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Stability in a Mdel of Staggered-Reserve Accounting

Abstract

Critics of staggered-reserve accounting have used sinple nodels to
show that a disturbance to deposits with no change in total reserves sets
in motion an undanped cycle in which deposits oscillate above and bel ow
the equilibriuminplied by the total reserve target. In this paper a
sinpl e reduced-formnodel of the noney-supply process is used to
investigate the nature of the dynamc process inplied by
stagger ed-reserve accounting. The paraneters in the nodel include the
nunber of banking groups in the staggered regine, the reserve
requirement, the response of banks to their own reserve position, and the
response of banks to a deviation of the noney supply fromtarget.

Classical stability algorithnms are used to find the range of
paraneters for which the nodel is stable. In this paper, the nodel is
defined to be stable if the reduced-formdifference equation for the
noney supply represents a converging process.

The results confirmthe presence of a perpetual cycle found by
others. This perpetual cycle depends on two special Conditions: the first
is that there are only two groups of banks in the staggering arrangement;
the second is that banks ignore information about the noney supply and
Federal Reserve policy in making their asset portfolio decisions. Wen
the model is extended to include nore than two banking groups, or when

banks are allowed to react to aggregate information, the noney supply

- converges to the target level following a disturbance to equilibrium
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I_ Introduction

In this paper we present a general model of the money-supply process

} The fundamental building block is

with staggered-reserve accounting.
the multiplier relationship between total reserves and demand deposits.
V¢ abstract from the problems associated with lagged reserve accounting,
the length of the settlement period, different types of deposits,
differential reserve requirements, the demand for currency, the demand
for excess reserves, and the uncontrollable factors affecting reserve
supply. It is assumed that the Federal Reserve System sets the level of
total reserves, closes the discount window, and allows no carryover.

The purpose of this model is to analyze assertions about the dynamic
response of deposits to a disturbance of the money supply from the target
level. This target level is assumed to be the equilibrium level in a more
complete unspecified model of the money-supply process and the economy.
Lindsey (1981) states that analysis done at the Federal Reserve Board on
staggered-reserve accounting suggests that dynamic instabilities may be
inherent in staggered accounting per s .2 W find, as Trepeta and
Lindsey (1979) have found, that under reasonable assumptions about banks’
reactions to individual reserve shortages (or surpluses), random shocks
to the money stock induce undamped cycles in the aggregate level of
deposits. However, the failure of deposits to converge to the equilibrium
level seems improbable because a cycle in deposits would tend to induce a
cycle in the federal funds rate and imply a profit opportunity that would
be easy for banks to exploit. In this paper we show that, even if banks

ignore this profit opportunity, the dynamic instability described in the

Trepeta-Lindsey paper is peculiar to a model with just two banking
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groups. When the model is extended to include more than two banking

groups, the dynamic instability disappears.

II. The Model

The model that is used to examine the assumptions about the
institutional structure and economic behavior that are likely to produce
dynamic instability in the money-supply process is shown in table 1. The
banks are divided into n homogeneous groups, with one group settling in
each of n successive periods. Required reserves are calculated on a
contemporaneous basis over the n periods. Banks that are short of
reserves on settlement day must borrow reserves from other banks. In the
aggregate, if the members of a settling group are short of reserves, they
must be net borrowers from the nonsettling group(s). It is assumed that
deposits are split evenly among banking groups. The first equation is a
behavioral equation in which the money supply changes in response to bank
behavior. Changes in the money supply also depend on the nonbank public's
behavior, but that behavior is ignored so that we may focus on the
"cycling" phenomena reported by Laufenberg (1975) and Trepeta and Lindsey
(1979).

The first equation describes aggregate behavior based on a model of a
single bank's behavior. The equation contains two behavioral parameters,
p and d; p measures the reaction of an individual bank to a deviation
between actual and required reserves. If the money supply goes above the
target level, the demand for reserves will exceed the supply and each
non-settling bank will borrow a proportion, p, of its deficit, causing

interest rates to rise. As each bank adjusts the asset side of its

balance sheet, deposits will tend to fall back to the target level.
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Table 1

Model of a Staggered-Reserve Accounting Regime

My = Mg ]

- d(My_y - 1/a TR) - e,.

- Pn(RRN, _; - ARN, ;)

n-1 n-1
ARS, =g/n £ M, .- £ ARN, .
t j=0 U1 4= b
ARN, = (TR- ARS,)/(n - 1).

the money supply

total reserves

required reserves of a typical non-settiing group

actual reserves of a typical non-settling group

actual reserves of the settling banks

exogenous shocks

proportion of reserve imbalance that banks try to make up in
one period

adjustment by banks to a deviation of the money supply from
target

required reserve ratio

number of banking groups and number of weeks in the reserve

accounting period
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Since total reserves are fixed, banks will not be able to achieve the
portfolio mix desired at the initial level of interest rates. Therefore,
prices of other assets will change until the individual banks are
satisfied to hold available reserves. The settling banks will have to
borrow any deficit (and are assumed to lend all excess reserves) on
settlement day. The greater the size of the reserve imbalance, the more
interest rates will have to change. The actions of the settling banks
will affect the money supply in the same way as the actions of the
non-settling banks. Therefore, the reserve deficit or surplus of a
typical non-settling banking group is multiplied by the number of banking
groups. 3 If p =1 then the total deposit effect of the individual bank
reactions to their own reserve positions will be equal to n times the
difference between the required and actual reserves of a non-settling
banking group. B¥the reserve requirement is less than 100 percent, this
effect is less than the amount by which total deposits would have to
change to return the money supply to the target level after one week.

The other behavorial parameter is d. It measures aggregate bank
reaction to a deviation of the money supply from the target. Equation 1
incorporates reaction to two types of information. The first is internal
and represents an indiviaual bank's reaction to its own portfolio
position. The second is the reaction to aggregate information available
to all banks. In addition, this equation includes a disturbance term that
represents shocks that originate from outside this model.

Equation 2 is also a behavorial equation. It is based on the
assumption that the settling banks will never hold excess reserves and

that they will always meet their reserve requirements.
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Equation 3 is a definition used to calculate actual reserves of a
typical group of non-settling banks. The discount window is closed, and
there is no carryover so that actual reserves of the settling banks will
equal required reserves. Actual reserves outside the settling banks are
assumed to be divided evenly among the non-settling banks.

The general solution for the dynamic path of the money supply in
response to exogenous shocks is given below. Noting that RRNt = g/n

Mt and substituting 2 into 3, the model reduces to equations 1 and 3':

(1) M =My - pn(a/n My - ARN, 4) -
d(Mt_] - 1/9 TR) - R

' 1 n-1 n-1
3 = = - .
(3') ARN, = - (TR q/n 150 Mp_s ifl ARNt_1>,

Using lag operators and substituting equation 3' into 1, we get

i
TR - g/n _21 Mt-i
- _ i=
(4) Mg =My -pnfa/nM 4 T
n-1--3g B!
i=1

-d <Mt—] - 1/g TR )— €.

This equation shows that the time path of Mt will be determined by a
combination of the response to individual portfolio imbalances and the
response to aggregate data. Solution of the general case requires the

th

solution of "an ' n” order polynomial with parameters p, g, and d.

III. Stability Conditions When There Is No Reaction to Aggregate Data

The problem is simplified somewhat if we assume that there is no
response to aggregate data. Therefore, we begin by analyzing the case in

which d = 0. Analytical solutions for the range of pq for which this

model is stable can be derived for n = 2, 3, or 4.
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The difference equation derived from equation 4 under the assumption

that d = 0 is given by
n-11. o
n-1- Z8B "t
(5) M, =1/¢g TR - - i=1
n-1- (n-npg)B + B"

This process will converge if all the roots of the polynomial,
n-1-(n-npqg)B+ Bn, lie outside the unit circle. If any root lies
on or within the unit circle, the process will not converge.

For the case in which there are two banking groups, the polynomial in
the denominator of equation 5 is

1-2(1 - pg)B + BZ.

The roots of the polynomial are given by
2

e

1-pg % ((pq)” - 2 pg)®.
For pqg equal to O, both roots equal 1; for pg equal to 2, both roots
equal -1. For pq inside the range 0 to 2, the roots are complex; the
distance of the roots from the origin is given by

[(1 - pa)®

In this special case of two banking groups with d = 0, 0 < pg = 2, both

EERE

+ 2pg - (pq
roots lie on the unit circle, and the path for the money supply following
an exogenous shock is an undamped cycle.

A priori, one would expect pg to pe jn this range- The feserve
requirement, g, is in the neighborhood of 10 percent. The parameter, p,
describing the banks' reactions to reserve imbalances should be in the
neighborhood of unity. Since reserves yield no explicit return, excess
reserves are held only for precautionary reasons, and there is little

reason for a bank to stockpile reserves. Negative values of p are

unlikely if banks behave in a rational manner.
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If the product pq is greater than 2 or less than 0, both roots will
be real. One root will be less than 1 in absolute value; the other root
will be greater than 1 in absolute value, and the dynamic process
described in equation 5 explodes. The economic interpretation is
straightforward. If pg< 0, then banks are persistently lending at an
interest rate that is below the expected interest rate in the next
period, or they are persistently borrowing at an interest rate that is
above the expected interest rate in the next period. If pq is greater
than 2, and q is in the neighborhood of 10 percent, then banks are
greatly overreacting to any reserve imbalance.

To analyze the cases when n is greater than 2, note that the

polynomial in equation 6 has roots that are the inverse of the roots in

equation 7.
(6) f(B) =n-1-n(l - pg)B + g".
(7)  g(B) =1 -n(1 - pq)Bn'] + (n-l)Bn.

Duffin (1969) presented an algorithm for testing whether all the roots of
a polynomial lie inside the unit circle. If the roots of g(B) lie inside
the unit circle, then the roots of f(B) lie outside the unit circle, and
equation 5 represents a stable difference equation. The details of this
algorithm are presented in appendix A with the solutions for the cases
n =23 and n = 4 Equation 5 is stable for the following values of p and q:

Case 1. n = 3,

0 <pg< 4/3.
Case 2: n = 4,

0 < pg< 2.
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For the general case of n banking groups, analytic calculation of
bounds on pq for convergence proved to be intractable. However, following
computer solutions of the model for cases n equals 5 through 30 and a
large variety of values for pg, we hypothesize that the dynamic process
described in equation 5 converges for the following values of pq:

Case 1: n > 2 and odd,

O<pq < 2(” = ]>.

Case 22 n > 2 and even,

0< pg< 2

V. Stability Conditions with a Reaction to Aggregate Information

In this section we relax the assumption that d = 0. The difference

equation derived from equation 4 in the general case is given by

n"'l_i
n-1- ZB]je
i=1 / t

(8) Mt=]/q1R- e

n-1-n(l-pg-d)B +8" - d x 8"
i=1

hhen n = 2, equation 8 is stable if and only if both roots of the

polynomial

(9) 1 -[2(1 -pg) -d]B+ (1 -d)B2
lie outside the unit circle. For the general case the procedure developed
by Duffin and used above is intractable for n > 2 Instead, we use a
method developed by Wise (1956) to derive stability conditions. For n =2,
either method yields the following conditions (see appendix B for
details):

(i) 0O<dc< 2,

(i) O<pg< 2 -~ d.
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It is important to note that while the system with two banking groups did
not converge for any values of pg when d = 0, it converges for all likely
values of p and g when d lies between 0 and 2. The great attention
attached to the weekly release of aggregate information on the money
supply suggests that d is likely to be greater than 0. While the actual
value of d can only be estimated, we know that banks and the public react
to aggregate information in today's market. Unless one would predict a
drastic change in behavior following the adoption of staggered-reserve
accounting, d is likely to fall in the stable range.
Appendix B also describes the algorithm used to compute the solutions
to equation 8 for higher values of n. Numeric solutions up to the case
n = 30 indicate the following stability conditions when d > 0.
Case 1: n > 2 and odd,
0<pg< Bz - q).
Case 2. n > 2 and even,
O<pg<?2-d.
For d <0 and n > 2, there is a stable region for some values of pg. The
cases for n = 3, 4 and 5 are shown in appendix B and plotted in figure

BQZ.
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V. Conclusion

The dynamic process described by equation 5 includes no systematic
reaction in the market to aggregate information. When there are only two
banking groups with staggered reserve-settlement periods, we find that
this process represents an undamped, unexplosive cycle for likely values
of p, the bank portfolio response, ana g, the reserve requirement. When
the number of banking groups is increased to 3 or 4, and for likely
values of p and g, the money supply converges in a damped cycle to the
target level.

The dynamic process described in equation 8 includes a market
response to aggregate information. B¥ market participants respond to a
deviation of the money supply from target by changing interest rates in
the direction of the deviation, then the dynamic process described in
equation 8 is likely to converge even when there are only two banking

groups.
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Footnotes

The proposal to stagger reserve accounting was first made by Cox and
Leach (1964); also see comments following the article by Sternlight
(1964). This proposal was resurrected by the Morgan Guaranty Company
(1981) and discussed by Gavin (1982).
These results come from the analysis of a model constructed by
Trepeta; see the appendix to Trepeta and Lindsey (1979). The
fundamental difference between the model presented here and Trepeta
and Lindsey's is that we generalize to include more than two banking
groups, and we add a behavioral parameter to capture reaction to
aggregate information. Laufenberg (1975) first noted that the
institutional structure of staggered-reserve accounting implied the
possibility of dynamic instabilities.
Robert Avery, Federal Reserve Board staff, has pointed out that when
n =2 and the model is changed so that

M, =M

t
- d(M

- p(n-1) (RRN,_; - ARN,_.)

t-1 1

£l 1/q TR) - €

the range of values of pg for which the model is stable is reduced by
a factor of one-half. Changing the model in this way does not change

any of our qualitative results.
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Appendix A
Stability in the Model with d = 0

A Test for Schur Polynomials from Duffin (1969)

A Schur polynomial is defined as a polynomial for which all the roots

lie inside the unit circle.

Algorithm. Let gn(w) be the polynomial

gn(x) = agt a;x+ a2x2+ vae + A xn,

where

ay # 0, a, # 0. Let gn_](x) be the reduced polynomial

9p1(%) = (ag2y - agay q) + (ag3, - agay H)x
: n-1
+ ...t (anan’- aOaO)x |
of degree n - 1. Then gn(x) is a Schur polynomial if and only if
(1) |ag| < |ay|> and
(i1} 9,-1(x) is a Schur polynomial.
This procedure is iterated n times to get the parameter domain for which

gn(x) is a Schur polynomial.

Case: n = 3

94(8) = 1 - 3(1 - pa)s® + 283

(1) 1] < [2],
2

b

(11)  g,(B) = 3(1 - pg) - 6(1 - pq)B + 3B

(i)' 13(1 - pg)| <3 =

|1 -pg] <1 <= 0<pq<2,
2
)

(11)'  gy(B) = - 18(1 - pa) + 18(1 - pa)® + (9 - 9(1 - pa)*)B,
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(i)' |4(1 - pg)| < 8«

-1 <pg<3.
. ] 2 2,2
(11)"  g,(B) = 48(1 - pq)” - 96(1 - pq)B +(64 - 16(1 - pg) ~)B".
(i)" |48 (1 - Pq)zl < |64 - 16(1 - IOQ)Zf-

Bth (1 - pq)2 and 4 - (1 - pq)zare greater than 0 on the range

- 1 < pq < 3. Therefore, (i)" <
3 (1 - pq)2 <4 -(1- PCI)Z"::’
(1 - pa)? < 1,

0 <pg < 2.

(i1)" g (B) {-(64 - 16(1 - pq)®)(96(1 - py) +
(48(1 - pg))(96(1 - pa))] +
[(64 - 16(1 - pa)?)% - (48(1 - pq)®)°1s.
|-(64 - 16(1 - pq)%(96(1 - pa)) + 48(1 - pq)?96(1 - pq)| <
)2)?

(64 - 16(1 - pq)*)® - (48(1 - pq)?)?| =

Al |3(1 - pg) - 3(1 - pg)®| < |2 - (1 - pq)2(1- pq)?]

for 0 <pq <1
3(1 - pg) - 3(1 - pq3) >0 and

2-(1 - py) -(1 -pp)* >0

Therefore, Al = 2-3(1 - pg) -(1 - |Dq)2 + 31 - Pq)3 - (1 - IOQ)4
=f(l - pg) > 0.

f(l - 0 wen
(- pa) = 5 wren e

I
I
O
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To show that f(1 - pg) > 0 for all 0 < pg < 1 note that

f'(1 - pq)
f'(1 - pq)
£1(1 - .5)

Therefore, f'(1 -

For 1 <pg <2

3(1 - pgq

2 - (1 - pq)? - (1 - pq)

Therefore, A.l= 2 + 3(1 - pq) - (1 - pCI)2

3+ 2(1
0 when pq
2.25,

pq) > 0 for

)3

-3(1-pg) >0

0

=h(l - pq) > 0.

h(1 - pq)

2
0

when pq
when pq

1
2

Pq) = 9(1 - pq

)2

t4(1 - pg)3

-.693, 0, and 1.443.

Best available copy

<pg <1 and f(1 - pg)> 0 for O0< pg < L

4

> 0.

and

-3

3

(I - pg)” - (1 - pq)

To show that h(1 - pg) > 0 for all 1 < pg < 2 note that

h'(1 - pq)
h'(1 - pa)
h'(1 - 1.5)

Therefore, h'(1 - pq) < 0 for 1 < pq < 2,and h(1 - pgq) > 0 for 1< pg< 2

= -3+ 2(1- pg) +9(1 - pq)

2

+ 4(1 - pq)3.

= 0 when pg = .557, 2, and 2.693.

-2.25.

4

Therefore, equation 5 represents a stable difference equation when n = 4 and

0 < pgq < 2
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For the general case of n banking groups, analytic calculation of bounds
on pg for convergence proved to be intractable. However, following computer
solutions of the modd for cases n equals 5 through 30 and a large variety of

values for pg, we hypothesize that the dynamic process described in equation 5

N

converges for the following values of pqg.

Case 1: n > 2 and odd,

0<pq<2(p—rz]l.

Case 2: n > 2 and even,

\%

(@)
A

pq < 2.
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Appendix B
Stability of the Model in the General Case

The dynamic process described in equation 8 will be stable if the

roots of
B' =0
1

B.1 n-1-n(1-pg-d)B+B"-qd
i

WM s

lie outside the unit circle. Equivalently, the system will be stable if

the roots of
n-1 n
g.2 g" -n{l - ba - d)B  +

n—

=
).
1
™M
oed
1
[en)

lie inside the unit circle.
Wise (1956) presents a method of transforming equations of the type
B.2 such that the conditions on roots lying inside the unit circle are
equivalent to the real part of the roots of
n _
8-3 pO + p]y + e w0 + pny - O

being less than zero. In B.3y and p,. are defined as
y=B+1

R -7 and
n c
=1 a, .
pr j:OOLJ r
CY‘J’ is the coefficient of yr in the expansion of
(y+ "y - ),
oa0= 1,
o =-n(1-pg - (n-1)d,
n-1
Gy = . =0, 1= - _d and
n-1"
ap = 1 -d
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From this point, we can use the Routh theorem (Chiang 1974, p. 546),

which states that a polynomial of the form (with 3, assumed greater
than 0)
n n-1 . _
B.4 agx + a;x e ta g xt+a =0
has the real parts of all its roots negative if and only if the firstn

of the following sequence of determinants
lar] 5 ey ag| 5 [y a3 ag| 5 -
35 3, g 2, 3,
10 Ay g
are all positive. In applying this theroem, it should be remembered that
Ia] I = a, and that we set
a, = 0 form>n.
In the present problem, we have
a; = pn-i forom =0 1, ..., N
Thus, the conditions for stability of the system can theoretically be
derived from Wise's results and the Routh theorem. However, in practice
the analytical solution is extremely complicated. Therefore, we present
the analytical solutions for n = 2 and 3. Numeric solutions are given for
n> 3.
Case: n=2
0= -[2(1-pgq)~-d] and
o, = 1 - d.
From Wise (1956):

p.=1-a + o 2[2 - pg - dl,

g
~nNo
1)
[EEN
+
Q
e
+
Q
nNo
i
N
<
£
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Thus, a p, = 2pq is positive if pg > 0. Otherwise;all signs of

0 -
the p;'s must be reversed. If pg > 0, then the conditions of the

Routh theorem are

[a][ = P71 > 0 or equivalently, d > 0 and

ay a4 p]O'
- =p1p0>0 or
ag 3| P2 Pg

2d[2 (2 - pg -d)] > 0. Since d > 0, we get

2 -pg-d>0o0r

pq < 2 - d.

I¥pag < 0, then we have to reverse signs before applying the Routh
theorem.

Conditions are then

lall =-py=-2d>0o0rd<0.
a, a -p; 0
41 93 1

= =P Py >0 =
3 ¥ Py Py

2d[2 (2 = pg -d)] > 0. Again, since d< 0
2-pg-d<0 <«

pg> 2 -d > 0.

This last inequality contradicts pq < 0. Thus, there are no stable
solutions for which pgq < 0. The stable region is given by
‘O<pq<2-d and
d >0.

It is shown in figure B.1.
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0 Pq

Figure B.1 Stable Parameter Domain

oy = - [3(1 - pg) - 2d],
2
ap = -d . and
2 2an
a, = 1 - d
3 2

From Wise (1956):

Py = T - oq+ay - ag =4—3pq-.2d’

2
p]=3—a1-a2+3u2=12-3p2q-4d
p2= 3+a]—a2-3a3 = 399;5d,and
Py 1t ety tag 3,

2

Again, tnis case divides into two subcases, depending on wnether P3
is positive or negative.
If Py > 0 or equivalently, pg > 0,

la]l =p,>0 < pg> - 2d.

Best available copy
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ay a3 P2 PO
= = - > O
ag ap P3 P pP2P1 - PQP3

— (3pg + 6d) (12 - 3pg - 4d) - (4 - 3pg - 2d) (3pg) > O
2 2 2 2

— pq (1 -d)>d2 - 3d =

B5 pqg <d (d - 3) for d>1 and
-d

Pg > d (d - 3) ford< 1.
T-4d

There is no constraint from this condition on pq when a = 0.

0 0

%3 P2 Po
ag 3, 0 = [Py Py 0| = pypypg - pgPy> 0.
02y a3f 10pypg
prO > 0, we get the same conditions as in B5 plus Pg > 0
< 4 - 3pq - 2d > 0 or
B6 pg< 4 - 2d.
3
pr0< 0, we get the reverse of conditions given in B.5. Because we
cannot have both the conditions in B5 and their inverses, there is no

stable solution when Pg < 0.

If Py < 0 or equivalently pg < 0, we have

‘a]l =-p,> 0= pac< - 2d,
ja, a5 [P, -Pg |

= = PPy - PgP3 >0
lao % ]‘93 B

(which gives the same condition as B.5) and
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a] a3 0 -p2 —p0 0

_ - 2
358, 01 = | =3 =y 0 = -pypyPy + Py P3 > 0.
0 a] a3 0 -p2 -pO

i p0 > 0, we get the reverse of conditions in B5. Thus, there is no
stable region with Po > 0 and Py < 0. For Py < 0, we obtain the
same conditions as B.5 and

4 - 3pg -2d <0
or

pg > q_:_gg .

3

Because it is not possible to have both pg< -2d and pg > (4 - 2d)/3,
there are no stable conaitions for pg < O.

In summary, the stable region for n = 3 is given by the set of

conditions obtained from those given above by determining which ones are
binding conditions. They are

pg > 0,
pg < 4 -2d, and
3

pg >d (d - 3) for d < 0.
1-d
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Theoretically, it would pe possible to solve for the stability
regions by using the above method for n > 3. However, the application is
not practical because of the complicated expressions involved. Insteaa,
we have developeda computer solutions for n up to 30 using the above
method and an algorithm developed by Duffin (1969) to calculate the
Cm.'s. From these solutions, we make the following hypothesis:

(1) For ¢ > 0, thestabilityregionisgivenby

Pd< 0=11 (2 -d) for n odd,
n
pg < 2 - d for n even.

(2) For 3 <0, there is a stability region for which we have not been
able to determine general formulas for boundaries except partially for
the case where n is odd. In this case, the upper boundary appears to be
pa<o.=_1 (2 - d). Figure B.2 illustrates stability regions for cases in
n

which n = 3, 4, and 5.
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Figure B.2.

Stable Parameter Domains

pq

Best available copy
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