the government. SB sector includes in-

vestment banks (Lehman, Goldman Sachs (before crisis) etc.), finance companies,

asset-backed commercial paper (ABCP) conduits, limited-purpose finance com-

panies, structured investment vehicles, credit hedge funds, money market mutual

funds, securities lenders.

they choose optimal actions at any t for the scenario that the economy does not fluctuate and there is
no more chance to alter their decisions from time t on. We argue that, even though this assumption is
not necessarily true in our model, it is a realistic description of economic agents’ behavior most of the
time. We are just silent about why it takes place in the market.

7In this model, a bank can be of only one type. This may seem different from a real world commercial
bank setting up a special purpose vehicle (SPV) to move capital outside the regulation purview. This
distinction is not important from the regulator’s perpective; what matters is the ratio of unregulated
to regulated bank capital in the economy.
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2.3 Investors

There is a continuum of investors with total measure W . Each investor has one

unit of good to invest and all investors have the same risk-averse preference. Her

preference is represented by a Bernoulli function u(·) with u(1) = 0, u′ > 0 and

u′′ < 0. Also, we impose the integrability condition:
∫∞

0 |u(R̃)|dF < ∞. The

investors do not have direct access to the risky asset and so have to use the banks

to earn risky cash flow profiles (limited participation). Each investor is assumed

to be atomic in the sense that her unit of good is indivisible. She can choose only

one bank for her investment. The bank can either be regulated or unregulated

(see below). All commercial (regulated) banks offer the same (risk-free) interest

rate to their investors and are thus identical from the investors’ perspective.

Since an unregulated bank offers a risky cash flow, a portfolio choice problem

naturally arises if we allow an investor to invest in both types of banks. The

restriction on the access to banks, therefore, captures the idea that an individual

investor does not consider overall riskiness of the total investment of the economy.

This is a simplifying assumption that lets us avoid the computational complexity

caused by the portfolio choice problem of an individual investor but is not essential

for our results.

2.4 Regulator

The case for regulation in our model is motivated as follows: The investors are the

ultimate owners of the banks. But due to the lack of expertise, the investors have

to provide the control of investment in the hands of the bankers. We impose the

market incompleteness that the banks’ choice of portfolio is not contractible8 (but

the terms of funding are). With this market incompleteness, we depart from the

assumptions of the first welfare theorem—the banks impose negative externality on

the investors by undertaking investments that are riskier than what the investors

like. The inability of the investors/owners to dictate what portfolio the banks

should choose is the market failure in our model.

2.4.1 Objective

The objective of the government is to keep the aggregate risk at a desirable level

depending on the economic condition at the time, with the friction that the banks

as investment vehicles do not care about the risk of their investment.

The investors have two cash inflows (more precisely, goods inflows): the debt

payment from the banks to the investors and the profits made by the banks (since

8Since we have a dispersed investor base rather one aggregate investor who may be a more powerful
negotiator, this assumption is easier to defend.
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the investors are the ultimate owners of the banks), and a cash outflow to fund

the government’s deposit insurance payouts. The sum of these three cash flows

is simply the aggregate return from the investments. Hence the governement’s

objective is to maximize the investors’ utility over the aggregate return from the

investment. In our model, this is equivalent to choosing the fraction of aggregate

wealth invested into the risky asset: If, on aggregate, β fraction of total wealth is

invested into the risky asset, the aggregate return is X̃(β) = 1 + β(R̃− 1). Then,

the government chooses β that maximizes Eu(X̃(β)). The solution β∗ to this

problem is some function φ(µ, σ) (for CRRA(γ) utility function, φ(µ, σ) = µ−1
γσ2 ).

2.4.2 Regulation

If the banks choose to be regulated, they are able to receive deposit insurance

provided by the government. We assume that the deposit insurance is free.9 As

an exchange, the government imposes regulations on the banks’ activities. Here we

assume that the government imposes a restriction on the banks’ portfolios, which

has the specific form:

standard deviation of the bank’s portfolio return ≤ λk, (2)

where λ > 0 is the policy instrument (capital requirement) and k is bank’s equity

capital. This regulation puts a restriction on how much risk a bank can take given

its equity. This specification is consistent with Basel II accord—it stipulates the

minimum amount of risk-based capital (note higher is the standard deviation of

bank’s portfolio return, higher is its credit risk or probability of default).

In the current setup, this regulation amounts to a limit on the leverage a com-

mercial bank can take for its investment in the risky asset (see section 4 for details).

Obviously, if a bank invests its deposits in a risk-free asset, the government does

not need to regulate bank’s leverage because there is no chance of default; the

government is only concerned about the fraction of intermediaries’ investment in

the risky asset.

3 Contracts

The investors cannot enforce a choice of portfolio by contracts. While the portfolio

choice of banks is not contractible, we assume that the total return from bank’s

9There is little room for the insurance premium to play a role in this paper, due to the following
assumptions: (i) There is only one risky asset available to all banks, and (ii) there is no incentive
issue among agents, so we do not need to consider the insurance premium as a tool for incentive-based
regulation. Note, our results hold for any other government objective that delivers the form of setting
the systemic risk exposure equal to a function that is increasing in µ and decreasing in σ.
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investments is verifiable and a contract on return distribution is enforceable. Hence

the contract, as common in the literature, specifies each party’s payoff for every

possible state of the world. Only uncertainty is the return of the risky asset so the

contract terms are functions of R̃.

The optimal contract between the investors and the banks is a debt contract.

Intuitively, risk aversion of the investors implies that the cheapest way for the

banks to compensate the investors is to make riskless payments to the extent

possible. Being risk-neutral themselves, the banks do not care about the riskiness

of their own compensation. A debt contract transfers welfare from the banks to

the investors most efficiently.10

We now investigate how the terms of debt contract are determined. We will

assume that the banks possess the whole bargaining power and extract the total

rent from the investors.

3.1 Shadow Banks and Investors

At time t, a shadow bank with equity capital k and total asset to liability ratio

st(k) offer a take-it-or-leave-it interest rate rt(k) to a potential investor based on

the belief (µt, σt) (henceforth, we suppress the time subscript for brevity). An

atomic investor accepts the offer and lend her unit of investment to the bank if

it is individually rational for her to do so (this depends on s(k); see below). By

an argument of rational expectation, in equilibrium, the number of investors that

lend this bank is such that the bank’s total asset to liability ratio is actually s(k).

That is, k
s(k)−1 measure of investors write identical contracts with the bank that

has capital k—the only term of contract is r(k). Then, equilibrium r(·) and s(·)
are the solution to the optimization problem:

max
r(·)>1,s(·)>1

Emax

{
ks(k)

s(k)− 1
R̃− k

s(k)− 1
r(k), 0

}
(3)

s.t. Eu
(

min
{
r(k), s(k)R̃

})
= u(1) (4)

To see this, notice that the bank’s total asset size is ks(k)
s(k)−1 and the total return at

t = 1 is ks(k)
s(k)−1R̃. At t = 1, the bank owes r(k) to each of its k

s(k)−1 investors. If

the bank is unable to service its debt, it defaults, earns zero itself and distribute

the whole return equally among its investors in which case each investor receives

s(k)R̃.

The particular structure of the problem greatly simplifies the analysis. Notice

that once we factor out k from the objective function (3) (to obtain expected profit

10Deposits and asset-backed commercial paper (ABCP) respectively are examples of debt security
offered by commercial and shadow banks.
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per unit capital), k enters the optimization problem only through r(k) and s(k).

This means the problem is identical for all values of k. This observation delivers

us the simplification:

Lemma 1. Functions r(·) and s(·) are constant functions.

This result ensures that the shadow banks’ expected profit is linear in its equity

capital k.

In the following, we will show that the solution (r, s) to the contracting problem

stated above is unique. But before we are able to do so, we have to characterize the

investors’ individual rationality (IR) constraint (4) and the banks’ profit function

(3).

3.1.1 Investors’ IR Constraint

Given r and s are independent of k, condition (4) delivers a relation between s

and r, denoted by su(r). 1/(su(r)− 1) is the investors’ supply curve—the amount

of funds the investors are willing to supply to a bank with unit capital when it

offers interest rate r.

Lemma 2. su(r) is a decreasing and convex function.

In addition to the lemma above, we can show that either s is bounded away

from 1 or r is upper bounded.

Proposition 1. If Eu(R̃) > u(1), r is upper bounded. If Eu(R̃) < u(1), su is

bounded away from 1.

6

-

6

-

(1, 1)(1, 1) r

su su

rr

s

Eu(R̃) > u(1) Eu(R̃) < u(1)

Figure 2: Finite Supply of Debt
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This proposition delivers the condition that the investors do not supply infi-

nite amount of money to the shadow banks. If Eu(R̃) > u(1), the investors are

willing to lend infinite amount for a sufficiently large but finite return (r ≥ r). If

Eu(R̃) < u(1), the supply has an upper bound for all r. Figure 2 depicts these two

cases. From here on, we assume the condition that ensures finite supply of debt.11

Assumption 1. Finite Supply of Debt

Eu(R̃) < u(1)

If u(·) represents CRRA(γ) preference, this assumption puts a lower bound on

the relative risk aversion coefficient γ.

3.1.2 Shadow Banks’ Profit Function

It is convenient to define a new function related to the expected profit of banks.

Define a function

Π(x, y;µ, σ) ≡ 1

y − 1

(
y · E

[
R̃
∣∣∣R̃ >

x

y

]
− x
)(

1− F
(
x

y

))
As we will see shortly, this function computes the per-unit-equity profit of SB

when the asset-liability ratio is y and the contract is x.

Given r and s are independent of k, the profit (3) of the shadow bank is

rewritten as

ΠSB(R̃; k) =
k

s− 1
max{sR̃− r, 0}

The expected profit is

Π
SB

(k) ≡ E(ΠSB(R̃; k)) = E
(

k

s− 1
max(sR̃− r, 0)

)
=

k

s− 1

(
s · E

[
R̃
∣∣∣R̃ >

r

s

]
− r
)(

1− F
(r
s

))
= kΠ(r, s).

The following lemma states two important properties of the marginal rate of

11This assumption, along with the maintained assumption of indivisibility of each investor’s good,
means that even if the investors had direct access to the risky asset, they would prefer to not invest in
it.
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substitution of Π, MRSΠ ≡ ∂Π/∂r
∂Π/∂s .

Lemma 3. The marginal rate of substitution of the iso-profit function is positive

and decreasing in r.

3.1.3 Solution to the Contracting Problem

With the characterizations of the two functions, we turn to the contracting prob-

lem. Solving the original contracting problem boils down to finding r that solves

max
r>1

Π(r, su(r))

Accordingly, define a continuous function

Π(r) ≡ Π(r, su(r))

Lemma 4. For any Bernoulli function u, following programs have the same so-

lutions for r.

1. Π′(r) = 0

2. MRSU = MRSΠ and s = su(r)

3. Π(r) = r
∫ r

0

(
u′(x)x
u′(r)r − 1

)
f
(

x
su(r)

)
1

su(r)dx+ r ≡ J(r)

Corollary 1. In the CRRA(γ) case, J(r) = rγ.

6

-

6

-

(1, 1)(1, 1) r

s

rr∗ r∗

Π

Π

su

J

Figure 3: Solution to the Contracting Problem
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Figure 3 displays how the contract term, r∗, is determined. The left figure

shows that the two marginal rates of substibution coincide, the second statement

in Lemma 4. The right figure illustrates the third statement in Lemma 4 that the

function J(r) cuts Π(r) at the solution. The next lemma proves that the function

J(r) is an increasing function in r, as in Figure 3.

Lemma 5. J ′ > 0, limr→1 J(r) = 1, and limr→∞ J(r) =∞

Lemma 5 plays a crucial role in proving the following proposition.

Proposition 2. The solution (r∗, s∗) to the contracting problem exists and is

unique.

3.2 Commercial Banks and Investors

This contract is simple. Due to the deposit insurance, commercial banks’ debt

is risk-free and thus the interest rate offered by the commercial banks is 1 (the

risk-free rate). Due to this, any individual commercial bank’s leverage is indeter-

minate; the commercial banks’ debt security simply acts as a store of money for

the investors in our model. We will see shortly that the expected profit of a com-

mercial bank is independent of the debt it raises. However, the aggregate leverage

of commercial banking sector is pinned down by the market clearing condition in

the investors’ wealth—the commercial banks raise the investors’ wealth that is not

invested in the shadow banking sector debt.

4 Banks’ Choice: Commercial vs. Shadow

Given the contracts of the previous section, we now consider the decision of a bank

to become regulated (commercial). If a commercial bank holds the portfolio (1),

the regulation (2) implies that the bank will invest in the risky asset up to the

limit

β =
λk

σ(k + d)
,

where d is the amount of debt a CB can raise and is some function d(k;G) of its

own capital k and the distribution G. The CB’s return, R̃ being realized, is

ΠCB(R̃; k) = max

{(
λ

σ
kR̃+ k + d(k;G)− λ

σ
k

)
− d(k;G), 0

}
= kmax

{
R̃
λ

σ
+ 1− λ

σ
, 0

}
Note that the profit of commercial bank does not involve the amount of borrowing

from the outside. The regulation in this setting amounts to a restriction on how
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much risky asset the bank can buy in terms of good (it is β(k+ d(k;G)) = λk/σ).

Hence, given the regulation, the (risk) leverage (λ/σ) of a commercial bank carries

no additional information of the riskiness of the bank, for the bank invests all the

good in excess of the limit imposed by the regulation (k + d(k;G) − λk/σ) into

the riskless asset.

A bank decides whether to be SB or CB by comparing the expected values of

the payoffs in both scenarios. The expected profit of SB is

Π
SB

(k) = kΠ(r, s)

whereas

Π
CB

(k) = E(ΠCB(R; k)) = k

(
E

[
R̃
∣∣∣R̃ >

λ− σ
λ

]
λ

σ
+ 1− λ

σ

)(
1− F

(
λ− σ
λ

))
= k

λ− σ
σ

(
E

[
R̃
∣∣∣R̃ >

λ− σ
λ

]
λ

λ− σ
− 1

)(
1− F

(
λ− σ
λ

))
= kΠ

(
1,

λ

λ− σ

)
.

Both expected profits are linear functions of k with a positive slope and the

slope is independent of k. Therefore, the bank’s decision making is very simple:

If Π(1, λ
λ−σ ;µ, σ) > Π(r, s;µ, σ), CB

If Π(1, λ
λ−σ ;µ, σ) < Π(r, s;µ, σ), SB

If Π(1, λ
λ−σ ;µ, σ) = Π(r, s;µ, σ), indifferent

If these profit functions were not linear in bank’s capital, banks will split (if

profit is concave in k) or merge (if profit is convex in k) their capital resulting

in a degenerate distribution of bank-capital. Moreover, to have non-zero mass

of both types of banks in equilibrium, these linear functions should coincide (the

indifference condition). But this means equilibrium level of risk is indeterminate.

The optimal regulation policy resolves this issue by associating the level of capital

requirement that supports this indifference with the desired level of risk exposure.

The relative sector size is used to estimate the systemic risk exposure (see section

6).

5 Timeline

At t = 0, the following events take place in order:

1. The government announces the regulation schedule λ(·).

2. The agents (investors and banks) observe the fundamental of the economy

15



(µ and σ).

3. An equilibrium is reached where no agent has an incentive to deviate: Given

the contracts written among agents, (i) the shadow banks maximize their

profit given the investors’ participation constraint and leverage, (ii) agents

rationally expect a bank’s leverage when they write a contract, (iii) each bank

does no better by changing its type, and iv) the commercial banks abide by

the regulation.

At any interim t ∈ (0, 1), if µ or σ changes, they repeat 2 and 3 of t = 0 procedure.

At t = 1, all uncertainties are resolved and returns are realized.

6 Optimal Regulation

We arrive at the optimal regulation policy in three steps: First, we determine the

level of capital requirement that makes the banks indifferent between being SB

and CB in equilibrium. The important result here is that the capital requirement

needs to be relaxed in good times to prevent the banks running into shadows:

procyclicality. Second, we relate the relative shadow banking sector size (the

macro variable observed by the government) with the aggregate risk exposure.

The optimal shadow banking sector size is also found to be procyclical. Third,

we tie conditions obtained in the previous two steps to obtain a policy schedule

specified only in terms of the variable observed by the government. In particular,

the regulation is not be specified in terms of economic fundamentals (µ, σ).

In our following explanation of the mechanism of the optimal regulation, we

will set σ = 1 and let µ vary over time.

6.1 Capital Requirement for Banks’ Indifference

In order to achieve an (interior; i.e., both types of banking sectors have a non-

zero mass) equilibrium, a necessary condition is Π(1, λ
λ−1 ;µ, 1) = Π(r, s;µ, 1) (it

turns out that this interior solution is not always feasible; we will discuss this issue

shortly). This constraint gives a mapping

λ = Γ(µ) (5)

If the condition (5) is satisfied, each bank is indifferent between the two types. If

λ > Γ(µ), all banks prefer to be CB, and vice versa.

Lemma 6. If 1−F (R̂)

f(R̂)
>

∫∞
R̂

(1−F (R))dR

1−F (R̂)
(Condition 1) holds, |MRSΠ| is decreasing

in µ.
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Condition 1 is not true for all distributions, but the next corollary states one

sufficient condition.

Corollary 2. If the hazard rate is increasing in R, |MRSΠ| is decreasing in µ.

Proof. To accommodate the standard notation, define

f(·|0) =
1

µ
(1− F (·))

f(·|1) = f(·)

Note that f(·|0) is a density. If the hazard rate is increasing, for all R1 > R0,

f(R1|1)

f(R1|0)
=

µf(R1)

1− F (R1)
>

µf(R0)

1− F (R0)
=
f(R0|1)

f(R0|0)
.

Therefore, f(R|θ), θ = 0, 1, has the monotone likelihood ratio property (MLRP).

As is well known, a necessary condition is that the hazard rate is decreasing in θ:

for all R,

f(R|1)

1− F (R|1)
<

f(R|0)

1− F (R|0)

Substituting the original densities back, we obtain

f(R)

1− F (R)
<

1− F (R)

µ−
∫ R

0 (1− F (x))dx
=

1− F (R)∫∞
R (1− F (x))dx

,

leading to Condition 1.

This condition is standard in mechanism design literature, in which it is a

sufficient condition for the increasing virtual valuation.

We are now ready to state one of the main results of our paper.

Proposition 3. If Condition 1 holds, the equilibrium regulation is procyclical:

Γ′(µ) > 0.

This result makes intuitive sense: As the return prospect of the risky asset

improves (that is, µ increases), ceteris paribus it is more profitable for any given

bank to be a shadow bank. So, to maintain the indifference between the two

bank types, the government needs to make the CB sector more profitable. The

17



government achieves that by loosening the capital requirement constraint—λ goes

up. From the proof of Proposition 3, we can also see r′(µ) > 0 and s′(µ) < 0.

Figure 4 illustrates the procyclicality of equilibrium regulation. As the mean

of the risky return µ goes up, the iso-profit curve of the banks Π becomes flatter

and the IR curve su of the investors shifts downward. Then, it is easily seen from

the figure that we expect the intercept of the iso-profit curve to go down, implying

the equilibrium λ should go up.

6

-

6

-

(1, 1)(1, 1) r

s s

rr∗1 r∗2

Π
Π

su
su

λ∗1
λ∗1−1

λ̌2
λ̌2−1

µ1 µ2(> µ1)

Figure 4: Procyclical Capital Regulation

6.2 Optimal Relative Banking Sector Size

For this section, we find it more convenient to work with shadow bank’s leverage

(total assets/equity) ratio given by l ≡ s
s−1 . First note that under the banks’

indifference condition, the shadow banks are more levered than the commercial

banks on risk-adjusted basis:

Lemma 7. l(µ) > Γ(µ)

Proof. Condition (4) implies r > 1. Then since Πr < 0 and Πs < 0, the banks’

indifference condition yields λ
λ−1 > s which implies λ < s

s−1 = l.

The government seeks to achieve a target level of risk exposure of the economy

based on the current conditions of the economy. In our model, the risk exposure

of the economy is determined by the investment in the risky asset with respect to

the total wealth of the economy, as in a conventional portfolio choice problem. To

proceed, we define a state variable, the relative sector size ξ ≡
∫
SB kdG/

∫
CB kdG.

In our model, the fraction of the banking sector’s net worth, K/(W + K), where

K ≡
∫
kdG is the total net worth of the banking sector, stays constant at its t = 0
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value w.12 The investment in the risky asset is

l

∫
SB

kdG+ λ

∫
CB

kdG =
K

ξ + 1
[lξ + λ]

Then, the fraction in the risky asset, α, is

α =
w(lξ + λ)

ξ + 1

This fraction specifies the realized risk exposure in any equilibrium (Note: α ∈
[wλ,wl], since ξ ∈ [0,∞)). The optimal regulation equates the equilibrium frac-

tion with the target fraction. Denote the target risk exposure by φ(µ), satisfying

φ′(µ) > 0. By imposing α = φ(µ), we get

ξ =
φ(µ)− wΓ(µ)

wl(µ)− φ(µ)
(6)

This equation equates the realized relative sector size to the target relative sector

size. However, there is a caveat - we have to make sure that the right-hand side is

non-negative. There are two cases in which it is negative. First, when the target

risk exposure φ(µ) is smaller than the lowest feasible realized risk exposure wΓ(µ)

(note the feasible range of α above). In this case, even when all banks are CB

(realized ξ is zero), the realized risk exposure is higher than the target. Note,

the government cannot set λ lower than Γ(µ) because in that case all banks will

flee to SB sector and the realized exposure will jump to wl(µ). The opposite case

is that of φ(µ) > wl(µ). In this case, even when all banks are SB (realized ξ is

∞), the realized risk exposure is lower than the target. We see that the mutual

contracting between SB and their investors limit the maximum risk SB can assume.

Henceforth, we will restrict our attention to the case where target risk exposure

does not take such extreme values by assuming:

φ(µ) ∈ [wΓ(µ), wl(µ)]

First derivative of ξ

ξ′(µ) =
w(l(µ)− Γ(µ))

(wl(µ)− φ(µ))2

[
φ′(µ)− w

(
l′(µ)ξ(µ) + Γ′(µ)

ξ(µ) + 1

)]
If φ′(µ) is bounded away from zero for all values of µ, there exists small enough

w such that ξ′(µ) > 0. That is, the government wants a bigger SB sector as the

risky asset has a better prospect.13

12In an extension of this model to be discussed later, we let w evolve over time.
13It is interesting to note that the fraction in the risky asset in aggregate, α increases with µ even
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6.3 Optimal Policy Schedule

The government aims to achieve the target ξ of (6) without knowing µ directly,

which is observed only by private sectors (note that ξ is an observable to the

government as well as the banks). This goal can be achieved by rearranging (6)

to obtain a mapping µ = h(ξ) and then combine it with (5) to solve for λ

λ = Γ(h(ξ)) ≡ Ω(ξ) (7)

This is our optimal regulation specified in terms of the observable ξ. We now state

the second main result of our paper.

Proposition 4. The regulation policy is stable: Ω′(ξ) > 0.

Proof. Ω′(ξ) = Γ′(h(ξ))h′(ξ) = Γ′(h(ξ))
ξ′(h(ξ)) > 0

The regulation is stable in the following sense: Suppose the government an-

nounces the schedule λ = Ω(·). Let us see what happens if µ goes up to µ′. Then,

λ < Γ(µ′) so all commercial banks want to switch to SB. Although we do not

model the process of switching their types, suppose some commercial banks have

moved to the SB sector, implying in a higher ξ. In turn, it follows that Ω(ξ) and

λ also increase. It means that λ gets closer to Γ(µ′). This feedback process stops

when λ has risen to its new equilibrium value λ′ = Γ(µ′) with new mean and, by

construction, we reach a new ξ, ξ′ = h−1(µ′). Note the critical role of Ω′(ξ) > 0

in transition to the new equilibrium.

This mechanism also has an implication for stabilizing the banking sector when

the banking sector grows. For example, suppose that the risky asset gives a good

return and accordingly the distribution G moves to the right with no change in

fundamentals. Then the SB sector grows relatively more than the CB sector

because the former had more exposure to the risky asset. It follows that ξ goes

up and in turn λ goes up by Ω(·). This shift put a pressure on the SB sector so

that some banks in the sector switch to the CB sector. This feedback lowers ξ and

λ, until ξ and λ return to their original level because the fundamentals did not

change.

The same argument also shows that no bank coalition has any incentive to

deviate in an equilibrium. Suppose a coalition of commercial banks arbitrarily

decides to become unregulated. This increases the relative shadow banking sector

if the SB sector size ξ does not increase. This is because the SB sector leverage is increasing in µ
(l′(µ) > 0). ξ′(µ) > 0 means that this increase in α is insufficient to obtain the optimal risk exposure
φ(µ) and that only when both ξ and l are increasing in µ, the realized risk exposure is optimum.
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size ξ. Following the schedule, capital requirement λ increases. This makes the

CB sector more profitable than the SB sector and consequently, the banks start to

move to CB sector. This decreases ξ and thus λ until they reach the equilibrium

values (values at the time the bank coalition decided to deviate).

7 An Example

We solve for equilibrium when the investors’ preference is CRRA and risky asset

return follows binomial distribution14:

u(x) =
x1−γ − 1

1− γ
, γ 6= 1

R̃ =

R with probability p,

R with probability 1− p

where p > 0, R > R > 0, pR+ (1− p)R > 1.

The investors’ participation constraint is

Eu
(

min{r, sR̃}
)

= u(1). (8)

We will restrict ourselves to the interesting case (see below):

R <
r

s
< R (9)

Then, (8) yields the relation between s and r

su(r) =
1

R

(
1− p

1− pr1−γ

) 1
γ−1

(10)

(Note: To keep su bounded away from 1 as r → ∞, we require (1 − p)
1

γ−1 > R).

Shadow bank’s profit function

Π(r, s) =
1

s− 1
Emax{sR̃− r, 0}

14Although binomial distribution does not satisfy the distributional assumptions we imposed, we
obtain the same results. The assumptions that binomial distribution does not satisfy—for instance,
continuity—are made for the ease of proving results. We believe that the same results hold for discrete
and/or non-differentiable distributions, which involve more technicality without much gain.
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takes the form

Π(r, s) = p

(
sR− r
s− 1

)
.

On the investors’ participation constraint curve su(r), this profit function is

Π(r) = Π(r, su(r))

FOC: Π′(r) = 0 yields the solution contract

(
rγ−1 − p

1− p

)γ
=

(
rγ − pR
R(1− p)

)γ−1

(11)

s =
rγ − pr
rγ − pR

(12)

Substituting s from (10) into the left hand-side of (9), we get 1 < r and

substituting s from (12) into the right hand-side of (9), we get r < R. So consistent

with the assumption (9), we look for the solution(s) of (11) in the range 1 < r < R.

Lemma 8. (11) has a unique solution in the range 1 < r < R.

Equilibrium values of λ and ξ are given by

Π

(
1,

λ

λ− σ

)
= Π(r, s)⇒ λ

σ
=

rγ − p
p(R− 1)

ξ =
φ− wλ/σ
wl − φ

where l ≡ s

s− 1
=

rγ − pr
p(R− r)

Next, we plot the various variables by fixing R, varying p and R such that µ ≡
pR + (1 − p)R changes but σ2 ≡ p(1 − p)(R − R)2 stays constant. Accordingly,

write p(µ) = (µ−R)2

(µ−R)2+σ2 and R(µ) = µ+ σ2

µ−R . Notice φ(µ) = µ−1
γσ2 .

8 Robustness of the policy Ω

Suppose due to a measurement error on the part of the government (either in

the investor risk aversion coefficient γ or in the return distribution F of the risky

asset), the government ends up implementing a policy which is close to the optimal

policy. In the following, we show that the difference in risk exposure under this

approximate policy and the optimal risk exposure is bounded.

Suppose there exists a sequence of policies {Ωn} which is uniformly convergent

to the right policy Ω. Then, for a given ε > 0, we have

|Ω(ξ)− Ωn(ξ)| < ε, ∀ξ
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for a sufficiently large n.

At a specific µ, imagine the banking sector reaches the optimal ξ∗ if Ω was

implemented. In contrast, if Ωn satisfying the above condition is implemented,

the banking sector will be settled at a suboptimal ξn satisfying

Ω(ξ∗) = Ωn(ξn).

If ε is small enough, we can use a first-order approximation:

Ω(ξn) = Ω(ξ∗) + (ξn − ξ∗)Ω′(ξ∗) + o(|ξn − ξ∗|)

Then,

|ξn − ξ∗| ≈
∣∣∣∣Ω(ξn)− Ω(ξ∗)

Ω′(ξ∗)

∣∣∣∣
=

∣∣∣∣Ω(ξn)− Ωn(ξn)

Ω′(ξ∗)

∣∣∣∣
<

ε

|Ω′(ξ∗)|

The risk exposure of the economy is α(ξ) ≡ w(lξ+λ)
ξ+1 . The values of l and λ are

invariant for different policies in equilibrium, justifying α(·) is only a function of

ξ. The difference of risk exposures under the two policies is approximated using

the above:

|α(ξn)− α(ξ∗)| = w(l − λ)
|ξn − ξ∗|

(1 + ξn)(1 + ξ∗)

< w(l − λ)
ε

|Ω′(ξ∗)|

So, if |Ω′(ξ∗)| is bounded away from zero, the risk exposure is off the target in the

order of ε. Ω′ is bounded away from zero if wl−φ is bounded away from zero (see

ξ′(µ) on page 21).

We can also ask what the expected social utility loss from this deviation is.

The social expected utility E
[
u
(

1 + α(R̃− 1)
)]

is maximized at α = α(ξ∗), and

so E
[
u′
(

1 + α(ξ∗)(R̃− 1)
)

(R̃− 1)
]

= 0. The EU loss is

E
[
u
(

1 + α(ξn)(R̃− 1)
)
− u

(
1 + α(ξ∗)(R̃− 1)

)]
= (α(ξn)− α(ξ∗))E

[
u′
(

1 + α(ξ∗)(R̃− 1)
)

(R̃− 1)
]
+O

(
(α(ξn)− α(ξ∗))2

)
= O(ε2).
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9 Crisis

One of the main advantages to implement a market-based regulation is that the

economy can more flexibly respond to changes in market conditions. This benefit

cannot be obtained by a conventional regulatory framework based on agent (firm)-

specific information. It leads us to consider how our new approach performs in

case of a crisis.

Even though our model is static, its construction bears the idea of finding an

optimal regulation under fluctuating fundamentals. We can imagine that, if the

economy is Markovian and other parameters except for the expected return do not

change over time, the equilibrium condition from the profit comparison and the

optimality condition from the government’s objective would lead us to a regulation

very similar to what we obtained in previous sections. Instead of solving for the

regulation in a dynamic setting, however, we assume that Ω(ξ) is the optimal

regulation given other parameters in a dynamic setting.

Turning to modeling a crisis, we find two most prevailing approaches in the

literature: (i) The first path introduces a market friction or constraint on resource

allocation (mostly borrowing constraints) into a standard model and investigate

what happens to variables of interest such as prices when the constraint binds.

(ii) The other approach assumes that agents have heterogeneous beliefs and see

how the beliefs lead to bubbles and/or crashes. Since the main focus of this paper

is not crisis, however, we limit ourselves to a (very) reduced form modeling of

crisis in this paper. We focus on the fact that one of the notable features of

crisis is a ‘flight to quality’. In our model, the feature can be interpreted that

the investors tilt their portfolio towards the commercial banks during crisis even if

the economic fundamentals do not move. We incorporate the investors’ behavior

through time-varying risk aversion (γ).

We illustrate two approaches to hedge against this fluctuating risk aversion:

with and without a detection technology of crisis. Neither of the approaches

can be a perfect instrument, so we call for different assumptions for each of the

approaches to work. With a detection technology, the government is accurately

informed of the timings of the inception and end of a crisis and implements a

different regulation during the crisis. The crisis regulation will enable the economy

to achieve the target risk exposure for different γ. In contrast, while the second

approach does not require the detection technology in place, it assumes that risk

aversion always moves slowly compared to the economic fundamentals and make

use of past information.
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9.1 With a detection technology of crisis

The first approach to contain a crisis is to think of crisis as a transitory drift in

the investors risk aversion parameter γ from its pre-crisis value γ0.15 We assume

that even when the government is able to exogenously detect this jump, it cannot

track γ as it varies during the crisis before stabilizing to the end of crisis value

γ1 (potentially same as γ0).16 It is hard to imagine that the government can

observe time-varying risk aversion contemporaneously. We further assume that

the duration of crisis is short and the fundamental, µ, does not vary much during

the crisis. Then, the fluctuation of preference for safety is much starker than that

of fundamentals over the period and it would be more beneficial to implement a

regulation immune to the changing liquidity demand rather than to the changing

fundamentals.

Now suppose the government implements Ωγ0(ξ) at time 0. The regulation is

indexed by the risk aversion coefficient in order to make clear that the optimal

regulation function depends on the parameter (at time 0, the coefficient is known

as γ0). At time t1, the following sequence of event unfolds: (i) ξt1 is realized

and observed, (ii) a crisis occurs (iii) the government implements a new policy.

Since the government observes ξt1 before the crisis happens, it knows µt1 . The

assumption we need to proceed is that µt = µt1 until the crisis is over. Certainly

this assumption will cause some loss of efficiency in the regulations on and after,

but the very form of our regulation, which is the dependence upon ξ, limits the

deviation from optimality.

Given µ is fixed, l and r in section 5 are functions of only γt, implying that (5)

becomes

λ = ΓC(γ),

for some function ΓC where the superscript denotes a crisis. In the same manner,

(6) is now written as

φ(γ;µt1) =
w

ξ + 1
[l(γ;µt1)ξ + λ]

15There could many other ways to model a non-standard preference for safety but, as long as the
preference is parameterized by a single parameter, the same intuition carries over.

16We do not explicitly model the detection mechanism of a crisis here. In the current setup, we can
think of a statistical detection of a crisis by looking at the time series of realized ξ. If the government
observes a sudden jump in ξ, it can suspect a shock to the economy which is not due to change in
fundamentals µ, σ. The detection problem could be interesting on its own, but we do not deal with it
further and assume that the government has a device in place to detect whether the economy is in a
crisis or not with no lag.
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Following the same strategy in section 5, these two relations provides a regulation

λ = ΩC
µt1

(ξ)

Even though the regulations look the same, their role is quite different. In normal

times, Ωγ(ξ) allows the economy achieve the target exposure for any state of

fundamentals. In contrast, in a crisis, ΩC
µt1

(ξ) is implemented to keep the economy

at the desirable risk exposure irrespective of the investors’ unstable demand for

safety.

The crisis rule ΩC
µt1

is implemented at time t1 until the government is informed

that the crisis is over. When it is over at time t2, by the same logic, the government

infers the risk aversion γt2 at the moment and implements the normal rule Ωγt2
(ξ).

Certainly µ is also fluctuating during the crisis, the regulation λ = ΩC
µt1

(ξ)

does not exactly track the desired level of exposure. Nevertheless, the previous

section implies that this deviation is not large as long as the assumption on crisis

is valid.

9.2 Without a detection technology of crisis

Here we assume that time is discrete. To be more precise, the frequency of financial

reporting of banks is finite. To do without a detection technology, we instead

assume that risk aversion fluctuates in a relatively slow manner compared to the

economic fundamentals. Although it sounds almost innocuous, this assumption

stands in the opposite spirit of the first approach above, in which we hypothesized

that µ is more stable than γ in a crisis. It should be noted that γ should be

viewed in a broader context, rather than the literal meaning of risk aversion.

The parameter summarizes the investors’ behavior during a crisis that cannot be

explained by fundamentals. Hence, we argue that the two approaches have their

own merits and limitations.

Given the slow-moving risk aversion, in order to restrain the effect from chang-

ing risk aversion, we can expand our set of policy instruments to ξt, ξt−1, st−1. It is

very costly or even impossible for the government to observe the contemporaneous

ξt or st, but their past values, ξt−1 and st−1 are readily observable to the extent

that the banks report their financial statements truthfully. This past information

enables the government to calculate µt−1 and γt−1. The assumption of stable risk

aversion takes the form of γt = γt−1 at time t. Then the optimal policy is to im-

plement the same policy established in Section 5, Ω(ξt; γt) = Ω(ξt; γt−1) in period

t. Since γt−1 is a known function of ξt−1 and st−1, we can equivalently write the
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optimal regulation as

λt = Ω(ξt, ξt−1, st−1)

It should be noted that the function Ω(·) does not depend on time, so all the

regulator has to do is to announce the schedule Ω(·) at time 0, as before. In

this approach, the deviation comes from the drift of risk aversion over one period,

which was assumed to be small.

10 Dynamic Environment

In this section, we consider a stylized dynamic setting of this model. By this

extension, we show how the evolution of wealth of each agent influences our op-

timal regulation and what kind of modification is warranted. More importantly,

the multi-period consideration enables us to incorporate the idea of traditional

countercyclical regulation in an abstract form and clearly illustrate the sources of

opposite policy suggestions.

The major difference we want to focus on in a dynamic setting is the time

variation of the fraction of the banking sector’s net worth, w, used in (6). In a

static setting, we assumed that w is a fixed small number. However, in a multi-

period setting, the realized returns are varied across agents based on their terms

of contracts, leading to a fluctuation in w. If w changes over time, the optimal ξ

depends not only on µ but also on w at the time. This dependence requires us to

include w as a state variable in our optimal regulation.

To demonstrate this effect, we make strong assumptions how agents behave in

the new environment. The key assumption is that the world repeats itself at every

period except only for the wealth levels of agents. Accordingly, given µ, we have

the same values of Γ(·), φ(·), s(·), and r(·). We do not prove why this situation

is optimal among all possibilities of contracts. As explained, the only part that

is affected is the determination of function h(·) in (7), from h(ξ) to h(ξ, w). To

guarantee h is a well-defined function, we need the same condition:

∂ξ

∂µ
> 0,

because then the Jacobian determinant of (ξ, w)′ is always positive. Although this

condition imposes the same restriction on w (and φ(·)) as in the static case, here it

leads to a restriction on asset returns, because w depends on the history of realized

returns. In a finite period case, at the minimum, we can claim that the partial

derivative is positive if the return distribution has a corresponding upper bound.

The sequence of events at time t is as follows:

28



1. Rt is realized and observed.

2. wt is determined as a function of Rt and Ft−1, where Ft−1 is the information

set after all events at time t− 1 take place.

3. µt is observed by the market agents (not the government).

4. Contract terms are determined based on economic conditions.

5. The banks choose their types under the regulation Ω(·;wt).

6. A new equilibrium is achieved. This equilibrium delivers the equilibrium λt

and ξt, as before.

Before describing the optimal regulation in a dynamic case, we briefly explain

the law of motion of w. If return Rt is realized at time t and σ = 1, the return

(per capital) to each bank type is

RSBt ≡ 1

st−1 − 1
max{st−1Rt − rt−1, 0}

RCBt ≡ max{λt−1Rt + 1− λt−1, 0}

Then the capital of the banking sector is

Kt = Kt−1

[
1

ξt−1 + 1
RCBt +

ξt−1

ξt−1 + 1
RSBt

]
.

On the other hand, the investors’ wealth grow to

Wt =
1

st−1 − 1
Kt−1

ξt−1

ξt−1 + 1
(rSBt − 1) +Wt−1,

because the amount of wealth invested in SB, 1
st−1−1Kt−1

ξt−1

ξt−1+1 , earns an excess

return rSBt ≡ min{rt−1, st−1Rt}. Then

wt =
Kt

Wt +Kt

=
RCBt + ξt−1R

SB
t

1
st−1−1ξt−1(rSBt − 1) + ( 1

wt−1
− 1)(ξt−1 + 1) + (RCBt + ξt−1RSBt )

As described above, we now have a new policy form, Ω(ξ, w). Even though

ξ and w appear equivalent arguments in Ω(·), it should be noted that their roles

are entirely different. Since it is determined irrespective of the structure of the

banking sector, wt plays no role in implementing stable and robust policies. It can

be viewed that we have a menu of Ω(ξ) for different values of wt which is perfectly

known before the banks make any decision at time t. In other words, the current

wealth is a known value for investment decisions, while ξ is a vehicle that leads to

the economy to a fixed point which is designed to be optimal.
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Another important aspect of this model is that the regulation is procyclical.

Cyclicality is purely determined by the sign of Γ′, which is independent of w. In our

model, the fundamental force driving the cyclicality of regulation is the strategic

behavior of banks between the two types of banks they can choose from. Hence,

the cyclicality comes prior to considering implementing the optimality condition.

Admittedly our model has a structure to manifest the force for cyclicality, but it

is also true that this force is hard to annihilate.

Kashyap and Stein (2004) propose a countercyclical regulation policy based on

the argument that the shadow value of bank capital rises in recessions. As they

point out, this argument amounts to saying that the effect of capital crunches

on the shadow value is bigger than that of deteriorated investment opportuni-

ties. Therefore, they conclude that a capital regulation should be loosened during

recessions to alleviate the excessive scarcity of bank capital in bad times.

This standard idea in the last decade is embedded in our model. To see this,

we shut down the shadow banking sector, ξ = 0 and let the government observe

the business cycle (µt). In this case, the government can achieve the optimal risk

exposure by controlling λ directly:

λt =
φ(µt)

wt
.

Since wt is increasing in the realized return at time t, it is natural to assume that

µt and wt are positively correlated. One rationale is that people update upward

their belief on µt when they observe a positive shock to Rt. Kashyap and Stein

(2004) also assume the same co-movement by describing recessions as having the

lower stock of bank capital (low wt) and fewer profitable lending opportunities

(low µt).

Now suppose that, in bad times, wt suffers a much bigger drop relative to

φ(µt). In other words, for a fixed λt, the banks lending (λtwt) shrinks too much to

achieve the desirable level of economic activity (φ(µt)), although φ(µt) also goes

down. This situation is the recessions described in Kashyap and Stein (2004).

Then, in order to reach the optimal risk exposure, φ(µt), the government has

to increase λt, a looser regulation in bad times. This counter cyclical regulation

mitigates a credit-freeze in bad times and a credit-craze in good times. More

formally, we come to a countercyclical regulation if

dλt
dwt

=
wt

dφ(µt)
dµt

dµt
dwt
− φ(µt)

w2
t

=

dφ(µt)/φ(µt)
dµt/µt

dµt/µt
dwt/wt

− 1

w2
t φ(µt)

< 0.
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The inequality simply implies that φ(µt) is more stable than wt, a standard con-

dition in the existing literature.

In our model, this advocacy of a countercyclical regulation can be valid only

if there is no alternative type of banks—the unregulated bank. Once we open the

conduit of capital toward the shadow banks, the effects in the literature disappear

due to the competition between the two types of banks. Instead, with our optimal

regulation, we showed dλt
dµt

> 0 or, equivalently, dλt
dwt

> 0, because µt and wt are

positively correlated. Although this comparison requires some analogy and inter-

pretation, our model patently shows how the consideration of strategic behavior

of banks can result in very different policy prescription.

11 Conclusion

In this paper, we model the decision of banks to become regulated. In making this

decision, the banks compare the cost of being regulated – limit on risk exposure

– with the benefit – access to cheaper funding. We propose a capital regulation

policy that achieves the optimal aggregate risk exposure taking into account the

fact that the banks may not find it profitable to be regulated. The solution policy

obtains the right mix of the risky unregulated (shadow) banking sector and the

safe regulated (commercial) banking sector. The solution policy is shown to be

procyclical—loose capital requirement during good times and vice versa. This is

opposite to the countercyclical policy proposed in literature. The reason for this

dichotomy is that the literature ignores the ability of the banks to move in and

out of the regulation umbrella, and our paper is a first step in this direction.

The proposed policy has several desirable features: (i) Macro-prudential – The

objective of the policy is to control systemic risk, (ii) Market-based – Once the

policy schedule is announced by the government, the market self-adjusts to attain

the optimal risk exposure, (iii) Robust to business cycle fluctuations – Under

the policy, economy transitions smoothly from one equilibrium to another as the

underlying fundamentals change, and (iv) Robust to small measurement errors –

Small measurement errors either in risk aversion or risky return distribution on

part of the government lead to welfare loss that is an order smaller.

The main motivation of this paper is the existence of regulatory arbitrage in

the financial intermediation sector. We believe some banks will always exist in

shadows or equivalently, it would be prohibitively costly for the government to

employ a loose enough regulation that no bank prefers to be in shadows (we saw

in section 5 how unless the desired risk exposure is too low, it is always optimal

for the government to have both sectors exist in equilibrium). Moreover, insuring

a huge commercial banking sector is a huge direct cost to the government. So,
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rather than the overarching ambition of regulating everyone (as is the spirit of

Dodd-Frank Act 2010), our policy only indirectly influences the size of shadow

banking sector to control systemic risk.

We use a reduced-form setting that let us focus on the main forces driving

our results. In particular, the two assets pay-off at t = 1 when the world ends

and we abstract away from a complete description of the adjustment process of

the economy as fundamentals change before t = 1. Risk-neutrality of banks and

atomicity of investors help us simplify the respective portfolio optimization prob-

lems. Single-peaked risky return distribution simplifies the comparative statics of

the terms of contract between the shadow banks and their investors. However,

notice we do not appeal to any information asymmetry in this contract—the only

financial friction is limited liability of the shadow banks. Note that our results

hold for any government objective that delivers the form of setting the systemic

risk exposure equal to an increasing function of mean µ of the risky return.

In a stylized multi-period extension of our model, we introduce one force that

obtains the countercyclical capital regulation policy suggested in the literature: dy-

namic evolution of banking sector capital with business cycle. We show how, after

an appropriate adjustment in the implementation of the policy in this framework,

the optimal policy is countercyclical if the shadow banking sector is turned-off,

while it is procyclical otherwise (that is, when the banks are allowed to be in the

shadow). So, our procyclical result holds over and above the traditional argument

of countercyclical policy.

Comparative statics with respect to the return variance σ2 are ambiguous due

to the following two opposing forces: On the one hand, the risk neutral banks

dislike low σ due to limited liability and on the other hand, the investors are

willing to lend the banks more since they are safer when σ is low. This limits our

discussion of the optimal policy during crisis to spike in the investors risk aversion

(as in ‘flight to quality’). Lastly, some features of our policy rely on the sharp

condition of banks’ indifference under equilibrium.
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12 Appendix

Proof of Lemma 2 Define the cut-off return R̂ = r
s and

EU(r, s) ≡
∫ R̂

0
u(sR)dF + u(r)(1− F (R̂))

The partial derivatives of EU are

∂

∂s
EU(r, s) =

∫ R̂

0
u′(sR)RdF > 0

∂

∂r
EU(r, s) = u′(r)(1− F (R̂)) > 0
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By definition of su(r)

EU(r, su(r)) = 0

The marginal rate of substitution (MRSU ) is obtained from the above partial
derivatives:

MRSU = −ds
u(r)

dr
=
∂EU/∂r

∂EU/∂s
=
u′(r)(1− F (R̂))∫ R̂

0 u′ (sR)RdF
> 0

Turning to convexity, we compute the numerator of d
2su(r)
dr2

and check its sign:

[
u′(r)f(R̂)R̂′ − u′′(r)(1− F (R̂))

] ∫ R̂

0
u′ (sR)RdF

+u′(r)(1− F (R̂))

[
u′(r)R̂f(R̂)R̂′ + s′

∫ R̂

0
u′′ (sR)R2dF

]
,

where x′ ≡ dx
dr . Since R̂′ = 1

s −
r
s2
s′ > 0, each of the above terms is positive.

Proof of Proposition 1 In the proof of Lemma 2, we saw

∂

∂s
EU(r, s) > 0

∂

∂r
EU(r, s) > 0

Therefore,

EU(r, s) ≥ lim
s→1

EU(r, s) =

∫ r

0
u(R)dF + u(r)(1− F (r)).

The limit is denoted by EU(1, r).

Suppose. By continuity, there exists r ∈ (1,∞), such that

EU(r, 1) =

∫ r

0
u(R)dF + u(r)(1− F (r)) ≥ 0

Since ∂EU
∂s > 0,

∀s, EU(r, s) > EU(r, 1) ≥ 0

This implies that, for all r such that EU(r, 1) ≥ 0, there is no solution for s
that satisfies the investors’ IR. In other words, r is upper bounded.

Next, suppose limr→∞EU(r, 1) =
∫∞

0 u(R)dF < 0. Then, there exists s such
that

lim
r→∞

EU(r, s) =

∫ ∞
0

u(sR)dF = 0
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It follows that, for all s ≤ s,

EU(r, s) < lim
r→∞

EU(r, s) =

∫ ∞
0

u(sR)dF ≤ 0.

Hence, given s no bigger than s, the investors’ IR condition cannot be satis-
fied for any r, leading to the conclusion that s is bounded away from 1.

Proof of Lemma 3

Π(r, s) =
s

s− 1

[∫ ∞
R̂

(R− R̂)dF

]
,

where R̂ ≡ r
s < r.

We impose a participation constraint

Π(r, s) ≥ µ ∀s, r (13)

It means that no bank borrows from the investors unless it yields more ex-
pected profit than autarky.

A useful implication is

µ ≥ r
∫ ∞
R̂

dF (14)

First note that
∫∞
R̂ RdF is decreasing in R̂. Therefore,

µ =

∫ ∞
0

RdF ≥
∫ ∞
R̂

RdF

It follows that

µ ≤ s

s− 1

[∫ ∞
R̂

(R− R̂)dF

]
by (13)

=
s

s− 1

∫ ∞
R̂

RdF − s

s− 1
R̂

∫ ∞
R̂

dF

≤ sµ

s− 1
− r

s− 1

∫ ∞
R̂

dF,

leading to the inequality.

To compute the marginal rate of substitution, we first obtain the partial
derivatives of Π(r, s). The derivatives establish that Π(r, s) is decreasing in
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s and r.

∂Π(r, s)

∂s
= − 1

(s− 1)2

[∫ ∞
R̂

(R− R̂)dF

]
+

r

s(s− 1)

∫ ∞
R̂

dF

= − 1

s(s− 1)
Π(r, s) +

r

s(s− 1)

∫ ∞
R̂

dF

≤ − µ

s(s− 1)
+

r

s(s− 1)

∫ ∞
R̂

dF by (13)

≤ 0 by (14)

Also, note that, from the above derivation, we can write

∂Π(r, s)

∂s
= − 1

(s− 1)2

∫ ∞
R̂

(R− r)dF,

which is proven to be negative, implying that∫ ∞
R̂

(R− r)dF > 0.

Turning to r,

∂Π(r, s)

∂r
= − 1

(s− 1)

[∫ ∞
R̂

f(R)dR

]
≤ 0

It follows that the marginal rate of substitution (MRSΠ) is given by

MRSΠ = (s− 1)
1− F (R̂)∫∞

R̂ (R− r)dF
, (15)

and positive since ∫ ∞
R̂

(R− r)dF > 0.

as shown above.

The decreasing MRSΠ follows from

d

dr
MRSΠ = −(s− 1)

f(R̂)R̂′
∫∞
R̂

(
R− R̂

)
dF[∫∞

R̂ (R− r)dF
]2 < 0

Proof of Lemma 4 Rewrite condition 1,

−ds
u(r)

dr
=
∂Π(r, su(r))/∂r

∂Π(r, su(r))/∂s

= (su(r)− 1)
1− F (R̂)∫∞

R̂ (R− r)dF

The left hand side is MRSU and right hand side is MRSΠ with s = su(r).
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So, conditions 1 and 2 are equivalent.

Setting MRSU = MRSΠ, gives us

u′(r)∫ R̂
0 u′ (sR)RdF

=
s− 1∫∞

R̂ (R− r)dF

We know

Π(r, s) =
s

s− 1

∫ ∞
R̂

(R− R̂)dF

=
s

s− 1

∫ ∞
R̂

(R− r)dF +
s

s− 1
(r − R̂)(1− F (R̂))

=
s

s− 1

∫ ∞
R̂

(R− r)dF + r(1− F (R̂))

When MRSU = MRSΠ, Π(r, s) can be written as

Π(r, s) = s

∫ R̂

0

u′ (sR)R

u′(r)
dF + r(1− F (R̂))

= r

∫ R̂

0

(
u′ (sR) sR

u′(r)r
− 1

)
dF + r

= r

∫ r

0

(
u′(x)x

u′(r)r
− 1

)
f
(x
s

) 1

s
dx+ r

Now set s = su(r) to obtain the equivalence of conditions 2 and 3

MRSU = MRSΠand s = s(r)⇐⇒ Π(r) = J(r)

Proof of Lemma 5

J(r) = r

∫ R̂

0

(
u′(suR)suR

u′(r)r
− 1

)
dF + r
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J ′(r) =

∫ R̂

0

(
u′(suR)suR

u′(r)r
− 1

)
dF − r

∫ R̂

0

u′(suR)suR

[u′(r)r]2
[u′′(r)r + u′(r)]dF

+ r

∫ R̂

0

su′

u′(r)r
[u′′(suR)suR2 + u′(suR)R]dF + 1

=

∫ R̂

0

(
u′(suR)suR

u′(r)r
− 1

)
dF − r

∫ R̂

0

u′(suR)suR

[u′(r)r]2
[u′′(r)r + u′(r)]dF

− (1− F (R̂))

∫ R̂
0 [u′′(suR)suR2 + u′(suR)R]dF∫ R̂

0 u′(suR)RdF
+ 1

=

∫ R̂

0

u′(suR)suR

u′(r)r
dF − F (R̂)− r

∫ R̂

0

u′(suR)suR

[u′(r)r]2
[u′′(r)r + u′(r)]dF

− (1− F (R̂))

∫ R̂
0 u′′(suR)suR2dF∫ R̂

0 u′(suR)RdF
− (1− F (R̂)) + 1

=

∫ R̂

0
u′(suR)suRdF

[
1

u′(r)r
− u′′(r)

u′(r)
− 1

u′(r)r

]
− (1− F (R̂))

∫ R̂
0 u′′(suR)suR2dF∫ R̂

0 u′(suR)RdF

= −u
′′(r)

u′(r)

∫ R̂

0
u′(suR)suRdF − (1− F (R̂))

∫ R̂
0 u′′(suR)suR2dF∫ R̂

0 u′(suR)RdF

Both terms are positive, so J ′ > 0 for all r. Other two properties are easily
verified.

Proof of Proposition 2 We establish the limits of Π(r) at each end. Consistent
with our intuition,

lim
r→1

Π(r) =

∫ ∞
0

RdF = µ

We use Proposition 1 to find the other limit. Since s is bounded away from
1, s

s−1 is upper bounded. Therefore,

lim
r→∞

Π(r) = 0

Since H(r) ≡ Π(r) − J(r) is a continuous function, with limr→1H(r) =
µ − 1 > 0, and limr→∞H(r) = −∞, there exists a finite r∗ that satisfies
H(r∗) = 0.

To see uniqueness, note that H ′(r∗) = −J ′(r∗) < 0. So, H cuts the x-axis
once from above.

It still remains to be shown that the unique extremum is a maximum, not
a minimum. If it is a minimum, for big r, Π(r) is increasing in r. Since
limr→∞Π(r) = 0, it follows that Π(r) < 0 for some r, an impossibility. So
Π(r) has a unique solution for Π′(r) = 0, which is a maximum.
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Proof of Lemma 6 We rewrite (15) using a conditional expectation:

MRSΠ = − s− 1∫∞
R̂
RdF∫∞

R̂
dF
− r

= − s− 1

E[R|R ≥ R̂]− r
(16)

To see the effect of changing µ, we use the parameterized distribution, fµ,
as defined in the setup. Changing µ means horizontal translation, so fµ =
f(x− µ). That is, all the distributions belong to the location family with f .
We rewrite (16) with µ explicitly:

MRSΠ = − s− 1

Eµ[R|R ≥ R̂]− r

If the conditional expectation Eµ[R|R ≥ R̂] is increasing in µ, the iso-profit

curve becomes flatter as µ goes up. The sign of ∂E[R|R≥R̂]
∂µ is determined by

the numerator of the derivative:

−
∫ ∞
R̂

Rf ′(R− µ)dR ·
∫ ∞
R̂

f(R− µ)dR+

∫ ∞
R̂

Rf(R− µ)dR ·
∫ ∞
R̂

f ′(R− µ)dR

= R̂f(R̂− µ)

∫ ∞
R̂

f(R− µ)dR+

[∫ ∞
R̂

f(R− µ)dR

]2

− f(R̂− µ)

∫ ∞
R̂

Rf(R− µ)dR

=

[∫ ∞
R̂

fµ(R)dR

]2

− fµ(R̂)

∫ ∞
R̂

(R− R̂)fµ(R)dR

=
[
1− Fµ(R̂)

]2
+ fµ(R̂)(R− R̂) (1− Fµ(R))

∣∣∣∣∞
R̂

− fµ(R̂)

∫ ∞
R̂

(1− Fµ(R)) dR

=
[
1− Fµ(R̂)

]2
− fµ(R̂)

∫ ∞
R̂

(1− Fµ(R)) dR, (17)

where the first and third equalities come from the integration by parts. If
(17) is positive, the iso-profit curve becomes flatter for higher µ.

Proof of Proposition 3 We have to consider two effects: changing MRSΠ and
shifting the investors’ IR. First, consider the effect on MRSΠ holding IR
fixed. Lemma 6 shows that, if Condition 1 holds, the iso-profit curve flattens.
Then, Π(r, s;µ) satisfies the strict Spence-Mirrlees condition in Edlin and
Shannon (1998b). Edlin and Shannon (1998a) show that the strict Spence-
Mirrlees condition implies the strict single crossing property (see also Mil-
grom and Shannon (1994)). Suppose (r∗1, s

∗
1) is the optimal contract at µ1.

At a higher µ2 > µ1, the single crossing property implies that

λ̂2 > λ∗1

where λ∗1 denotes the equilibrium regulation at µ1 and Π(r∗1, s
∗
1;µ2) = Π(1, λ̂2

λ̂2−σ
;µ2).

By Theorem 2 in Edlin and Shannon (1998b), r∗ is increasing in µ, where
the investors’ IR condition is the function G in the theorem. Hence, the new

39



optimum (r∗2, s
∗
2) on the same IR satisfies

r∗2 > r∗1 and s∗2 < s∗1

Applying the single crossing property again, we obtain

λ∗2 > λ∗1,

where Π(r∗2, s
∗
2;µ2) = Π(1,

λ∗2
λ∗2−σ

;µ2).

The next result we want to establish is that su is shifting downward for a
higher µ. To do so, for a given r, we determine the sign of ∂s

∂µ . Suppose the
IR is a function of s and µ and compute the total derivative of s with respect
to µ.

0 = −u(r)f(R̂− µ)
r

s2

∂s

∂µ
+
∂s

∂µ

∫ R̂

0
u′(sR)Rf(R− µ)dR

−
∫ R̂

0
u(sR)f ′(R− µ)dR+ u(r)f(R̂− µ)

r

s2

∂s

∂µ
+ u(r)f(R̂− µ)

=
∂s

∂µ

∫ R̂

0
u′(sR)Rfµ(R)dR+

∫ R̂

0
u′(sR)sfµ(R)dR

Therefore, the partial derivative is

∂s

∂µ
= −

∫ R̂
0 u′(sR)sfµ(R)dR∫ R̂
0 u′(sR)Rfµ(R)dR

,

which is negative. This result is intuitive. If the return prospect is improved
unambiguously, an investor is willing to lend more to draw the same utility.

Therefore, the constraint on the profit maximization problem becomes looser
and the banks can raise their expected profit under the new IR condition.
That is, at the unique contract (ř2, š2) and µ2 considering both effects, we
have

Π(ř2, š2;µ2) > Π(r∗2, s
∗
2;µ2)

Since Π(ř2, š2;µ2) = Π(1, λ̌2
λ̌2−σ

;µ2) and Π(r∗2, s
∗
2;µ2) = Π(1,

λ∗2
λ∗2−σ

;µ2), it

follows that

λ̌2 > λ∗2,

the result we seek.
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